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Geometry of river networks. III. Characterization of component connectivity
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Essential to understanding the overall structure of river networks is a knowledge of their detailed architec-
ture. Here we explore the presence of randomness in river network structure and the details of its conse-
quences. We first show that an averaged view of network architecture is provided by a proposed self-similarity
statement about the scaling of drainage density, a local measure of stream concentration. This scaling of
drainage density is shown to imply Tokunaga’s law, a description of the scaling of side branch abundance
along a given stream, as well as a scaling law for stream lengths. We then consider fluctuations in drainage
density and consequently the numbers of side branches. Data are analyzed for the Mississippi River basin and
a model of random directed networks. Numbers of side streams are found to follow exponential distributions,
as are intertributary distances along streams. Finally, we derive a joint variation of side stream abundance with
stream length, affording a full description of fluctuations in network structure. Fluctuations in side stream
numbers are shown to be a direct result of fluctuations in stream lengths. This is the last paper in a series of
three on the geometry of river networks.
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I. INTRODUCTION

This paper follows Refs.@1# and@2# as the last in a serie
on the geometry of river networks. In the first paper@1#, we
examined in detail the description of river networks by sc
ing laws@3–6# and the evidence for universality. Additiona
introductory remarks concerning the motivation of the ov
all work were provided in this first paper. In the second pa
@2#, we addressed distributions of the basic component
river networks, stream segments, and subnetworks. Here
present an analysis complementary to the work of the sec
paper by establishing a description of how river netwo
components fit together. One may see the second pap
building up and out to global descriptions, whereas
present work travels in the opposite direction, descendin
examine the subtle intricacies of network structure. As
fore, we are motivated by the premise that while relatio
ships of mean quantities are primary in any investigation,
behavior of higher order moments potentially and often
encode significant information.

Our purpose then is to investigate the distributions
quantities which describe the detailed architecture of ri
networks. We center our attention on Tokunaga’s law@7–9#,
which is a statement about network architecture describ
the tributary structure of streams. As in Refs.@1# and@2#, we
use data from the Scheidegger model of random netwo
@10# and the Mississippi River, finding the distributions o
tained from these two disparate sources to agree very we
form. We are able to set down scaling forms of all distrib
tions studied. We observe a number of distributions to

*Author to whom correspondence should be addressed; Electr
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exponential, therefore requiring only one parameter for th
description, and indicating the presence of randomness.
result, we introduce a dimensionless scalej t which is simply
related to the length scalej introduced in Ref.@2#. Signifi-
cantly, we observe the spatial distribution of stream s
ments to be random, implying that we have reached the m
basic description of network architecture.

Tokunaga’s law is intimately connected with draina
densityr, a quantity which will be used throughout the p
per. Drainage density is a measure of the stream conce
tion or, equivalently, how a network fills space. We explo
this connection in detail, showing how simple assumptio
regarding drainage density lead to Tokunaga’s law.

The paper is structured as follows. We define Tokunag
law, and introduce a scaling law for a specific form of dra
age density. We briefly describe Horton’s laws for strea
number and length and some simple variations. Both stre
ordering and Horton’s laws are also briefly mentioned; th
were covered in more detail in Ref.@2#. We show that the
scaling law of drainage density may be taken as an assu
tion from which all other scaling laws follow. This brings u
to the focal point of the paper: the identification of a stat
tical generalization of Tokunaga’s law. We first examine d
tributions of numbers of tributaries~side streams! and com-
pare these with distributions of stream segment leng
which were shown to be exponential in Ref.@2#. We observe
the former distributions also to be exponential, leading to
notion that stream segments are distributed rando
throughout a network. The presence of exponential distri
tions also leads to the introduction of the characteristic nu
ber j t . We then study the variation of tributary spacin
along streams so as to understand fluctuations in drain
density, and again find the signature of randomness. Fina
we develop a joint probability distribution connecting th
length of a stream with the frequency of its side streams

ic
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TABLE I. Dimensionless Tokunaga ratios for the Mississippi River. The row indices are the abso
stream orders, while the columns correspond to side stream orders. Each entry is the average numbe
n side streams per orderm absorbing stream to two significant digits.

n51 2 3 4 5 6 7 8 9 10

m52 1.7
3 4.9 1.3
4 12 3.8 1.1
5 29 9.1 2.9 1.0
6 71 23 7.7 3.0 1.2
7 190 56 19 7.8 3.3 1.1
8 380 110 39 17 6.9 2.6 1.0
9 630 170 64 28 11 4.5 3.0 0.60
10 1100 270 66 29 13 4.3 2.7 1 1
11 1400 510 120 66 25 12 9 3 1 1
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II. DEFINITIONS

For full definitions of stream ordering and Horton’s law
the reader is referred to the first two papers of this se
@1,2#. Here, we recall some notation for convenience, int
duce some additional terminology, and present Tokunag
law in more detail.

In discussing network architecture, we will speak ofside
streamsandabsorbing streams. A side stream is any stream
that joins into a stream of higher order, the latter being
absorbing stream. We will denote the orders of absorb
and side streams bym andn but when referring to an isolate
stream or streams where their relative rank is ambiguous
will write stream order asv.

Central to our investigation of network architecture
stream segment length. As in Ref.@2#, we denote this length
by l v

(s) for a stream segment of orderv. We will also intro-
duce a number of closely related lengths which describe
tances between side streams. When referring to stre
throughout we will specifically mean stream segments o
particular order unless otherwise indicated. This is to av
confusion with the more natural definition of a stream wh
is the path from a point on a network moving upstream to
most distant source. For an orderv basin, we denote this
main stream lengthby l v .

Defining a stream ordering on a network allows for
number of well-defined measures of connectivity, stre
lengths, and drainage areas. Around a decade after
Strahler-improved stream ordering of Horton appea
@11,12#, Tokunaga introduced the idea of measuring s
stream statistics@7–9#. This technique arguably provides th
most useful measurement based on stream ordering, and
recently received much attention@5,13–15#. The idea is sim-
ply, for a given network, to count the average number
order n side streams entering an orderm absorbing stream
This gives^Tm,n&, a set of double-indexed parameters fo
basin. Note thatV>m.n>1, whereV is the order of the
network, so we can view the Tokunaga ratios as a low
triangular matrix. An example for the Mississippi River
shown in Table I@16#. The same data are represented pic
rially in Fig. 1 in what we refer to as aTokunaga graph.

Tokunaga made several key observations about these
01611
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stream ratios. The first is that because of the self-sim
nature of river networks,̂Tm,n& should not depend abso
lutely on either ofm or n but only on the relative difference
i.e., k5m2n. The second is that in changing the value
k5m2n, the ^Tm,n& must themselves change by a syste
atic ratio. These statements lead to what we refer to
Tokunaga’s law:

^Tm,n&5^Tk&5^T1&~RT!k21. ~1!

Thus only two parameters are necessary to characterize
set ofTm,n : T1 andRT .

The parameterT1.0 is the average number of sid
streams of one order lower than the absorbing stream, t
cally on the order of 1.0–1.5. Since these side streams of
order less are the dominant side streams of the basin,
number estimates the basin’s breadth. In general, larger
ues of^T1& correspond to wider basins, while smaller valu
are in keeping with basins with relatively thinner profiles.

FIG. 1. A Tokunaga graph for the Mississippi River. The valu
are given in Table I. Each point represents a Tokunaga ratio^Tm,n&.
The solid lines follow variations in the order of the absorbi
streamm, while the dotted lines follow unit increments in bothm
andn, the order of side streams. In comparison, the Tokunaga gr
of an exactly self-similar network would have points evenly spac
at lnT11(m1n21)ln RT where 1<n,m52,3, . . . ,V, i.e., all lines
in the plot would be straight and uniformly spaced, with the dot
lines being horizontal. The nature of deviations in scalings laws
river networks was addressed in Ref.@1#.
7-2
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GEOMETRY OF RIVER NETWORKS. III. . . . PHYSICAL REVIEW E63 016117
The ratioRT.1 measures how the density of side strea
of decreasing order increases. Thus already inheren
Tokunaga’s law is a generalization of drainage densityr, the
usual definition of which is given as follows. For a give
region of landscape with areaA with streams totalling in
length L, r5L/A, and has the dimensions of an inver
length scale@11#. One may think ofr as the inverse of the
typical distance between streams, i.e., the characteristic s
beyond which erosion cannot more finely dissect the la
scape@11#. In principle, the drainage density may vary fro
landscape to landscape and also throughout a single re
Below, we will turn this observation about Tokunaga’s la
around to show that all river network scaling laws may
derived from an expanded notion of drainage density.

Even though the number of side streams entering any
sorbing stream must of course be an integer, Tokuna
ratios are under no similar obligation since they are avera
Nevertheless, Tokunaga’s law provides a good sense o
structure of a network, albeit at a level of averages. One
our main objectives here is to go further and consider fl
tuations about and the full distributions underlying t
^Tm,n&.

As in Ref.@2#, we consider the Horton-like law for stream
segment lengths:

^ l v11
~s! &

^ l v
~s!&

5Rl ~s! . ~2!

As we will show, the form of the distribution of the variab
Tm,n is a direct consequence of the distribution ofl v

(s) .

III. IMPLICATIONS OF A SCALING LAW
FOR DRAINAGE DENSITY

We now introduce a law for drainage density based
stream ordering. We writerm,n for the number of side
streams of ordern per unit length of orderm absorbing
stream. We expect these densities to be independent o
order of the absorbing stream, and so we will generally
rn . The typical length separating ordern side streams is then
1/rn . Assuming self-similarity of river networks, we mu
have

rn11 /rn51/Rr , ~3!

whereRr.1, independent ofn.
All river network scaling laws in the planform may b

seen to follow from this relationship. Consider an absorb
stream of orderm. Self-similarity immediately demands tha
the number of side streams of orderm21 must be statisti-
cally independent ofm. This number is of coursêT1&.
Therefore, the typical length of an orderm absorbing stream
must be

^ l m
~s!&5^T1&/rm21 . ~4!

Using Eq.~3! to replacerm21 in the above equation, we fin

T1 /rm215RrT1 /rm22 . ~5!
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Thus T25RrT1 and, in generalTk5(Rr)k21T1 . This is
Tokunaga’s law, and we therefore have

Rr[RT . ~6!

Equations~3! and ~4! also give

^ l m
~s!&5T1 /rm215RrT1 /rm225Rr^ l m21

~s! &. ~7!

On comparison with Eq.~2!, we see that the above is ou
Hortonian law of stream segment lengths, and that

Rr[Rl ~s! . ~8!

As Rl (s) is the basic length-scale ratio in the problem, w
rewrite Eq.~3!, our Hortonian law of drainage density, as

rn11 /rn51/Rl ~s! . ~9!

The above statement becomes our definition of the s
similarity of drainage density.

IV. TOKUNAGA DISTRIBUTIONS

Tokunaga’s law relates averages of quantities, and in
remainder of this paper we investigate the underlying dis
butions from which these averages are made. We are ab
find general scaling forms of a number of distributions, a
in many cases also identify the basic form of the relev
scaling function.

All investigations are initially carried out for the Sc
heidegger model, where we may generate statistics of e
improving quality. We note that the Tokunaga paramet
and the Horton ratios are not known analytically. Estima
from previous work@5# find T1.1.35,Rl (s)5RT.3.00, and
Rn.5.20. Data for the present analysis were obtained oL
5104 by W533103 lattices with periodic boundaries
Given the self-averaging present in any single instance
these networks, ensembles of ten were deemed sufficient
also find the same forms for all distributions for the Miss
sippi data~and for other river networks not presented her!.
Perhaps the most significant benefit of the simple Scheid
ger model is its ability to provide clean distributions who
form we can then search for in real data.

The distribution ofTm,n is well described by an exponen
tial distribution. This can be seen upon inspection of Fi
2~a! and 2~b!. Figure 2~a! shows normalized distributions o
Tm,n for n52 and varying absorbing stream orderm54, 5,
and 6. These distributions~plus the one for absorbing strea
order m57! are rescaled and presented in Fig. 2~b!. The
single form thus obtained suggests a scaling form of theTm,n
distribution is given by

P~Tm,n!5~Rl ~s!!2mF@Tm,n~Rl ~s!!2m#, ~10!

where F is an exponential scaling function. However, th
only accounts for variations inm, the order of the absorbing
stream.

Figures 3~a! and 3~b! show that a similar rescaling of th
distributions may be effected whenn is varied. In this case
7-3
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FIG. 2. Distributions for Tokunaga ratios for varying orders of absorbing stream and fixed side stream order ofn52 for the Scheidegger
network. All quantities are dimensionless. In~a!, we show examples ofTm,n distributions for absorbing stream ordersm54 ~circles!, m
55 ~squares!, andm56 ~triangles!. In ~b!, these distributions, as well as them57 case, are rescaled according to Eq.~10!. The resulting
‘‘data collapse’’ gives a single distribution. For the Scheidegger model,Rl (s).3.00.
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the data is for the Mississippi. The rescaling is now byRl (s)

rather thanRl (s)
21, and Eq.~10! is improved to give

P~Tm,n!5~Rl ~s!!m2n21PT@Tm,n /~Rl ~s!!m2n21#. ~11!

The functionPT is a normalized exponential distribution in
dependent ofm andn,

PT~z!5
1

j t
e2z/j t, ~12!

where j t is the characteristic number of side streams o
order lower than the absorbing stream, i.e.,j t5^T1&. For the
Mississippi, we observej t.1.1, whereas for the Scheideg
ger model we seej t.1.35. As expected, the Tokunaga di
tribution is dependent only onk5m2n, so we can write
01611
e

P~Tk!5~Rl ~s!!k21PT@Tm,n /~Rl ~s!!k21#, ~13!

with PT as above.

V. CONNECTION TO STREAM SEGMENT LENGTHS
AND RANDOMNESS

We have already examined the exponential distributio
of stream segments lengths in Ref.@2#, and here we develop
its relationship with the Tokunaga distributions. Followin
Ref. @2#, we write the distribution for stream segment lengt
as

P~ l m
~s!!5~Rl ~s!!2m11Pl ~s!@ l m

~s!/~Rl ~s!!2m11#, ~14!

where the functionPl (s) is a normalized exponential distribu
tion:
both
FIG. 3. Tokunaga distributions for varying side stream orders for the Mississippi river basin. All quantities are dimensionless. In~a!
and ~b!, the absorbing stream order ism55, and the side stream orders aren52 ~circles!, n53 ~squares!, andn54 ~triangles!. The raw
distributions are shown in~a!. In ~b! the distributions are rescaled as per Eq.~11!. For the Mississippi, the ratio is estimated to beRl (s)

.2.40 @2#.
7-4
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GEOMETRY OF RIVER NETWORKS. III. . . . PHYSICAL REVIEW E63 016117
Pl ~s!~z!5
1

j l ~s!
e2z/j l ~s!. ~15!

In a strictly self-similar network,j l (s) is the characteristic
length of first-order stream segments, i.e.,j l (s)5^ l 1

(s)&. ~Note
that in Ref.@2# we usej for j l (s) for ease of notation.! We
qualify this by requiring the network to be exactly se
similar, because in real networks and most models thi
certainly not the case. As should be expected, there are
viations from scaling for the largest and smallest orde
Therefore, j l (s) is the characteristic size of a first-ord
stream as determined by scaling down the average length
those higher-order streams that are in the self-similar st
ture of the network. It is thus in general different from^ l 1

(s)&.
The connection between the characteristic numberj t and

the length-scalej l (s) follows from Eqs.~2!, ~4!, and~9!:

j t5r1Rl ~s!j l ~s!. ~16!

This presumes an exact scaling of drainage densities, an
the case where this is not so,r1 would be chosen so tha
(Rl (s))n21r1 most closely approximates the higher orderrn .

We now come to an interpretation of the exponential d
tribution as a composition of independent probabilities. C
sider the example of stream segment lengths. We writep̃m as
the probability that a stream segment of orderm meets with
~and thereby terminates at! a stream of order at leastm. For
simplicity, we assume that only one side stream, or no
may join a stream at any site. We also take the lattice spa
a to be unity, so that stream lengths are integers and th
fore equate with the number of links between sites alon
stream. ForaÞ1, derivations similar to below will apply
with l m

(s) replaced by@ l m
(s)/a#, where@ # denotes rounding to

the nearest integer. Note that extra complications arise w
the distances between neighboring sites are not uniform

Consider a single instance of an orderm stream segment
The probability of this segment having a lengthl m

(s) is given
by

P~ l m
~s!!5 p̃m~12 p̃m! l m

~s!
, ~17!

where p̃m is the probability that an orderm stream segmen
terminates on meeting a stream of equal or higher order.
can re-express the above equation as

P~ l m
~s!!. p̃m exp$2 l m

~s! ln~12 p̃m!21%, ~18!

and, upon inspection of Eqs.~14! and ~15!, we make the
identification

~Rl ~s!!m21j l ~s!5@2 ln~12 p̃m!#21, ~19!

which has the inversion

p̃m512e21/~Rl ~s!!m21j l ~s!. ~20!

For m sufficiently large such thatp̃m!1, we have the simpli-
fication

p̃m.1/~Rl ~s!!m21j l ~s!. ~21!
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We see that the probabilities satisfy the Horton-like scal
law

p̃m / p̃m2151/Rl ~s!. ~22!

Thus, we begin to see the element of randomness in
expanded description of network architecture. The termi
tion of a stream segment by meeting a larger branch is
fectively a spatially random process.

In addition, we observe that side streams are rando
placed along absorbing streams. Three new measure
stream length of use here arel m,n

(s,b) , the distance from the
beginning of an orderm absorbing stream to the first ordern
side stream;l m,n

(s,i ) , the distance between any two adjace
internal ordern side streams along an orderm absorbing
stream; andl m,n

(s,e) , the distance from the last ordern side
stream to the end of an orderm absorbing stream. We ob
serve in both the Scheidegger model and real data, the
tributions of l m,n

(s,b) , l m,n
(s,i ) , and l m,n

(s,e) to be well approximated
by exponential distributions and, moreover, to be indist
guishable@17#. This indicates that drainage density is ind
pendent of relative position of tributaries along an absorb
stream.

VI. JOINT VARIATION OF TOKUNAGA RATIOS
AND STREAM SEGMENT LENGTH

We have so far observed that the individual distributio
of l m

(s) andTm,n are exponential, and that they are related
the side-stream densityrn . However, this is not an exac
relationship. For example, given a collection of stream s
ments with a fixed lengthl m

(s) we expect to find fluctuations
in the corresponding Tokunaga ratiosTm,n .

To investigate this further we now consider the joi
variation of Tm,n with l m

(s) from a number of perspectives
After discussing the full joint probability distribution
P(Tm,n ,l m

(s)), we then focus on the quotientv5Tm,n / l m
(s) and

its reciprocal w5 l m
(s)/Tm,n . The latter two quantities are

measures of drainage density and intertributary length for
individual absorbing stream.

A. Joint probability distribution

We build the joint distribution ofP(Tm,n ,l m
(s)) from our

conception that stream segments are randomly distribu
throughout a basin. In Eq.~17!, we have the probability of a
stream segment terminating afterl m

(s) steps. We need to in
corporate into this form the probability that the stream s
ment also hasTm,n order n side streams. Since we assum
placement of these side streams to be random, we mo
Eq. ~17! to find

P~ l m
~s! ,Tm,n!5 p̃mS l m

~s!21
Tm,n

D pn
Tm,n~12pn2 p̃m! l m

~s!
2Tm,n21,

~23!

where (k
n)5n!/k!(n2k)! is the binomial coefficient, andpn

is the probability of absorbing an ordern side stream. The
extrapn appears in the last factor (12pn2 p̃m) because this
7-5
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FIG. 4. Form of the joint distribution of Tokunaga ratios and stream segment lengths. The distribution is given in Eq.~25!, and is built
around the functionF(v5Tm,n / l m

(s)) given in Eq.~26!. Lengths are in terms of arbitrary lattice units, and all other quantities are dim

sionless. Shown in~a! is @F(v)# l m
(s)

for l m
(s)51, 10, 100, and 1000. Increasingl m

(s) corresponds to the focusing of the shape. In~b!, the
distributionP(Tm,nu l m

(s).340) is compared between theory~smooth curve! and data from the Scheidegger model~circles!. The Scheidegger
model data is compiled for a range of values ofl m

(s) rescaled as per Eq.~27!.
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term is the probability that at a particular site the stre
segment neither terminates nor absorbs an ordern side
stream. Also, it is simple to verify that the sum overl m

(s) and
Tm,n of the probability in Eq.~18! returns unity.

While Eq. ~18! does precisely describe the joint distrib
tion P( l m

(s) ,Tm,n), it is somewhat cumbersome to work wit
We therefore find an analogous form defined for continu
rather than discrete variables. We simplify our notation
writing p5pn , q5(12pn2 p̃m) and p̃5 p̃m . We also re-
place (l m

(s) ,Tm,n) by ~x, y! where nowx,yP@R#. Note that
0<y<x21, since the number of side streams cannot
greater than the number of sites within a stream segmen

Equation~18! becomes

P~x,y!5Np̃
G~x!

G~y11!G~x2y!
~p!y~q!x2y21, ~24!

where we have usedG(z11)5z! to generalize the binomia
coefficient. We have included the normalizationN to account
for the fact that we have moved to continuous variables,
the resulting probability may not be cleanly normalized. Al
we must allow thatN5N(p,p̃) and we will be able to iden-
tify this form more fully later on. Using Stirling’s approxi
mation @18#, thatG(z11);A2pzz11/2e2z, we then have

P~x,y!5Np̃pyqx2y21
1

A2p

~x21!x23/2

yy11/2~x2y21!x2y21/2

5N
p̃

A2pq
pyqx2y~x21!21/2S y

x21
D 2y21/2

3S 12
y

x21
D 2x1y11/2

.N8x21/2@F~y/x!#x, ~25!
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where we have absorbedN and all terms involving onlyp
and p̃ into the prefactorN85N8(p,p̃)5Np̃/(A2pq). We
have also assumedx is large such thatx21.x and 1@1/x
.0.

The functionF(v5y/x)5F(v;p,q) identified above has
the form

F~v !5S 12v
q D 2~12v !S v

pD 2v

, ~26!

where 0,v,1. Note that for fixedx, the conditional prob-
ability P(yux) is proportional to @F(y/x)#x. Figure 4~a!
shows@F(v)#x for a range of powersx. The basic function
has a single peak situated nearv5p. For increasingx which
corresponds to increasingl m

(s) , the peak becomes sharper a
proaching ~when normalized! a delta function, i.e.,
limx→`@F(v)#x5d(v2p).

Figure 4~b! provides a comparison between data for t
Scheidegger model and the analytic form ofP( l m

(s) ,Tm,n).
For this example,m56 andn52 which corresponds top
.0.10,q.0.90, andp̃.0.001~using the results of Sec. V!.
The smooth curve shown is the conditional probabil
P(yuX) for the example value ofX5 l m

(s).340 following
from Eq. ~25!. From simulations, we obtain a discretize
approximation toP( l m

(s) ,Tm,n). For each fixedx5 l (s) in the
range 165& l m

(s)&345, we rescale the data using the follow
ing, derived from Eq.~25!:

P~X,y!5N8X21/2@N821x1/2P~x,y!#X/x. ~27!

The rescaled data are then combined, binned, and plotte
circles in Fig. 4~b!, showing excellent agreement with th
theoretical curve.
7-6
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FIG. 5. Comparison of theory with measurements of average intertributary distances for the Scheidegger model. Dimensions
Fig. 4. The data in both~a! and~b! are for the case of ordern52 side streams and orderm56 absorbing streams. In~a!, the distribution of
v5Tm,n / l m

(s) obtained from the Scheidegger model~circles! is compared with the smooth curved predicted in Eq.~32!. The same comparison
is made for the reciprocal variablew5 l m

(s)/Tm,n , the predicted curve being given in Eq.~33!.
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B. Distributions of side branches per unit stream length

Having obtained the general form ofP( l m
(s) ,Tm,n), we

now delve further into its properties by investigating the d
tributions of the ratiov5Tm,n / l m

(s) and its reciprocalw. The
quantityTm,n / l m

(s) is the number of side streams per length
a given absorbing stream, and when averaged over an
semble of absorbing streams gives

^Tm,n / l m
~s!&5rn . ~28!

Accordingly, the reciprocall m
(s)/Tm,n is the average separa

tion of side streams of ordern.
First, we deriveP(Tm,n / l (s)) from P( l m

(s) ,Tm,n). We then
consider some intuitive rescalings which will allow us
deduce the form of the normalizationN(p,q).

We rewrite Eq.~25! as

P~x,y!5N8x21/2exp$2x ln@2F~y/x!#%. ~29!

We transform~x,y! to the modified polar coordinate syste
described by~u,v! with the relations

u25x21y2 and v5y/x. ~30!

The inverse relations arex5u/(11v2) andy5uv/(11v2)
and we also havedx dy5x du dv. Equation~31! leads to

P~u,v !5N8S u

11v2D 1/2

expH 2
u

11v2 ln@2F~v !#J .

~31!

To find P(v) we integrate out over the radial dimensionu:
01611
-

f
n-

P~v !5E
u50

`

duP~u,v !

5N8E
u50

`

duS u

11v2D 1/2

expH 2
u

11v2 ln@2F~v !#J
5N8~11v2!$ ln@2F~v !#%23/2E

z50

`

dz z1/2e2z

5N9
11v2

$ ln@2F~v !#%3/2. ~32!

Here,N95N8G(3/2)5N8Ap/2, and we have used the sub
stitution z5u/(11v2)ln@2F(v)#.

The distribution for w5 l m
(s)/Tm,n51/v follows simply

from Eq. ~32!, and we find

P~w!5N9
11w2

w4$ ln@2F~1/w!#%3/2. ~33!

Figures 5~a! and 5~b! compare the predicted forms o
P(v) and P(w) with data from the Scheidegger model.
both cases, the data are for ordern52 side streams being
absorbed by streams of orderm56. Note that both distribu-
tions show an initially exponential-like decay away from
central peak.

Finally, we quantify how changes in the ordersm and n
affect the width of the distributions by considering som
natural rescalings. Because the average length ofl m

(s) in-
creases by a factorRl (s) with m, the typical number of side
streams increases by the same factor. Since we can de
posel m

(s) as

l m
~s!5 l m,n

~s,b!1 l m,n
~s,i !1¯1 l m,n

~s,i !1 l m,n
~s,e! , ~34!

where there areTm,n21 instances ofl m,n
(s,i ) ,l m

(s) becomes bet-

ter and better approximated by (Tm,n11)^ l m,n
(s,i )&.
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FIG. 6. Distributions of the number of side streams per unit length for the Scheidegger model withn, the order of side streams, varying
Dimensions are as per Fig. 4, with the addition that the drainage densityrn is in inverse lattice units. For both~a! and ~b!, the absorbing
stream order ism56. Shown in~a! are the unrescaled distributions forn52 ~circles!, n53 ~squares!, andn54 ~triangles!. Note that asn
increases, the mean number of side streams decreases as do the fluctuations. The distributions in~a!, together with the distribution forn
55 ~diamonds!, are shown rescaled in~b! as per Eq.~37!.
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Hence the distribution ofTm,n / l m
(s) peaks up aroundrn as

m increases, the typical width reducing by a factor
1/ARl (s) for every step inm. We therefore have

P~Tm,n / l n
~s!!5~Rl ~s!!

m/2G1$@Tm,n / l n
~s!2rn#~Rl ~s!!

m/2%,
~35!

where the function is similar to the form ofP(v) given in
Eq. ~32!. The mean drainage density ofrn has been sub
tracted to center the distribution.

We are able to generalize this scaling form of the dis
bution further by taking into account side stream order. F
ures 6~a! and 6~b!, respectively, show the unrescaled a
rescaled distributions ofTm,n / l m

(s) with n allowed to vary.
This particular example taken from the Scheidegger mode
for m56, and the rangen51 – 5. Sincen is now changing,
01611
f

-
-

is

the centers are situated at the separate values of thern . Also,
the typical number of side streams changes with ordern so
the widths of the distributions dilate as for the varyingm case
by a factorARl (s). Note that the rescaling works well forn
52, . . . ,5 but notn51. As we have noted, deviations from
scaling from small orders are to be expected. We now w

P~Tm,n / l n
~s!!~Rl ~s!!

2n/2G2$@Tm,n / l n
~s!2rn#~Rl ~s!!

2n/2%,

~36!

where, again,G2(z) is similar in form toP(v).
We find the same rescalings apply for the Mississip

data. For example, Fig. 7~a! shows unrescaled distribution
of Tm,n / l n

(s) for varyingn. Figure 7~b! then shows reasonabl
agreement with the form of Eq.~36!. In this case, the Sc
heidegger model clearly affords valuable guidance in our
s
FIG. 7. Tokunaga statistics for the Mississippi river basin. The distributions are as per Fig. 6~a!, distributions of number of side stream
per unit length, withn, the order of side streams, varying. The dimensions of length and reciprocal density 1/rn are now given in meters, and
all other quantities are dimensionless. The absorbing stream order ism57, and the individual distributions correspond ton52 ~circles!,
n53 ~squares!, andn54 ~triangles!. Rescalings of the distributions shown in~a!, along with that forn55 ~diamonds!, are found in~b!.
Reasonable agreement with Eq.~37! is observed.
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vestigations of real river networks. The ratioRl (s)52.40 was
calculated from an analysis ofl v

(s) and l v . The densityr2

.0.0004 was estimated directly from the distributions
Tm,n / l n

(s) , and means that approximately four second-or
streams appear every ten kilometers.

Combining Eqs.~35! and ~36!, we obtain the complete
scaling form

P~Tm,n / l n
~s!!5~Rl ~s!!~m2n21!/2G$@Tm,n / l n

~s!2rn#

3~Rl ~s!!~m2n21!/2%. ~37!

As per G1 and G2 , the functionG is similar in form to
P(v).

The above scaling form makes intuitive sense but is
obviously obtained from an inspection of Eq.~32!. We there-
fore examineP(v) by determining the position and magn
tude of its maximum. Rather than solveP8(v)50 directly,
we find an approximate solution by considering the argum
of the denominator,2 ln F(v), with F(v) given in Eq.~26!.
Since the numerator ofP(v) is 11v2, and the maximum
occurs for smallv this is a justifiable step. SettingdF/dv
50, we thus have

2 ln
12v

q
1 ln vp50, ~38!

which givesvm5p/(q1p)5p/(12 p̃). Note that forp̃!1,
we havevm.p.

Substitutingv5vm5p/(12 p̃) into Eq. ~32!, we find

P~vm!.N9p̃23/25Np̃21/2223/2, ~39!

presumingp2!1 andq.1. Returning to the scaling form o
Eq. ~37!, we see that thep̃21/2 factor in Eq.~39! accounts for
the factors of (Rl (s))m/2 sincep̃5 p̃m scales from level to leve
by the ratioRl (s) . We therefore find the other factor (Rl (s))n/2

of Eq. ~37! gives N5cp1/2, where c is a constant. Since
p5pn , it is the only factor that can provide this variatio
We thus have found the variation with stream order of
normalizationN, and have fully characterizedP(x,y), the
continuum approximation ofP( l m

(s) ,Tm,n).

VII. CONCLUDING REMARKS

This paper provides an investigation of detailed river n
work architecture as viewed in planform. We identify th
self-similarity of a form of drainage density as the essence
the average connectivity and structure of networks. Fr
previous work in Ref.@5#, we understand this to be a ba
from which all river network scaling laws may obtained.
e

I.
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We extend the description of tributary structure provid
by Tokunaga’s law to find that side stream numbers are
tributed exponentially. This in turn is seen to follow from th
fact that the length of stream segments are themselves e
nentially distributed. We interpret this to be consequence
randomness in the spatial distribution of stream segme
Furthermore, the presence of exponential distributions in
cates that fluctuations in variables are significant being
the order of mean values. For the example of stream segm
lengths, we thus identifyj l (s) , a single parameter needed
describe all moments. This is simply related toj t , which
describes the distributions of Tokunaga ratios. The expon
tial distribution becomes the null hypothesis for the distrib
tions of these variables to be used in the examination of
river networks.

We are able to discern the finer details of the connect
between stream segment length and tributary numb
Analysis of the placement of side streams along a stre
segment again reveals exponential distributions. We are
able to postulate a joint probability distribution for strea
segment lengths and the Tokunaga ratios. The functio
form obtained agrees well with both model and real netw
data. By further considering distributions of the number
side streams per unit length of individual stream segme
we are able to capture how variations in the separation
side streams are averaged out along higher-order absor
streams.

We end with a brief comment on the work of Cui, Wil
iams, and Kuczera@13#, who recently also proposed a sto
chastic generalization of Tokunaga’s law. They postul
that the underlying distribution for theTm,n is a negative
binomial distribution. One parameter additional toT1 and
RT , a, was introduced to reflect ‘‘regional variability,’’ i.e.
statistical fluctuations in network structure. This is in t
same spirit as our identification of a single parameterj t .
However, our work disagrees on the nature of the underly
distribution of Tm,n . We have consistently observed exp
nential distributions forTm,n in both model and real net
works.

In closing, by finding randomness in the spatial distrib
tion of stream segments, we have arrived at the most b
description of river network architecture. Understanding
origin of the exact values of quantities such as drainage d
sity remains an open problem.
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