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Renormalization-group theoretical reduction of the Swift-Hohenberg model
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The Swift-Hohenberg model of the cellular pattern formation is exploited with a proto renormalization-
group (RG) scheme. The method dispenses with the explicit perturbation solutions which are required in the
standard RG approach. The RG equations obtained are the well-known reductive perturbation results such as a
rotationally covariant amplitude equation and the nonlinear phase equations.
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[. INTRODUCTION perturbation methodk9]. The modified parameters are gov-
erned by the renormalization grodRG) equations that turn

In spite of the enormous diversity of stable spatial struc-out to be, e.g., large-scale slow-motion equatiGresiuced
tures in far-from-equilibrium systems of different origins, the equation$ [10]. Let us call the method to obtain the space-
unity of dynamical mechanisms of their birth and evolutiontime large scale equations as RG equations the RG theoreti-
allows us to formulate some fundamental models of the noncal reduction(or the reductive RG methpdHowever, the
linear theory of such structures. The Swift-Hohenb&4)  RG reduction so far practicd®,10] could be methodologi-
equation[1] is one of the simplest and most canonical para-c|ly awkward, because we need explicit perturbation results.
digms, and has been intensively studied in the p2istit is Quite recently a new approach, the so-called proto RG
i_n the form of a par;ial differential equatio(PDE) for a operator scheme, has been propdded-13 to free as much
time-dependent functiork(x,t) and reads as possible the RG theoretical reduction from the necessity
of explicit secular terms. The RG procedure in this scheme is
much simpler than the RG calculations given in R6f. The

whered? is a two-dimensional Laplacian with respect to theimportance of this method is that to the lowest nontrivial
positionxvectorx. The ¢ is the bifurcation parameter, which order no explicit results are needed and yet it extracts ob-

controls the appearance of spatially periodic structureServale global fe_gtures of hig_hly nonlinear_ systefiisis
(“rolls” or “stripes” ) of characteristic length of Ordm,al. true that the traditional reductive perturbation already has

Analytic solutions to the nonlinear PDE.1) have been this feature, but the new reductive RG approach can give the

calculated perturbatively in two limiting cas€®]: (i) Near ~Same singular perturbation results as Weflhis has been
threshold where @ ¢<1. Here the nonlinearities are weak /llustrated in Refs. [11,13 with many examples of
and the spatial and temporal modulations of the basic roll@Symptotic analysis of ordinary differential equations
become slow. The balance between these effects is describ€dDES as well as PDEs, and the assertion that all the reduc-
by the “amplitude equation’[3,4] for the envelope function tive perturbation equations are RG equations seems to hold.
of the basic state(ii) Far from threshold but still in a range This paper will give a new example supporting this assertion.
where the field is dominated locally by what would appear to  The key step in the proto RG operator scheme to construct
be straight parallel rolls. Weak distortions of the regular patthe RG equation is to find an appropriate differential operator
terns involving spatial modulations over distances large comthat maps the set of its unboundéskeculay solutions to
pared to kgl can be treated perturbatively yielding the something tractabléo 1, say. For PDE, in contrast to ODE
“phase equation’[5,6]. cases, this procedure becomes a bit non-trivial due to the fact

To derive the amplitude equation froth.1), the method that the secular terms are not unique for PDE. Although one
of multiple-scales approadsee, e.g.[2]) is used, while this can learn much of the essence from the published results
method is combined with the nonlinear WKB techniqué  Refs. [11,12, we feel we should reemphasize the step.
to construct the phase equation. We shall refer to these metfi-herefore, in this paper, we give non-trivial details about the
ods altogether as a reductive or singular perturbation theoryroto RG operator scheme with the SH equatibri).

Suppose we apply to a system a perturbation, e.g., we add Section Il is expository, and the proto RG operator
to the equation governing the system some nonlinear termscheme in its most abstract version is explained to derive the
dissipative terms, etc. The system is usually not structurallamplitude equation. The final res@ithich has already been
stable against such perturbations, so the perturbation resulpsiblished in Refs[11-13) turns out to be the reductive
are, if computed naively, plagued by singularitisgcular  perturbation equatiof4]. In Sec. lll, the phase dynamics
terms. It has been recognized for some tif& that these near the zigzag boundary is studied in the context of our
singularities in the naive perturbation theories can be renorscheme. The outcome is the well-known nonlinear phase
malized away by the modificatiofrenormalization of the  equation6,14,15. The more general phase dynamics is con-
parameters in the unperturbed sté@enplitude, phase, ejc. sidered in Sec. IV. The derivation is an RG version of the
The renormalized results agree with or are sometimes bettéross-Newell phase equatip@]. Section V closes the paper
than those traditionally computed with the aid of singularwith several remarks.

ap=ed—P—(2+k3)2y, (1.2)
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II. PROTO RENORMALIZATION-GROUP SCHEME ~
=ArP@o+ e[ #1(1,AR) — ¥ (1, R,AR) I+ e%{ (1, AR)

Since we treat the termy— ¢° in Eq. (1.1) as a pertur-

bative one, we scales as \e and denote the new with — (1 R AR+ ARZ[Y1(1 AR) — Y1(r R AR} + - -
the same symbol. The SH equati@hl) then reads +C.C. (2.9
— 03\ __ (92 2\2
dp=e(Y=¢7) = (d+ko) "y (2.1 Notice that Eqs(2.8) and(2.9) are thes-expansion of

In order to explain the proto RG scheme in its most abstract - 2"

version, we expound, in this section, details of #%eRG ~ (A~AR)Potedn(r,RA)+eYy(r,RA)+ - +c.c=0,

calculation using Eq(2.1). A (2.10
At a zeroth order ine, we have a roll solutionAg*

+c.c. withk=|k|=k,, where c.c. denotes the complex con- and

jugate andA is a complex numerical constant. We expand

the solution to(2.1) as Y=Ar®o+ e[ Y11, A) = J1(r,RA) ]+ & ol A)

P(t,X)= A &y (1,X,A) + 82yp(t,X,A) + - - - +C.C. —da(rRA)+- - +ec, (2.11

(2.2
respectively. If we pur=R, then Eq.(2.11) reduces toy
Here the dependence of the perturbed solution®\as ex-  =Ag®, as required.
plicitly denoted for clarity of the subsequent discussion. The Introduction ofR is equivalent to splitting of the deriva-
first and second order corrections obey the equations tive d; to d;+d,, anddy 0 d;+d,;
LO(ay,d,) g =A(1— 3| AP el *— AdePlx+ C-C-,(2 ) LO(8y,d,0—~L O3+ 3,05+ ).

. . If we apply L©O(a,+4a.,d,+3,) to ¢, (or ¢r,) and separate
0 _ 2 2 2ik- 2__2ik- tT0r,0xT Op 1 2
Ly, 0012 = (1= B|AI?) ihy — B(AZE KX+ AT 2 gy out the term containing, from the outcome, then it must be
+c.c., (2.4) identical to the coefficient ofby on the right-hand side of
Eq. (2.3 [or (2.4)]. Namely, e.g.,
where A
Pr—rL@(d+d,,0,+ 3,) h1=A(1-3|A]), (2.12
L9y, 05 =i+ (95+ k). (2.5
_ o _ _ _ whereP is the projection operator ontb, and the subscript
Notice that®,=€"* is the eigenfunction of the zero eigen- implies the prescription to sét,x}={r,p} after projection.
value ofL(®; LO®d,=0. Henced, can be the source of the Since
secular terms iny; and ¢,.
Let l//l(T,p,t,X,A) andl,[lz(T,p,t,X,A), -+ be (vl’l and(,lfz, PL(O)((;'t ,(9)() l’,\bl:O (213)
- with variables{t,x} in the secular prefactors @b, re-

glacedhby{ 7.0}, disl.caging constant terms. Let us also intro-y, e definition ofjs,, we rewrite the operators on the left-
uce the renormalizeA.: hand side of Eq(2.12 as

A=ARZ=AR(1,p)[1+cZ(1,p)+eZ(T,p)+ -]

(2.6) PLO G+ 0,95+ 0,) P =PILO(0+ 9., 0,+3,)
Then Eq.(2.2) can be written as —LO(3,,0,0 19
h=AgP@o+ e[ AZ 1 Do+ 1 (1, AR) |+ e[ AZ,Dg —PLO(31,00) 1
+ (AR FARZLL(LAR ]+ - - - +e.c., (2.7) =PFi, (2.19

wherer={t,x} and ;= dy/ JAr. The renormalization con- With
stant is determined order by order as
F=LO(a+ 0,0+ d,) —LO(d,,05)

ArZ1Pot Y1(rR,AR) =0, =0, + 5+ 2(55+k5)
ARZ, Do+ (1R, AR) +ARZ1 11 (r,R,AR) =0, (2.9 +A(F5+ Oy D+ g+ KG) Iy 9 (2.19

etc., whereR={r,p}. Putting Eq.(2.8) into Eq. (2.7 we  We now apply the operataf="PF to Eq.(2.11). Then we
obtain the renormalized perturbation series obtain
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S(AR<I>O)=8&AA1+82&}2+ o The last 'germ is (egarde_d_as a perturbation in thisf section,
and we will not write explicitly the small parameter since we
=eA(1-3|A|?)+2P[(1-6|A|?) ¥, study only the lowest nontrivial order. This is the situation in
i _— the neighborhood of zigzag instabiliti€8] in which the re-
—3(AZ K+ AT TN g T sistance of the rolls to perturbation with variation along their
(2.16 axes weakens. The unperturbed equation has a stationary so-
lution:
However,
Po(X) = ho((X)=koX+ &(y)), X=(xy), (3.2
F(ArDo) =Dl ; AR, (2.17 .
where €'’
where Writing the deviation of the true solution fromi, as i:
. § = Yo+ ¥, 3.3
L, =0+ d5+4ik- apa§—4k/km—ﬁp/apm. (2.18 V=dotin @3

we get to the lowest order
Here and hereafter, the summation convention always ap-
plies to subscripts occurring twice in vector expressions. [0—LO(a) gy = —[ 05+ 20555+ k) 1o, (3.9
Therefore Eq(2.16) becomes
where
L. Ar=8A(1—3|A[?)+e?P[(1-6|A|*) ¢
_ _ LO) (g, )=e—3y2—(92+k3)2. (3.5
—3(A%PK AR e Ak g (2,19 " oo
) . i ) The straightforward calculation of the right-hand side of Eq.
to O(&“). On the right-hand side one may ignore all the(3.4) yields
terms explicitly dependent on space and time. From(EQ®)
we find that iny; the term proportional te*'** is secular (9= LO) =P opy+ Pty + Py + Paf’ . (3.6)
(hence it can never be a constamthile the terr‘nocei?""'_X is ‘ R
nonsecular. Thus we look for the term of the foBa™3**  \here the’ denotes the differentiation with respect to the
in ¢, with B being constant. We finB=—A%/(64k?). phased, and
In this way Eq.(2.19 is reduced to
P1=—[dy¢+2k5o5¢],

3
L =eA(1-3|A|)+e2——AlA* (2.2
roR= AL SR et GAIAT (220 Po= —[408d, b+ 3(520)2+ 2k3(d,4)7),
(3.7
to O(&?). Here we replace\ on the right-hand side with Py=—[635¢(dyh)>+2K55; ],
ARZ. We may then seftr, p} =0 so thaZz=1 since the right-
hand side should not depend on space-time explicitly. There- P,= —[(ay¢)4+ ZkS(ayqﬁ)z].

fore we finally obtain the proto RG equatioffctually this

is the RG equation t®(=?); see[11] on this point) It reads  We note here thapy, is the zero-eigenvalue eigenfunction of
L, LOyl=0. Therefore this can be the source of the

ArlAR%, secular terms of;.

3
(0,— 4Kk32)Ag=eAr(1—3|Ag/?) + €2 .

4k4 Let us renormalize the phask as
(2.21 -
t,X) = o(KoX+ JEY)) (1, x) — JE0,X),
where[] is the rotationally covariant operatp4] LX) = dolkox+ dr(m &)+ (1) = da(nd 23.8)
O=k.9 — '_(;2 (2.22 where 1:/11 is obtained fromy; by replacingt and x in the

P 2ky P secular term prefactors @f) with 7 and¢ and discarding the

N . ) constant prefactors. Introduction of these varialbleg} cor-
k being the unit vector along. The result(2.21) is exactly responds to splitting of, and d, to -+ 3, and dy+ d, re-

of the same form as the amplitude equation that Gunagttne gpectively. Namely, it is equivalent to replacing the differen-
al. [4] obtained first with a use of the multiple-scale analysis.jj5| operator£(d, ,d,)=a,— L(©)(a,) according to
1 Ux X

ll. PHASE EQUATION NEAR ZIGZAG BOUNDARY L(04,0)— L= L(3+ a0, 05+ 3)
’ T .

We split the right-hand side of E¢L.1) into two parts as "
If we apply £ to ¢, and separate out the term containing

dup=[e—*— (95 + ko) 2] —[ 295( 35+ K§) + 351 . from the outcome, it must be identical to the coefficient of
(3.) ¢, on the right-hand side of Ed3.6). Notice here that/y
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and ¢y" are orthogonal taj, but ¢ <. Introducing the
projection operatof® onto the null space of(?), we thus
find

PLi=P(P1hp+ Paig). (3.9

However, PL(4, ,dy) {pl:o by the very definition offpl.
Thus EQq.(3.9) is rewritten as

PFJ1=P(P1yo+ Payp), (3.10
where
F=L(0+ 0,05+ ) — L3y, dy)
=0, +[2(05+ T+ KG) + 97+ 20,992+ 2050¢).
(3.1
OperatingZ on Eq.(3.8), we therefore obtain
PF o(kox+ ¢r(7,€,Y))=P(P13ho+ P3yg). (3.12

Computing both sides of Ed3.12 explicitly and with the
subsequent replacement of the variables}—{t,x}, we
arrive at

G+ 23505+ Typ+ 3y p— AkGI% [ 8Kody bz, b
+4kody paxd+ 120y by b1 —[2(dy )T
+ 205 (3xh)?+ 8y iy +6(0xh) 5 b
+6d5¢(dy$)?]=0. (3.13

We have used the relatiapy = — (. This is the proto RG
equation.

To reduce the equation further, we must choose the way

we observe the system. If we choose
Ix~=1n? dy~n, d~n* (n<l), (3.14
and keeping the leading terms, which #¢7*), then we
find
drp— B35 p(3yp)?+ b — BKodypyd— AKod by eh
—4k392¢=0. (3.15

This is the phase equation which Cross and Nep&lide-
rived first by the multiple-scales analySisee alsd14,15).

We note that the small parameter in their analysigis=

size of roll/size of system, and the res(8t15 is obtained
by the expansion ofl1.1) up to O(7%).

IV. CROSS-NEWELL PHASE EQUATION

PHYSICAL REVIEW E63 016119

nop=eh— ¢ — (95+K5)2 4. 4.9
The control parametes is not a small parameter in this
section. At late stages in the pattern formation process, roll
platforms change slowly from place to place. We then sim-
ply guess that the only important order parameter is the pat-
tern wave vectork. The amplitude of they field will be
slaved tok everywhere. Hence corresponds to the ratio of
the amplitude relaxation time to a time scale we are con-
cerned with. Then the zeroth order solutigg of Eq. (4.1)
satisfies

eho— o (33 kg) 2o =0, (4.2
and represents the stationary state. Equaio® has a so-
lution of the form

ho(x,1) = F(O(x,H)=k(t) - x+ (1) k(1)),

where the functiorf is 27r-periodic in 6, andk(t) and ¢(t)
are arbitrary functions of. Specifically,

4.3

k= 8—0. (4.9
ox
Writing the deviation of the true solution from, as
Y=ot npyt---, (4.9
we obtain atO( %)
LOG == 2+ O g
ot a8 at ok,
Here
LO(d,) =6~ 3y5— (35 +k5)%. 4.7)

Notice that this operator has a zero-eigenvalue eigenfunction
Dy=0f/30, i.e.,LOdD,=0. Hence thisb, appearing in Eq.
(4.6) can be the source of the secular termsgpin

Let us renormalize Eq4.5) as

P(x) = (k- x+ dR(p) kR(p)+ np1(X) — nha(p,X) s

where we have not written out thelependence d, ¢R kR,
etc., for notational simplicity. In Eq4.8) the renormalized
wave vectokR is defined by

J6R

kR=—— R(p)=k-p+¢"(p),

p 4.9

being consistent with the definition@.3) and (4.4). The
J1(p,X) is ¥, with x in the secular prefactors ob, and

For e not small but at a late stage of the roll formation, ¢f/dk replaced by. Then proceeding as before, we find that
dyl gt becomes the only small perturbation that enters the
SH equation(1.1). In this section we consider such a situa-
tion.

To that end we introduce the small paramejdn the SH
equation as

.~ d0
Pe-pFh1=" (4.10
where

016119-4
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F=LO(g,+3,)~LO(d,) = —[2(95+K§) + 75+ 20y 3]
(4.11
Thus applying the operatdi="P,_ ,7 to Eq.(4.8), we obtain

2
X (54205 9,).

a0
n5f=3ﬂk-x+¢ﬁk%. (4.12
In order to compute the right-hand side of E4.12 we first
calculate Ff (9(x,p) . kR(p)), where 9(x,p)=k-x+ ¢R(p);
note that “9"” is not the same a9 in Eq. (4.3). We find

]ﬁ_( 9o oy ﬂ)af 92 a2+
ap2apt,  Cap2| 00 | ap2\Taxd T
. PPy A 92 . of
3p,dpm\ - IX, X EE}

kR a
+ Sla4—+ ...
Ipopm\ IXs

Al 32 2 d of
ax2 0 o kR

+orthogonal terms.

kR

%

(4.13

Here the orthogonal terms denotes the terms orthogonal to
the null space of the operataf®). The ellipsis denotes the
terms containingy/ dp,,. This derivative gives rise to terms
xd¢pRlap, and &k;/z?pm, which we assume to be higher

order than the terms explicitly written out in E@.13. Fur-
thermore, the consistency conditi¢h9) implies that

P9 2R kB g2eR
- , —= . (4.14
P, pm  Ip,IPpm Ipm  IP,Ipm
Therefore
. Pl +iﬁ%<w+ f)
B T DS EP EN
IpyIpm Iy IXin
s 7R P 9t 4 7* R 2o 7
I, 0pm X Xen| 30| IpIpm| O ax?,
R d
+— —¢ Torthogonal terms.(4.19
3p, Ipdpn) %s 0K

Thus Eq.(4.12 becomes

ao I*eR . % 6R .16
Tt ™ o opmip? Mapsopm
where
L dr 5, Do+ d4— o
/m 0:9/m¥*0 é’X/ (9'(

PHYSICAL REVIEW E 63 016119

(92

D, m= <®02&mﬁ9+k5®0+4 D,

IX X

+4(2+KS s 4.1

() 5 T (4.17
The fbg is the zero-eigenvalue eigenfunction of the adjoint to
L(®, and the scalar produ¢a,b) is defined by

1 (2=
(a,b)= ﬂjo dédab.

This is the proto RG equatiofwithin the approximation
mentioned above By inspection we realize that the differ-
entiation with respect tg twice raises the power of;.
Namely, we find that thé -term is theO(#?) contribu-
tion. Consequently we may discard it to obtain the RG equa-
tion to O(#) as
A 7 OR

7 at _D/map/apm- (4.18
This agrees with the result of Sagb7] who employed the
standard RG perturbation methédle to Cheret al.[9]). In
the one mode-approximatioB, ,,,, agrees with the diffusion
tensor obtained by Cross and Newdl; see also Ref.16].
It thus demonstrates that our RG equation is nothing but the
Cross-Newell phase equation.
In closing a remark on the -term is in order. Proceed-
ing to the next order calculation one may convince oneself
that this term is in fact the dominant one among @;?)
contributions. In particular, in the one-mode approximation
with k~kg, we find L ,=—6,,. With the new variable
X=np, EqQ. (4.16 is then reduced to

T 340R4_D JoR i1
ot Taxd T T MOX 0K (4.19

Indeed Passot and New¢ll5] showed earlier that the regu-
larization is necessary of the Cross-Newell phase diffusion
equation(4.18 near the pattern singularities and that the
principal regularizing contribution to the right-hand side of
Eq. (4.18 is —VV2.k whenk=k,, in agreement with our
RG result(4.19.

V. CONCLUDING REMARKS

In summary, we have considered the evolution of a large-
scale modulation of spatially periodic patterns. We have de-
rived the amplitude equation and the nonlinear phase equa-
tions for the SH model, and demonstrated that those
equations previously derived by the reductive perturbation
method are all RG equations. We have done this without
constructing the explicit secular solutions. This is called the
proto RG approach, and the approach we have employed in
this paper is the most abstract one. We remark that when a
model equation has a limit cycle solution, the proto RG deri-
vation of its phase equation is much simp|&g].

A consistent RG reduction of the SH equation to the ro-
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tationally covariant form is presented in Sec. Il. This re- kR.x+ ¢R. (5.4
solves the dispute about its derivation by GraHd®,19 by

means of the RG method. Note that EB.2]) includes all  \yhen the phasep is renormalized, the renormalization

possible terms up to order’, while the result in Ref[18]  gpqq automatically and uniquely determine the wave vec-
did not contain the last term on the right-hand side of Eqyor renormalization, cf. Eqg3.8) and (4.9). The choice Eg.
(2.21). Namely, the equation obtained by Graham is not conts 4 on the other hand, leaves indeterminacy of the renor-

sistent to ordee (as first realized by Ref19]). If we wishto  5jized wave vector even after renormalizationdof
retain all the differential operators in the equation as seen in

Eq.(2.21), we need a higher order correction to the nonlinear
term, which is the last term on the right-hand side of Eq. ACKNOWLEDGMENT

(2.2D. ) The author is grateful to Yoshi Oono for showing him
As stated above_, 83@7] derived t_he_: same reSF"t as Eg. Refs.[11] and[12] prior to publication and for very illumi-
(4.18 by the combination of the explicit perturbative calcu- nating correspondence.

lation of secular terms and the RG method of Réi. To
contrast it with the proto RG approach developed in the

present paper, we present in the Appendix the less abstract APPENDIX
proto-RG calculation using the more explicit expression than
Eq. (4.5. As the right-hand side of our target equati@né)

is directly proportional ta76/dt, we can take a shortcut cut-
ting off Eq. (4.12. Namely, writing down the following
structure for the solution to Eq4.6)

In this appendix we take a less abstract approach than in
Sec. IV to obtain the phase diffusion equati@nl8. Owing

to the peculiar form of Eq(4.10, the algebra is somewhat
simpler with this method.

We start with the structurgef. Eq. (4.6)]

of of

{/Il=g%+h/m, (5.1 af(x) df(x)

(P =9(p) = thp 5~ (AD)

whereg and h, are polynomials ofx, we can obtain Eq.

(4.18 from the straightforward calculation of Egt.10 (but ~ Heregandh, are polynomials op, and thex-dependence of
without calculating explicit expressions fgrandh, as was f arises through the variabte[see Eq(4.3]. We define the
done in Ref[17]). This derivation is a proto RG version of renormalizedk and ¢ by

Sasa’s.
However, we point out that the renormalization procedure k=kR(p)+ ndk(p),
in Sasa’s theory is contradictory. An internally consistent
approach should give the same result if one employs Eq. b= dR(p)+ 154(p) (A2)

(4.12 instead of Eq(4.10. This is not the case with Sasa’s

renormalization. In place of Eq4.8) he renormalizes Eq. .
P 4.8 g where sk and 8¢ are counter terms. Now that E.5) is

4.9 as written as
y="1KR(p)-x+ $"(p) K" (p))+ 7 5k(p) - (x—p) P(X) =1k x+ SR KR+ 5¢,%+ 5k/ij+ .
- /
+ lvbl(x)_ Wl(PaX)]v (52) (A3)

wherekR, sk and ¢R are defined by Eq(A2). A little cal-  the secular pariy, satisfies
culation shows thatS[ 7] k- (x—p)Py]=0. Hence the
counterpart of Eq(4.12 in Sasa’s theory reads of af .
5¢%+5k/m+¢1=0. (A4)

90
ST x+ ¢ kR = (53  Namely,

g:_5¢, h/:_gk/. (AS)
The resultant phase equation from the straightforward calcu-
lation of the left-hand side following the same line of argu-y, g the renormalized perturbative result is written as
ments as used in Sec. IV, however, is different from Eq.
(4.18 [in fact, being the same expression but for different R LR -
numerical factors from Eq4.18]. This is inconsistent. The =T (K-x+ " K") + 7(h1— 1), (A6)
lack of the internal consistency can be attributed to the
physically unreasonable definition of the renormalized phast O(#) in accordance with Eq4.8). Differentiating with
in Eq. (5.2: respect top the bare phase written as
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0= 0R+KkR-xR—5(g+h,x%), (A7)
where R=k - p+ ¢R andxR=x— p, we obtain
R Jg
R:_ —_— —
Km 7 + 77( hm épm) . (A8)

Here we have used the relatiahﬁlapm= ndh,/dp, which
derives from 0=dk, /dpm=3d(k?—nh,)/dpy,. However,

the translational invariance precludes any terms explicitly

depending orp on the right-hand side of EqA.8), which
requiresh,,=dg/dp,,. Hence

kR= 70" A9
as in Eq.(4.9), and
hpm 8°g d%6R
om_ - . (A10)
"o, "ap,0pm I, 9Pm

For the structurg¢Al),
0 Y 0 é,f 1
LO@G)dy=h, LO——=—h LBy, (ALD)
/

where the last equality follows from the fact tHa®)(x®,

+aflok)=0, and LM=-4(0F+k5)d,,. However,
PLO®D =0 by symmetry, so that
PLOY, =0. (A12)
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= o oot on If
" apZapt, 00 ap,ap? X, 00 gp2ap? oK,
2 #h, 9 of . 9%g 9  of
Ipmdp? PXm K, " Ip,Apm IX, Xy IO
#°h ?  of 9P of
- 2 ()
Ipmdpn MXmdXn IK, ﬁp% a0
g L, ., 9 df _&#h, o df
+4—- + — 22— + _
Y, DG G0 F o 05
oh, g of
Ty 2+ AN -
4&pm(ﬁx ko%%qnak/ (A13)

In comparison with Eq(4.10 we see thag must be a third-
degree polynomial ip, whereash,, must be second-degree.
Therefore(A13) is reduced to

2 2 [72

J
9 D+ 2—2(a§+ k3P,
/

—Fi=4
Y 9p,dpm 9X, 9% p

4(9h/ P2+ K2 G th | t
+4—(9°+K2)— — +or nal terms.
ﬂpm( ” 0)&xm F orthogonal terms

(A14)

Finally, use of Eq(A10) in Eqg. (4.10 with the above repro-
duces our previous resui.18.

An acute reader may have noticed that we end up with the
result (4.18 without invoking the approximation that we
used in Sec. IV posterior to E4.13. The reason is that Eq.
(4.10 is the strictlyO( %) equation, whereas E®.12 con-
tains higher order corrections because the renormalfzed

Thus Eq.(4.10 is confirmed as should be. Now the explicit \eein does so; this is most clearly evidenced by the appear-
form (A1) of ¢, allows us to calculate the left-hand side of ance of the regularizing term in the proto RG equation

Eq. (4.10. Specifically we obtain

(4.16), which is O(7?).
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