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Renormalization-group theoretical reduction of the Swift-Hohenberg model

Y. Shiwa
Statistical Mechanics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

~Received 1 September 2000; published 27 December 2000!

The Swift-Hohenberg model of the cellular pattern formation is exploited with a proto renormalization-
group ~RG! scheme. The method dispenses with the explicit perturbation solutions which are required in the
standard RG approach. The RG equations obtained are the well-known reductive perturbation results such as a
rotationally covariant amplitude equation and the nonlinear phase equations.
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I. INTRODUCTION

In spite of the enormous diversity of stable spatial str
tures in far-from-equilibrium systems of different origins, th
unity of dynamical mechanisms of their birth and evoluti
allows us to formulate some fundamental models of the n
linear theory of such structures. The Swift-Hohenberg~SH!
equation@1# is one of the simplest and most canonical pa
digms, and has been intensively studied in the past@2#. It is
in the form of a partial differential equation~PDE! for a
time-dependent functionc(x,t) and reads

] tc5«c2c32~]x
21k0

2!2c, ~1.1!

where]x
2 is a two-dimensional Laplacian with respect to t

position vectorx. The « is the bifurcation parameter, whic
controls the appearance of spatially periodic structu
~‘‘rolls’’ or ‘‘stripes’’ ! of characteristic length of orderk0

21.
Analytic solutions to the nonlinear PDE~1.1! have been

calculated perturbatively in two limiting cases@2#: ~i! Near
threshold where 0,«!1. Here the nonlinearities are wea
and the spatial and temporal modulations of the basic r
become slow. The balance between these effects is desc
by the ‘‘amplitude equation’’@3,4# for the envelope function
of the basic state.~ii ! Far from threshold but still in a rang
where the field is dominated locally by what would appear
be straight parallel rolls. Weak distortions of the regular p
terns involving spatial modulations over distances large co
pared to k0

21 can be treated perturbatively yielding th
‘‘phase equation’’@5,6#.

To derive the amplitude equation from~1.1!, the method
of multiple-scales approach~see, e.g.,@2#! is used, while this
method is combined with the nonlinear WKB technique@7#
to construct the phase equation. We shall refer to these m
ods altogether as a reductive or singular perturbation the

Suppose we apply to a system a perturbation, e.g., we
to the equation governing the system some nonlinear te
dissipative terms, etc. The system is usually not structur
stable against such perturbations, so the perturbation re
are, if computed naively, plagued by singularities~secular
terms!. It has been recognized for some time@8# that these
singularities in the naive perturbation theories can be ren
malized away by the modification~renormalization! of the
parameters in the unperturbed state~amplitude, phase, etc.!.
The renormalized results agree with or are sometimes b
than those traditionally computed with the aid of singu
1063-651X/2000/63~1!/016119~7!/$15.00 63 0161
-

-

-

s

ls
ed

o
t-
-

th-
y.
dd
s,

ly
lts

r-

ter
r

perturbation methods@9#. The modified parameters are go
erned by the renormalization group~RG! equations that turn
out to be, e.g., large-scale slow-motion equations~reduced
equations! @10#. Let us call the method to obtain the spac
time large scale equations as RG equations the RG theo
cal reduction~or the reductive RG method!. However, the
RG reduction so far practiced@9,10# could be methodologi-
cally awkward, because we need explicit perturbation resu

Quite recently a new approach, the so-called proto
operator scheme, has been proposed@11–13# to free as much
as possible the RG theoretical reduction from the neces
of explicit secular terms. The RG procedure in this schem
much simpler than the RG calculations given in Ref.@9#. The
importance of this method is that to the lowest nontriv
order no explicit results are needed and yet it extracts
servable global features of highly nonlinear systems.~It is
true that the traditional reductive perturbation already h
this feature, but the new reductive RG approach can give
same singular perturbation results as well.! This has been
illustrated in Refs. @11,12# with many examples of
asymptotic analysis of ordinary differential equatio
~ODEs! as well as PDEs, and the assertion that all the red
tive perturbation equations are RG equations seems to h
This paper will give a new example supporting this asserti

The key step in the proto RG operator scheme to const
the RG equation is to find an appropriate differential opera
that maps the set of its unbounded~secular! solutions to
something tractable~to 1, say!. For PDE, in contrast to ODE
cases, this procedure becomes a bit non-trivial due to the
that the secular terms are not unique for PDE. Although o
can learn much of the essence from the published res
Refs. @11,12#, we feel we should reemphasize the ste
Therefore, in this paper, we give non-trivial details about
proto RG operator scheme with the SH equation~1.1!.

Section II is expository, and the proto RG operat
scheme in its most abstract version is explained to derive
amplitude equation. The final result~which has already been
published in Refs.@11–13#! turns out to be the reductive
perturbation equation@4#. In Sec. III, the phase dynamic
near the zigzag boundary is studied in the context of
scheme. The outcome is the well-known nonlinear ph
equation@6,14,15#. The more general phase dynamics is co
sidered in Sec. IV. The derivation is an RG version of t
Cross-Newell phase equation@6#. Section V closes the pape
with several remarks.
©2000 The American Physical Society19-1
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II. PROTO RENORMALIZATION-GROUP SCHEME

Since we treat the term«c2c3 in Eq. ~1.1! as a pertur-
bative one, we scalec asA«c and denote the newc with
the same symbol. The SH equation~1.1! then reads

] tc5«~c2c3!2~]x
21k0

2!2c. ~2.1!

In order to explain the proto RG scheme in its most abst
version, we expound, in this section, details of the«2-RG
calculation using Eq.~2.1!.

At a zeroth order in«, we have a roll solution:Aeik•x

1c.c. with k[uku5k0, where c.c. denotes the complex co
jugate andA is a complex numerical constant. We expa
the solution to~2.1! as

c~ t,x!5Aeik•x1«c1~ t,x,A!1«2c2~ t,x,A!1•••1c.c.
~2.2!

Here the dependence of the perturbed solutions onA is ex-
plicitly denoted for clarity of the subsequent discussion. T
first and second order corrections obey the equations

L (0)~] t ,]x!c15A~123uAu2!eik•x2A3e3ik•x1c.c.,
~2.3!

L (0)~] t ,]x!c25~126uAu2!c123~A2e2ik•x1A*
2
e22ik•x!c1

1c.c., ~2.4!

where

L (0)~] t ,]x!5] t1~]x
21k0

2!2. ~2.5!

Notice thatF0[eik•x is the eigenfunction of the zero eigen
value ofL (0); L (0)F050. HenceF0 can be the source of th
secular terms inc1 andc2.

Let ĉ1(t,r,t,x,A) andĉ2(t,r,t,x,A), ••• bec1 andc2 ,
••• with variables$t,x% in the secular prefactors ofF0 re-
placed by$t,r%, discarding constant terms. Let us also intr
duce the renormalizedA:

A5ARZ[AR~t,r!@11«Z1~t,r!1«Z2~t,r!1•••#.
~2.6!

Then Eq.~2.2! can be written as

c5ARF01«@ARZ1F01c1~r ,AR!#1«2@ARZ2F0

1c2~r ,AR!1ARZ1c18~r ,AR!#1•••1c.c., ~2.7!

wherer[$t,x% andc18[]c/]AR . The renormalization con
stant is determined order by order as

ARZ1F01ĉ1~r ,R,AR!50,

ARZ2F01ĉ2~r ,R,AR!1ARZ1ĉ18~r ,R,AR!50, ~2.8!

etc., whereR[$t,r%. Putting Eq.~2.8! into Eq. ~2.7! we
obtain the renormalized perturbation series
01611
ct

e

-

c5ARF01«@c1~r ,AR!2ĉ1~r ,R,AR!#1«2$c2~r ,AR!

2ĉ2~r ,R,AR!1ARZ1@c18~r ,AR!2ĉ18~r ,R,AR!#%1•••

1c.c. ~2.9!

Notice that Eqs.~2.8! and ~2.9! are the«-expansion of

~A2AR!F01«ĉ1~r ,R,A!1«2ĉ2~r ,R,A!1•••1c.c.50,
~2.10!

and

c5ARF01«@c1~r ,A!2ĉ1~r ,R,A!#1«2@c2~r ,A!

2ĉ2~r ,R,A!#1•••1c.c., ~2.11!

respectively. If we putr5R, then Eq.~2.11! reduces toc
5ARF0 as required.

Introduction ofR is equivalent to splitting of the deriva
tive ] t to ] t1]t , and]x to ]x1]r ;

L (0)~] t ,]x!→L (0)~] t1]t ,]x1]r!.

If we apply L (0)(] t1]t ,]x1]r) to ĉ1 ~or ĉ2) and separate
out the term containingF0 from the outcome, then it must b
identical to the coefficient ofF0 on the right-hand side o
Eq. ~2.3! @or ~2.4!#. Namely, e.g.,

Pr5RL (0)~] t1]t ,]x1]r!ĉ15A~123uAu2!, ~2.12!

whereP is the projection operator ontoF0 and the subscript
implies the prescription to set$t,x%5$t,r% after projection.
Since

PL (0)~] t ,]x!ĉ150 ~2.13!

by the definition ofĉ1, we rewrite the operators on the lef
hand side of Eq.~2.12! as

PL (0)~] t1]t ,]x1]r!ĉ15P@L (0)~] t1]t ,]x1]r!

2L (0)~] t ,]x!#ĉ1

2PL (0)~] t ,]x!ĉ1

5PFĉ1 , ~2.14!

with

F[L (0)~] t1]t ,]x1]r!2L (0)~] t ,]x!

5]t1]r
412~]x

21k0
2!]r

2

14~]r
21]x•]r1]x

21k0
2!]x•]r. ~2.15!

We now apply the operatorS[PF to Eq. ~2.11!. Then we
obtain
9-2
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S~ARF0!5«Sĉ11«2Sĉ21•••

5«A~123uAu2!1«2P@~126uAu2!c1

23~A2e2ik•x1A*
2
e22ik•x!c1#1•••.

~2.16!

However,

F~ARF0!5F0Lt,rAR , ~2.17!

where

Lt,r5]t1]r
414ik•]r]r

224kl km

]2

]r l ]rm
. ~2.18!

Here and hereafter, the summation convention always
plies to subscripts occurring twice in vector expressio
Therefore Eq.~2.16! becomes

Lt,rAR5«A~123uAu2!1«2P@~126uAu2!c1

23~A2e2ik•x1A*
2
e22ik•x!c1# ~2.19!

to O(«2). On the right-hand side one may ignore all t
terms explicitly dependent on space and time. From Eq.~2.3!
we find that inc1 the term proportional toe6 ik•x is secular
~hence it can never be a constant!, while the term}e63ik•x is
nonsecular. Thus we look for the term of the formBe63ik•x

in c1 with B being constant. We findB52A3/(64k4).
In this way Eq.~2.19! is reduced to

Lt,rAR5«A~123uAu2!1«2
3

64k4
AuAu4 ~2.20!

to O(«2). Here we replaceA on the right-hand side with
ARZ. We may then set$t,r%50 so thatZ51 since the right-
hand side should not depend on space-time explicitly. Th
fore we finally obtain the proto RG equation.~Actually this
is the RG equation toO(«2); see@11# on this point.! It reads

~]t24k0
2h2!AR5«AR~123uARu2!1«2

3

64k4
ARuARu4,

~2.21!

whereh is the rotationally covariant operator@4#

h[ k̂•]r2
i

2k0
]r

2 , ~2.22!

k̂ being the unit vector alongk. The result~2.21! is exactly
of the same form as the amplitude equation that Gunaratnet
al. @4# obtained first with a use of the multiple-scale analys

III. PHASE EQUATION NEAR ZIGZAG BOUNDARY

We split the right-hand side of Eq.~1.1! into two parts as

] tc5@«c2c32~]x
21k0

2!2c#2@2]y
2~]x1k0

2!1]y
4#c.

~3.1!
01611
p-
.

e-

.

The last term is regarded as a perturbation in this sect
and we will not write explicitly the small parameter since w
study only the lowest nontrivial order. This is the situation
the neighborhood of zigzag instabilities@2# in which the re-
sistance of the rolls to perturbation with variation along th
axes weakens. The unperturbed equation has a stationar
lution:

c0~x!5c0„u~x![k0x1f~y!…, x5~x,y!, ~3.2!

wherec0}eiu.
Writing the deviation of the true solution fromc0 asc1:

c5c01c1 , ~3.3!

we get to the lowest order

@] t2L (0)~]x!#c152@]y
412]y

2~]x
21k0

2!#c0 , ~3.4!

where

L (0)~]x![«23c0
22~]x

21k0
2!2. ~3.5!

The straightforward calculation of the right-hand side of E
~3.4! yields

~] t2L (0)!c15P1c081P2c091P3c0-1P4c0-8 , ~3.6!

where the8 denotes the differentiation with respect to th
phaseu, and

P152@]y
4f12k0

2]y
2f#,

P252@4]y
4f]yf13~]y

2f!212k0
2~]yf!2#,

~3.7!
P352@6]y

2f~]yf!212k0
2]y

2f#,

P452@~]yf!412k0
2~]yf!2#.

We note here thatc08 is the zero-eigenvalue eigenfunction
L (0); L (0)c0850. Therefore this can be the source of t
secular terms ofc1.

Let us renormalize the phasef as

c~ t,x!5c0„k0x1fR~t,j,y!…1c1~ t,x!2ĉ1~t,j,t,x!,
~3.8!

where ĉ1 is obtained fromc1 by replacingt and x in the
secular term prefactors ofc08 with t andj and discarding the
constant prefactors. Introduction of these variables$t,j% cor-
responds to splitting of] t and ]x to ] t1]t and ]x1]j , re-
spectively. Namely, it is equivalent to replacing the differe
tial operatorL(] t ,]x)[] t2L (0)(]x) according to

L~] t ,]x!→L̂[L~] t1]t ,]x1]j!.

If we apply L̂ to ĉ1 and separate out the term containingc08
from the outcome, it must be identical to the coefficient
c08 on the right-hand side of Eq.~3.6!. Notice here thatc09
9-3
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and c0-8 are orthogonal toc08 but c0-}c08 . Introducing the
projection operatorP onto the null space ofL (0), we thus
find

PL̂ĉ15P~P1c081P3c0-!. ~3.9!

However, PL(] t ,]x)ĉ150 by the very definition ofĉ1.
Thus Eq.~3.9! is rewritten as

PFĉ15P~P1c081P3c0-!, ~3.10!

where

F[L~] t1]t ,]x1]j!2L~] t ,]x!

5]t1@2~]x
21]y

21k0
2!1]j

212]x]j#~]j
212]x]j!.

~3.11!

OperatingF on Eq.~3.8!, we therefore obtain

PFc0„k0x1fR~t,j,y!…5P~P1c081P3c0-!. ~3.12!

Computing both sides of Eq.~3.12! explicitly and with the
subsequent replacement of the variables$t,j%→$t,x%, we
arrive at

] tf12]y
2]x

2f1]x
4f1]y

4f24k0
2]x

2f2@8k0]yf]xy
2 f

14k0]y
2f]xf112k0]xf]x

2f#2@2~]yf!2]x
2f

12]y
2f~]xf!218]yf]xf]xyf16~]xf!2]x

2f

16]y
2f~]yf!2#50. ~3.13!

We have used the relationc0-52c08 . This is the proto RG
equation.

To reduce the equation further, we must choose the w
we observe the system. If we choose

]x;h2, ]y;h, ] t;h4 ~h!1!, ~3.14!

and keeping the leading terms, which areO(h4), then we
find

] tf26]y
2f~]yf!21]y

4f28k0]yf]xy
2 f24k0]xf]y

2f

24k0
2]x

2f50. ~3.15!

This is the phase equation which Cross and Newell@6# de-
rived first by the multiple-scales analysis~see also@14,15#!.
We note that the small parameter in their analysis ish2 5
size of roll/size of system, and the result~3.15! is obtained
by the expansion of~1.1! up to O(h8).

IV. CROSS-NEWELL PHASE EQUATION

For « not small but at a late stage of the roll formatio
]c/]t becomes the only small perturbation that enters
SH equation~1.1!. In this section we consider such a situ
tion.

To that end we introduce the small parameterh in the SH
equation as
01611
y

e

h] tc5«c2c32~]x
21k0

2!2c. ~4.1!

The control parameter« is not a small parameter in thi
section. At late stages in the pattern formation process,
platforms change slowly from place to place. We then si
ply guess that the only important order parameter is the
tern wave vector,k. The amplitude of thec field will be
slaved tok everywhere. Henceh corresponds to the ratio o
the amplitude relaxation time to a time scale we are c
cerned with. Then the zeroth order solutionc0 of Eq. ~4.1!
satisfies

«c02c0
32~]x

21k0
2!2c050, ~4.2!

and represents the stationary state. Equation~4.2! has a so-
lution of the form

c0~x,t !5 f „u~x,t ![k~ t !•x1f~ t !,k~ t !…, ~4.3!

where the functionf is 2p-periodic inu, andk(t) andf(t)
are arbitrary functions oft. Specifically,

k5
]u

]x
. ~4.4!

Writing the deviation of the true solution fromc0 as

c5c01hc11•••, ~4.5!

we obtain atO(h)

L (0)~]x!c15] tc05
]u

]t

] f

]u
1

]kl

]t

] f

]kl

. ~4.6!

Here

L (0)~]x!5«23c0
22~]x

21k0
2!2. ~4.7!

Notice that this operator has a zero-eigenvalue eigenfunc
F0[] f /]u, i.e.,L (0)F050. Hence thisF0 appearing in Eq.
~4.6! can be the source of the secular terms inc1.

Let us renormalize Eq.~4.5! as

c~x!5 f „k•x1fR~r!,kR~r!…1hc1~x!2hĉ1~r,x!,
~4.8!

where we have not written out thet-dependence ofk,fR,kR,
etc., for notational simplicity. In Eq.~4.8! the renormalized
wave vectorkR is defined by

kR5
]uR

]r
, uR~r![k•r1fR~r!, ~4.9!

being consistent with the definitions~4.3! and ~4.4!. The
ĉ1(r,x) is c1 with x in the secular prefactors ofF0 and
] f /]k replaced byr. Then proceeding as before, we find th

Px5rFĉ15
]u

]t
, ~4.10!

where
9-4
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F[L (0)~]x1]r!2L (0)~]x!52@2~]x
21k0

2!1]r
212]x•]r#

3~]r
212]x•]r!. ~4.11!

Thus applying the operatorS[Px5rF to Eq.~4.8!, we obtain

h
]u

]t
5Sf ~k•x1fR,kR!. ~4.12!

In order to compute the right-hand side of Eq.~4.12! we first
calculateFf „q(x,r),kR(r)…, where q(x,r)[k•x1fR(r);
note that ‘‘q ’’ is not the same asu in Eq. ~4.3!. We find

2Ff 5S ]4q

]r l
2 ]rm

2
12k0

2 ]2q

]r l
2 D ] f

]q
1F ]2q

]r l
2 S 2

]2

]xm
2

1 . . . D
1

]2q

]r l ]rm
S 4

]2

]xl ]xm
1 . . . D G ] f

]q

1H ]3kn
R

]r l ]rm
2 S 4

]

]xl

1 . . . D
1

]kn
R

]r l
F4S ]2

]xm
2

1k0
2D ]

]xl

1 . . . G J ] f

]kn
R

1orthogonal terms. ~4.13!

Here the orthogonal terms denotes the terms orthogona
the null space of the operatorL (0). The ellipsis denotes the
terms containing]/]rm . This derivative gives rise to term
}]fR/]rm and ]kl

R/]rm , which we assume to be highe
order than the terms explicitly written out in Eq.~4.13!. Fur-
thermore, the consistency condition~4.9! implies that

]2q

]r l ]rm
5

]2uR

]r l ]rm
,

]kl
R

]rm
5

]2uR

]r l ]rm
. ~4.14!

Therefore

2Ff 5F ]4uR

]r l
2 ]rm

2
12

]2uR

]r l
2 S k0

21
]2

]xm
2 D

14
]2uR

]r l ]rm

]2

]xl ]xm
G ] f

]u
14F ]2uR

]r l ]rm
S k0

21
]2

]xm
2 D

1
]4uR

]r l ]rm
2 ]rn

G ]

]xl

] f

]kn
R

1orthogonal terms.~4.15!

Thus Eq.~4.12! becomes

h
]uR

]t
5L l m

]4uR

]r l ]rm]rn
2

1D l m

]2uR

]r l ]rm
, ~4.16!

where

L l m52 K F0
† ,d l mF014

]

]xl

] f

]km
L ,
01611
to

D l m52 K F0
†,2d l m~]x

21k0
2!F014

]2

]xl ]xm
F0

14~]x
21k0

2!
]

]xl

] f

]km
L . ~4.17!

TheF0
† is the zero-eigenvalue eigenfunction of the adjoint

L (0), and the scalar product^a,b& is defined by

^a,b&5
1

2pE0

2p

duab.

This is the proto RG equation~within the approximation
mentioned above!. By inspection we realize that the differ
entiation with respect tor twice raises the power ofh.
Namely, we find that theL l m-term is theO(h2) contribu-
tion. Consequently we may discard it to obtain the RG eq
tion to O(h) as

h
]uR

]t
5D l m

]2uR

]r l ]rm
. ~4.18!

This agrees with the result of Sasa@17# who employed the
standard RG perturbation method~due to Chenet al. @9#!. In
the one mode-approximation,D l m agrees with the diffusion
tensor obtained by Cross and Newell@6#; see also Ref.@16#.
It thus demonstrates that our RG equation is nothing but
Cross-Newell phase equation.

In closing a remark on theL l m-term is in order. Proceed
ing to the next order calculation one may convince ones
that this term is in fact the dominant one among theO(h2)
contributions. In particular, in the one-mode approximati
with k'k0, we find L l m52d l m . With the new variable
X[hr, Eq. ~4.16! is then reduced to

]uR

]t
52h

]4uR

]X4
1D l m

]uR

]Xl ]Xm
. ~4.19!

Indeed Passot and Newell@15# showed earlier that the regu
larization is necessary of the Cross-Newell phase diffus
equation ~4.18! near the pattern singularities and that t
principal regularizing contribution to the right-hand side
Eq. ~4.18! is 2¹¹2

•k when k'k0, in agreement with our
RG result~4.19!.

V. CONCLUDING REMARKS

In summary, we have considered the evolution of a lar
scale modulation of spatially periodic patterns. We have
rived the amplitude equation and the nonlinear phase eq
tions for the SH model, and demonstrated that tho
equations previously derived by the reductive perturbat
method are all RG equations. We have done this with
constructing the explicit secular solutions. This is called
proto RG approach, and the approach we have employe
this paper is the most abstract one. We remark that whe
model equation has a limit cycle solution, the proto RG de
vation of its phase equation is much simpler@12#.

A consistent RG reduction of the SH equation to the
9-5
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tationally covariant form is presented in Sec. II. This r
solves the dispute about its derivation by Graham@18,19# by
means of the RG method. Note that Eq.~2.21! includes all
possible terms up to order«2, while the result in Ref.@18#
did not contain the last term on the right-hand side of E
~2.21!. Namely, the equation obtained by Graham is not c
sistent to order« ~as first realized by Ref.@19#!. If we wish to
retain all the differential operators in the equation as see
Eq. ~2.21!, we need a higher order correction to the nonline
term, which is the last term on the right-hand side of E
~2.21!.

As stated above, Sasa@17# derived the same result as E
~4.18! by the combination of the explicit perturbative calc
lation of secular terms and the RG method of Ref.@9#. To
contrast it with the proto RG approach developed in
present paper, we present in the Appendix the less abs
proto-RG calculation using the more explicit expression th
Eq. ~4.5!. As the right-hand side of our target equation~4.6!
is directly proportional to]u/]t, we can take a shortcut cu
ting off Eq. ~4.12!. Namely, writing down the following
structure for the solution to Eq.~4.6!

c15g
] f

]u
1hl

] f

]kl

, ~5.1!

where g and hl are polynomials ofx, we can obtain Eq.
~4.18! from the straightforward calculation of Eq.~4.10! ~but
without calculating explicit expressions forg andhl as was
done in Ref.@17#!. This derivation is a proto RG version o
Sasa’s.

However, we point out that the renormalization proced
in Sasa’s theory is contradictory. An internally consiste
approach should give the same result if one employs
~4.12! instead of Eq.~4.10!. This is not the case with Sasa
renormalization. In place of Eq.~4.8! he renormalizes Eq
~4.5! as

c5 f „kR~r!•x1fR~r!,kR~r!…1h@dk~r!•~x2r!F0~x!

1c1~x!2ĉ1~r,x!#, ~5.2!

wherekR, dk andfR are defined by Eq.~A2!. A little cal-
culation shows thatS†h@dk•(x2r)F0‡50. Hence the
counterpart of Eq.~4.12! in Sasa’s theory reads

Sf ~kR
•x1fR,kR!5h

]u

]t
. ~5.3!

The resultant phase equation from the straightforward ca
lation of the left-hand side following the same line of arg
ments as used in Sec. IV, however, is different from E
~4.18! @in fact, being the same expression but for differe
numerical factors from Eq.~4.18!#. This is inconsistent. The
lack of the internal consistency can be attributed to
physically unreasonable definition of the renormalized ph
in Eq. ~5.2!:
01611
-

.
-

in
r
.

e
act
n

e
t
q.

u-

.
t

e
e

kR
•x1fR. ~5.4!

When the phasef is renormalized, the renormalizatio
should automatically and uniquely determine the wave v
tor renormalization, cf. Eqs.~3.8! and ~4.9!. The choice Eq.
~5.4!, on the other hand, leaves indeterminacy of the ren
malized wave vector even after renormalization off.
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APPENDIX

In this appendix we take a less abstract approach tha
Sec. IV to obtain the phase diffusion equation~4.18!. Owing
to the peculiar form of Eq.~4.10!, the algebra is somewha
simpler with this method.

We start with the structure@cf. Eq. ~4.6!#

ĉ1~r,x!5g~r!
] f ~x!

]u
1hl ~r!

] f ~x!

]kl

. ~A1!

Hereg andhl are polynomials ofr, and thex-dependence of
f arises through the variableu @see Eq.~4.3!#. We define the
renormalizedk andf by

k5kR~r!1hdk~r!,

f5fR~r!1hdf~r!, ~A2!

wheredk and df are counter terms. Now that Eq.~4.5! is
written as

c5 f ~k•x1fR,kR!1hS df
] f

]u
1dkl

] f

]kl

1c1D1•••,

~A3!

the secular partĉ1 satisfies

df
] f

]u
1dkl

] f

]kl

1ĉ150. ~A4!

Namely,

g52df, hl 52dkl . ~A5!

Thus the renormalized perturbative result is written as

c5 f ~k•x1fR,kR!1h~c12ĉ1!, ~A6!

to O(h) in accordance with Eq.~4.8!. Differentiating with
respect tor the bare phase written as
9-6
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u5uR1kR
•xR2h~g1hl xl

R!, ~A7!

whereuR[k•r1fR andxR[x2r, we obtain

km
R5

]uR

]rm
1hS hm2

]g

]rm
D . ~A8!

Here we have used the relation]kl
R/]rm5h]hl /]rm which

derives from 05]kl /]rm5](kl
R2hhl )/]rm . However,

the translational invariance precludes any terms explic
depending onr on the right-hand side of Eq.~A.8!, which
requireshm5]g/]rm . Hence

kR5
]uR

]r
, ~A9!

as in Eq.~4.9!, and

h
]hm

]r l

5h
]2g

]r l ]rm
5

]2uR

]r l ]rm
. ~A10!

For the structure~A1!,

L (0)~]x!ĉ15hl L (0)
] f

]kl

52hl L l
(1)F0 , ~A11!

where the last equality follows from the fact thatL (0)(xF0

1] f /]k)50, and L l
(1)524(]x

21k0
2)]xl

. However,

PL (1)F050 by symmetry, so that

PL (0)ĉ150. ~A12!

Thus Eq.~4.10! is confirmed as should be. Now the explic
form ~A1! of ĉ1 allows us to calculate the left-hand side
Eq. ~4.10!. Specifically we obtain
.

-

01611
y

2Fĉ15
]4g

]r l
2 ]rm

2

] f

]u
14

]3g

]r l ]rm
2

]

]xl

] f

]u
1

]4

]r l
2 ]rm

2

] f

]kl

14
]3hl

]rm]rn
2

]

]xm

] f

]kl

14
]2g

]r l ]rm

]2

]xl ]xm

] f

]u

14
]2hl

]rm]rn

]2

]xm]xn

] f

]kl

12
]2g

]r l
2 ~]x

21k0
2!

] f

]u

14
]g

]r l
~]x

21k0
2!

]

]xl

] f

]u
12

]2hl

]rm
2 ~]x

21k0
2!

] f

]kl

14
]hl

]rm
~]x

21k0
2!

]

]xm

] f

]kl

. ~A13!

In comparison with Eq.~4.10! we see thatg must be a third-
degree polynomial inr, whereashl must be second-degree
Therefore~A13! is reduced to

2Fĉ154
]2g

]r l ]rm

]2

]xl ]xm
F012

]2g

]r l
2 ~]x

21k0
2!F0

14
]hl

]rm
~]x

21k0
2!

]

]xm

] f

]kl

1orthogonal terms.

~A14!

Finally, use of Eq.~A10! in Eq. ~4.10! with the above repro-
duces our previous result~4.18!.

An acute reader may have noticed that we end up with
result ~4.18! without invoking the approximation that w
used in Sec. IV posterior to Eq.~4.13!. The reason is that Eq
~4.10! is the strictlyO(h) equation, whereas Eq.~4.12! con-
tains higher order corrections because the renormalizef
therein does so; this is most clearly evidenced by the app
ance of the regularizing term in the proto RG equati
~4.16!, which isO(h2).
ica

1

@1# J. Swift and P. C. Hohenberg, Phys. Rev. A15, 319~1977!; P.
C. Hohenberg and J. Swift,ibid. 46, 4773~1992!.

@2# M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys.65, 851
~1993!.

@3# A. C. Newell and J. A. Whitehead, J. Fluid Mech.38, 279
~1969!; L. A. Segel,ibid. 38, 203 ~1969!.

@4# G. H. Gunaratne, Qi Ouyang, and H. L. Swinney, Phys. Rev
50, 2802~1994!.

@5# Y. Pomeau and J. Manneville, J. Physique Lett.40, L609
~1979!.

@6# M. C. Cross and A. C. Newell, Physica D10, 299 ~1984!.
@7# G. B. Whitham,Linear and Nonlinear Waves~Wiley, NY,

1974!.
@8# For a review, see N. Goldenfeld,Lectures on Phase Transi

tions and the Renormalization Group~Addison-Wesley, Read-
ing, MA, 1992!, Chap. 10.
E

@9# L.-Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. Lett.73,
1311 ~1994!; Phys. Rev. E54, 376 ~1996!.

@10# L.-Y. Chen, N. Goldenfeld, Y. Oono, and G. Paquette, Phys
A 204, 111 ~1994!.

@11# Y. Oono, Int. J. Mod. Phys. B~to be published!.
@12# K. Nozaki and Y. Oono~unpublished!.
@13# K. Nozaki, Y. Oono, and Y. Shiwa, Phys. Rev. E R450

~2000!.
@14# T. Ohta, Prog. Theor. Phys.73, 1377~1985!.
@15# T. Passot and A. C. Newell, Physica D74, 301 ~1994!.
@16# H. S. Greenside and M. C. Cross, Phys. Rev. A31, 2492

~1985!.
@17# S. Sasa, Physica D108, 45 ~1997!.
@18# R. Graham, Phys. Rev. Lett.76, 2185~1996!; 80, 3887~1998!;

Erratum80, 3888~1998!.
@19# K. Matsuba and K. Nozaki, Phys. Rev. Lett.80, 3886~1998!.
9-7


