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Geometry of river networks. Ill. Characterization of component connectivity
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Essential to understanding the overall structure of river networks is a knowledge of their detailed architec-
ture. Here we explore the presence of randomness in river network structure and the details of its conse-
quences. We first show that an averaged view of network architecture is provided by a proposed self-similarity
statement about the scaling of drainage density, a local measure of stream concentration. This scaling of
drainage density is shown to imply Tokunaga’s law, a description of the scaling of side branch abundance
along a given stream, as well as a scaling law for stream lengths. We then consider fluctuations in drainage
density and consequently the numbers of side branches. Data are analyzed for the Mississippi River basin and
a model of random directed networks. Numbers of side streams are found to follow exponential distributions,
as are intertributary distances along streams. Finally, we derive a joint variation of side stream abundance with
stream length, affording a full description of fluctuations in network structure. Fluctuations in side stream
numbers are shown to be a direct result of fluctuations in stream lengths. This is the last paper in a series of
three on the geometry of river networks.
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[. INTRODUCTION exponential, therefore requiring only one parameter for their
description, and indicating the presence of randomness. As a
This paper follows Refd.1] and[2] as the last in a series result, we introduce a dimensionless scglevhich is simply
on the geometry of river networks. In the first papg}, we  related to the length scalgintroduced in Ref[2]. Signifi-
examined in detail the description of river networks by scal-cantly, we observe the spatial distribution of stream seg-
ing laws[3-6] and the evidence for universality. Additional ments to be random, implying that we have reached the most
introductory remarks concerning the motivation of the over-basic description of network architecture.
all work were provided in this first paper. In the second paper Tokunaga’'s law is intimately connected with drainage
[2], we addressed distributions of the basic components afensityp, a quantity which will be used throughout the pa-
river networks, stream segments, and subnetworks. Here wger. Drainage density is a measure of the stream concentra-
present an analysis complementary to the work of the secontibn or, equivalently, how a network fills space. We explore
paper by establishing a description of how river networkthis connection in detail, showing how simple assumptions
components fit together. One may see the second paper e=garding drainage density lead to Tokunaga’s law.
building up and out to global descriptions, whereas the The paper is structured as follows. We define Tokunaga’'s
present work travels in the opposite direction, descending ttaw, and introduce a scaling law for a specific form of drain-
examine the subtle intricacies of network structure. As beage density. We briefly describe Horton’s laws for stream
fore, we are motivated by the premise that while relation-number and length and some simple variations. Both stream
ships of mean quantities are primary in any investigation, therdering and Horton’s laws are also briefly mentioned; they
behavior of higher order moments potentially and often dowere covered in more detail in RgR]. We show that the
encode significant information. scaling law of drainage density may be taken as an assump-
Our purpose then is to investigate the distributions oftion from which all other scaling laws follow. This brings us
guantities which describe the detailed architecture of riveto the focal point of the paper: the identification of a statis-
networks. We center our attention on Tokunaga’s [@w9], tical generalization of Tokunaga's law. We first examine dis-
which is a statement about network architecture describingributions of numbers of tributarieside streamsand com-
the tributary structure of streams. As in Rdfs] and[2], we  pare these with distributions of stream segment lengths
use data from the Scheidegger model of random networkehich were shown to be exponential in REf]. We observe
[10] and the Mississippi River, finding the distributions ob- the former distributions also to be exponential, leading to the
tained from these two disparate sources to agree very well inotion that stream segments are distributed randomly
form. We are able to set down scaling forms of all distribu-throughout a network. The presence of exponential distribu-
tions studied. We observe a number of distributions to beions also leads to the introduction of the characteristic num-
ber & . We then study the variation of tributary spacing
along streams so as to understand fluctuations in drainage
* Author to whom correspondence should be addressed; Electronidensity, and again find the signature of randomness. Finally,
address: dodds@segovia.mit.edu; URL:http://segovia.mit.edu/  we develop a joint probability distribution connecting the
"Electronic address: dan@segovia.mit.edu length of a stream with the frequency of its side streams.
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TABLE |. Dimensionless Tokunaga ratios for the Mississippi River. The row indices are the absorbing
stream orders, while the columns correspond to side stream orders. Each entry is the average number of order
v side streams per order absorbing stream to two significant digits.

v=1 2 3 4 5 6 7 8 9 10

m=2 1.7

3 4.9 1.3

4 12 3.8 1.1

5 29 9.1 2.9 1.0

6 71 23 7.7 3.0 1.2

7 190 56 19 7.8 3.3 1.1

8 380 110 39 17 6.9 2.6 1.0

9 630 170 64 28 11 4.5 3.0 0.60

10 1100 270 66 29 13 4.3 2.7 1 1

11 1400 510 120 66 25 12 9 3 1 1

II. DEFINITIONS stream ratios. The first is that because of the self-similar

nature of river networks(T, ,) should not depend abso-

For full definitions of stream ordering and Horton's laws, lutely on either ofu or v but only on the relative difference
the reader is referred to the first two papers of this series y M Y ’

[1,2]. Here, we recall some notation for convenience, intro--€ k=p—v. The second is that in changing the value of

duce some additional terminology, and present Tokunaga’léz’u_ v, the(T,,) must themselves change by a system-

law in more detail. _zli_tick ratio.,TIhes.e statements lead to what we refer to as

In discussing network architecture, we will speaksafe oKunaga's faw-:
streamsandabsorbing streamsA side stream is any stream
that joins into a stream of higher order, the latter being the (T =(T=(T)(Rp* . (1)
absorbing stream. We will denote the orders of absorbing
and side streams hy andv but when referring to an isolated Thus only two parameters are necessary to characterize the
stream or streams where their relative rank is ambiguous, weet of T, ,: Ty andRy.
will write stream order as. The parametelT,>0 is the average number of side

Central to our investigation of network architecture is streams of one order lower than the absorbing stream, typi-
stream segment length. As in RgZ], we denote this length cally on the order of 1.0-1.5. Since these side streams of one
by Iff) for a stream segment of ordexr We will also intro-  order less are the dominant side streams of the basin, their
duce a number of closely related lengths which describe disaumber estimates the basin’s breadth. In general, larger val-
tances between side streams. When referring to streamses of(T,) correspond to wider basins, while smaller values
throughout we will specifically mean stream segments of are in keeping with basins with relatively thinner profiles.
particular order unless otherwise indicated. This is to avoid
confusion with the more natural definition of a stream which -
is the path from a point on a network moving upstream to the
most distant source. For an orderbasin, we denote this
main stream lengtloy |, .

Defining a stream ordering on a network allows for a
number of well-defined measures of connectivity, stream
lengths, and drainage areas. Around a decade after the
Strahler-improved stream ordering of Horton appeared
[11,12, Tokunaga introduced the idea of measuring side ~0.5
stream statistic7—9]. This technique arguably provides the 234567895101
most useful measurement based on stream ordering, and only H
recently received much attenti¢f,13—-15. The idea is sim-

v f . twork. t t th b f FIG. 1. A Tokunaga graph for the Mississippi River. The values
Ply, Tor a given network, o count the average number ol given in Table . Each point represents a Tokunaga ¢&jg,).

ord_ery side streams entering an _ordﬂrabsorblng stream. The solid lines follow variations in the order of the absorbing
Th'§ gives(T, ,), a set of double-lnde).(ed parameters for Astreamp, while the dotted lines follow unit increments in both
basin. Note thaﬂ?#? v=1, where(} is the Qrder of the  andy, the order of side streams. In comparison, the Tokunaga graph
network, so we can view the Tokunaga ratios as a lowepf an exactly self-similar network would have points evenly spaced
triangular matrix. An example for the Mississippi River is at InT,+(u+r—1)InR; where k<v<u=2,3,...Q, i.e., all lines
shown in Table [16]. The same data are represented picto4n the plot would be straight and uniformly spaced, with the dotted
rially in Fig. 1 in what we refer to as @okunaga graph lines being horizontal. The nature of deviations in scalings laws for
Tokunaga made several key observations about these sidger networks was addressed in REf].
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The ratioRy>1 measures how the density of side streamsThus T,=R,T; and, in generaITkz(Rp)kflTl. This is
of decreasing order increases. Thus already inherent ifokunaga’'s law, and we therefore have
Tokunaga'’s law is a generalization of drainage dengitjhe
usual definition of which is given as follows. For a given R,=Rr. (6)
region of landscape with ared with streams totalling in ) )
length L, p=L/A, and has the dimensions of an inverse Equations(3) and(4) also give
length scalg11]. One may think ofp as the inverse of the ) )
typical distance between streams, i.e., the characteristic scale (1=Talpu1=R,Talp, 2=Ry(I,2 ). (7
beyond which erosion cannot more finely dissect the land- . ) .
scapg 11]. In principle, the drainage density may vary from ON comparison with Eq(2), we see that the above is our
landscape to landscape and also throughout a single regioiortonian law of stream segment lengths, and that
Below, we will turn this observation about Tokunaga’s law R =R 8
around to show that all river network scaling laws may be p= I (8)
O Even though the nimber of Side sireams entering any aby. S il 1S e basic length-scale rato in the probler, e
sorbing stream must of course be an integer, Tokunaga’%ewrIte Eq.(3), our Hortonian law of drainage density, as
ratios are under no similar obligation since they are averages. /o =1R 9)
Nevertheless, Tokunaga’s law provides a good sense of the Py+1!Py 1)
structure of a ”?“’Vork' alb_e|t at a level of averages. One Ofhe above statement becomes our definition of the self-
our main objectives here is to go flurth.er and cons@er ﬂuc'similarity of drainage density.
tuations about and the full distributions underlying the

(Tuw)
As in Ref.[2], we consider the Horton-like law for stream IV. TOKUNAGA DISTRIBUTIONS
segment lengths: Tokunaga’s law relates averages of quantities, and in the
s remainder of this paper we investigate the underlying distri-
(1541 butions from which these averages are made. We are able to

=Rie. @) find general scaling forms of a number of distributions, and

(I
in many cases also identify the basic form of the relevant
As we will show, the form of the distribution of the variable scaling function.

T,u,V is a direct consequence of the d|str|but|on|§¥ A” inVEStigationS are Inltla”y carried out for the Sc-
heidegger model, where we may generate statistics of ever-

improving quality. We note that the Tokunaga parameters
and the Horton ratios are not known analytically. Estimates
from previous work{5] find T,=1.35, R;(s=R;=3.00, and

We now introduce a law for drainage density based orR,=5.20. Data for the present analysis were obtained. on
stream ordering. We writgp,, , for the number of side =10 by W=3x10® lattices with periodic boundaries.
streams of orderw per unit length of orderu absorbing Given the self-averaging present in any single instance on
stream. We expect these densities to be independent of tileese networks, ensembles of ten were deemed sufficient. We
order of the absorbing stream, and so we will generally us@lso find the same forms for all distributions for the Missis-
p, . The typical length separating ordeside streams is then sippi data(and for other river networks not presented here
1/p,. Assuming self-similarity of river networks, we must Perhaps the most significant benefit of the simple Scheideg-

IIl. IMPLICATIONS OF A SCALING LAW
FOR DRAINAGE DENSITY

have ger model is its ability to provide clean distributions whose
form we can then search for in real data.
pri1lp,=1R,, (3 The distribution ofT , , is well described by an exponen-
tial distribution. This can be seen upon inspection of Figs.
whereR,>1, independent of. 2(a) and 2b). Figure Za) shows normalized distributions of

All river network scaling laws in the planform may be T, , for =2 and varying absorbing stream orger4, 5,
seen to follow from this relationship. Consider an absorbingand 6. These distributior(plus the one for absorbing stream
stream of ordep. Self-similarity immediately demands that order u=7) are rescaled and presented in Figb)2 The
the number of side streams of order-1 must be statisti-  single form thus obtained suggests a scaling form offthe
cally independent ofu. This number is of cours€T;). distribution is given by
Therefore, the typical length of an orderabsorbing stream
must be P(T,,)=(Ris) #F[T, (Ris) ], (10

<If)):<T1>/pM,l. (4)  whereF is an exponential scaling function. However, this
only accounts for variations ip, the order of the absorbing
Using Eq.(3) to replacep,, — ; in the above equation, we find stream.
Figures 3a) and 3b) show that a similar rescaling of the
Tilp,-1=R,T1lp, ». (5)  distributions may be effected whenis varied. In this case,
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FIG. 2. Distributions for Tokunaga ratios for varying orders of absorbing stream and fixed side stream ord@r fofr the Scheidegger
network. All quantities are dimensionless. (@, we show examples of , , distributions for absorbing stream ordeis=4 (circles, u
=5 (squarel andu=6 (triangles. In (b), these distributions, as well as tlhe=7 case, are rescaled according to E). The resulting
“data collapse” gives a single distribution. For the Scheidegger mdg|ej~=3.00.

the data is fczrlthe Mississippi. The rescaling is nowRyy P(Tk):(RI(S))k_lPT[TM,V/(RI(S))k_l]: (13
rather tharR, ), and Eq.(10) is improved to give
with Py as above.
P(T,)=(Rie)* " *P[T,  /(Rie)* "1 (1D
V. CONNECTION TO STREAM SEGMENT LENGTHS
The functionP+ is a normalized exponential distribution in- AND RANDOMNESS

dependent of. and, We have already examined the exponential distributions

of stream segments lengths in REZ], and here we develop

Pr(2)= Ee’z’ft, (12)  its relationship with the Tokunaga distributions. Following
&t Ref.[2], we write the distribution for stream segment lengths
as
where &, is the characteristic number of side streams one
order lower than the absorbing stream, ig= (T,). For the PO =(Ris) “ P[P (Rie) #], (14

Mississippi, we observé;=1.1, whereas for the Scheideg-
ger model we seé;=1.35. As expected, the Tokunaga dis- where the functiorP|(s) is a normalized exponential distribu-

tribution is dependent only ok=ux— v, so we can write tion:
2.5 3.
© 2
%5 @ 3 %@% (b)
2 ~
v% % o
~ oo 25 o
> 0, & -
2151V o £
) vV n %3@ . ) @ O&>
A ) O 2 vPg, 00
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FIG. 3. Tokunaga distributions for varying side stream orders for the Mississippi river basin. All quantities are dimensionlesgaln both
and (b), the absorbing stream order is=5, and the side stream orders are 2 (circles, v=3 (squares andv=4 (triangles. The raw
distributions are shown ifa). In (b) the distributions are rescaled as per EQl). For the Mississippi, the ratio is estimated to Rg)
=2.40[2].
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1 We see that the probabilities satisfy the Horton-like scaling
Pis(z)= % e 4o, (15 law

In a strictly self-similar network¢s) is the characteristic

irst- idoe = (] . .
length of first-order stream segments, i& =(17"). (Note Thus, we begin to see the element of randomness in our

that in Ref.[2] we use¢ for £ for ease of notatioh.We oy anded description of network architecture. The termina-
qualify this by requiring the network to be exactly self- yion of 5 stream segment by meeting a larger branch is ef-
similar, because in real networks and most models this i%ectively a spatially random process.

certainly not the case. As should be expected, there are de- |y aqdition, we observe that side streams are randomly
V|ra]1t|or}s from sgal|rr1]g forr] the largest and sfmall;a_st orderspiaced along absorbing streams. Three new measures of
Therefore, &9 is the characteristic size of a first-order eream length of use here aH&™ , the distance from the

stream as determined by scaling dow_n the average_lengths B ginning of an orden absorbing stream to the first order
those higher-order streams that are in the self-similar struc-, (si) : .

: ) : 9 side stream]}>,’, the distance between any two adjacent
ture of the network. It is thus in general different frah§®). K

. L internal orderv side streams along an order absorbin
The connection between the characteristic nunihend " g o 9

stream; and &9 | the distance from the last order side
the length-scalés follows from Eqs.(2), (4), and(9): stream to thg ’:end of an order absorbing stream. We ob-

Pu/Pu-1=1Ryes. (22

&=piR& . (16)  serve in both the Scheidegger model and real data, the dis-
v tributions ofIEf"E), IEf"'J, andlifjf) to be well approximated

This presumes an exact scaling of drainage densities, and by exponential distributions and, moreover, to be indistin-

the case where this is not sp; would be chosen so that guishable[17]. This indicates that drainage density is inde-

(Ri9)"” p; most closely approximates the higher orget pendent of relative position of tributaries along an absorbing
We now come to an interpretation of the exponential dis-stream.

tribution as a composition of independent probabilities. Con-

sider the example of stream segment lengths. We Wrjtas VI. JOINT VARIATION OF TOKUNAGA RATIOS

the probability that a stream segment of orgemeets with AND STREAM SEGMENT LENGTH

(and thereby terminates)a stream of order at leagt. For

S|mp||c|ty, we assume that On|y one side stream, or none, We have so far observed that the individual distributions

may join a stream at any site. We also take the lattice spacingf | andT, , are exponential, and that they are related via

a to be unity, so that stream lengths are integers and therdéhe side-stream density,. However, this is not an exact

fore equate with the number of links between sites along #elationship. For example, given a collection of stream seg-

stream. Fora# 1, derivations similar to below will apply ments with a fixed Iengtlhﬁf) we expect to find fluctuations

with 1¢ replaced by|{¥/a], where[ ] denotes rounding to in the corresponding Tokunaga rati®s, , -

the nearest integer. Note that extra complications arise when To investigate this further we now consider the joint

the distances between neighboring sites are not uniform. variation of T, ,, with Iif) from a number of perspectives.
Consider a single instance of an orgestream segment. After discussing the full joint probability distribution

The probability of this segment having a Iengﬁﬁ is given P(TM'V,IEf)), we then focus on the quotient= TW/IE,?) and

by its reciprocalw=|§f)/TM‘V. The latter two quantities are

© measures of drainage density and intertributary length for an
P('f))=5u(1—"ﬁﬂ)'# : (17)  individual absorbing stream.

wherep,, is the probability that an ordew stream segment

. . ; A. Joint probability distribution
terminates on meeting a stream of equal or higher order. We

can re-express the above equation as We build the joint distribution oiP(TM,,,,Iﬁf)) from our
conception that stream segments are randomly distributed
P =P, exp{—1¥ In(1-p,) "}, (18)  throughout a basin. In Eq17), we have the probability of a

_ i stream segment terminating aftléf) steps. We need to in-
and, upon inspection of Eqsl4) and (15, we make the  corporate into this form the probability that the stream seg-

identification ment also hag ,, order v side streams. Since we assume
pw-lg _r_ = q-1 placement of these side streams to be random, we modify
(RI(S)) §|(S) [ |n(1 p,u,)] ’ (19) Eq (17) to find
which has the inversion 191 o
(s) —= |~ Tuv(1—n —5 \IW-T,,-1
P :1—9*1/(R|'5’)"_1§I‘5‘_ (20 P(I# o) p'u( Tuw )p"M (1=p,=Pu)w w7,
g (23)
For u sufficiently large such thgi, <1, we have the simpli- ) ) ) .
fication where {) =n!/k!(n—k)! is the binomial coefficient, angd,
is the probability of absorbing an orderside stream. The
P=U Ri9)* &s). (21 extrap, appears in the last factor (1p,—p,) because this
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FIG. 4. Form of the joint distribution of Tokunaga ratios and stream segment lengths. The distribution is giveri28) Eand is built
around the functiorF(u=TH'V/I§f)) given in Eq.(26). Lengths are in terms of arbitrary lattice units, and all other quantities are dimen-

sionless. Shown irfa) is [F(v)]' for =1, 10, 100, and 1000.

Increasinff’ corresponds to the focusing of the shape (i the

distribution P(TH,V|IS):34O) is compared between thedgmooth curveand data from the Scheidegger modgicles. The Scheidegger
model data is compiled for a range of valueslgj)f rescaled as per EqR27).

term is the probability that at a particular site the streanwhere we have absorbeéd and all terms involving onlyp

segment neither terminates nor absorbs an ondeside
stream. Also, it is simple to verify that the sum owg“? and
T,,, of the probability in Eq(18) returns unity.

While Eq. (18) does precisely describe the joint distribu-
tion P(1Y, T, ,), it is somewhat cumbersome to work with.

and P into the prefactorN’=N'(p,p)=Np/(y27q). We
have also assumedis large such thax—1=x and =1/x
=0.

The functionF(v=y/x)=F(v;p,q) identified above has
the form

We therefore find an analogous form defined for continuous

rather than discrete variables. We simplify our notation by

writing p=p,, 9g=(1-p,—P,) andp=p,. We also re-
place (¥, T, ,) by (x, y) where nowx,y e[R]. Note that

F(v)=( (26)

O=<y=x—1, since the number of side streams cannot be
greater than the number of sites within a stream segment. \\here 0<v <1. Note that for fixedx. the conditional prob-

Equation(18) becomes

P(x,y)=NF Tx) Y@ YL (24
(x,y)= W(p) (a) , (29

where we have useld(z+1)=2z! to generalize the binomial
coefficient. We have included the normalizatidrio account

for the fact that we have moved to continuous variables, an%C

the resulting probability may not be cleanly normalized. Also
we must allow thatN=N(p,p) and we will be able to iden-
tify this form more fully later on. Using Stirling’s approxi-
mation[18], thatT'(z+ 1)~ V2#7zZ" Y%~ we then have

1 (X_ l)X*S/Z

\/Z yy+l/2(x_y_ 1)xfyfl/2

)yllz

P(x,y)=Npp¥q* ¥y~ !

N

x—1

Y Y (x— 1)‘”(
2q

x| 1-—

x—1
=N'x YA F(y1) T,

) —X+y+1/2

(29

ability P(y|x) is proportional to[F(y/x)]*. Figure 4a)
shows[F(v)]* for a range of powers. The basic function
has a single peak situated near p. For increasing which
corresponds to increasimfj) , the peak becomes sharper ap-
proaching (when normalized a delta function, i.e.,
limy_[F(v)]*= (v —p).

Figure 4b) provides a comparison between data for the
heidegger model and the analytic form Rl T, ).
For this exampleu=6 and v=2 which corresponds tp
=0.10,9=0.90, andp=0.001(using the results of Sec.)V
The smooth curve shown is the conditional probability
P(y|X) for the example value oX=1{~340 following
from Eq. (25). From simulations, we obtain a discretized
approximation toP(1¢¥, T, ,). For each fixeck=1( in the
range 1651(%<345, we rescale the data using the follow-
ing, derived from Eq(25):

P(X,y)=N'X"YIN'~1x¥2p(x,y) ¥/*. 27)

The rescaled data are then combined, binned, and plotted as

circles in Fig. 4b), showing excellent agreement with the
theoretical curve.
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(b)

FIG. 5. Comparison of theory with measurements of average intertributary distances for the Scheidegger model. Dimensions are as per
Fig. 4. The data in botka) and(b) are for the case of order=2 side streams and ordgr=6 absorbing streams. k&), the distribution of
v=T,,/l Ef) obtained from the Scheidegger modeaicles is compared with the smooth curved predicted in B8). The same comparison

is made for the reciprocal variablezlﬁf)/TM'V, the predicted curve being given in E@3).

B. Distributions of side branches per unit stream length

P(v)= duP(u,
Having obtained the general form ch(IEf),T#,,,), we @) fu:o uR(U0)

now delve further into its properties by investigating the dis-

“ 12
tributions of the raticx =T, ,/IY and its reciprocaw. The :fo dul -1 exp[ - _Zu In[—F(v)]]
quantityTwllﬁf) is the number of side streams per length of u=0 \1+v 1+v
a given absorbing stream, and when averaged over an en- .
semble of absorbing streams gives =N’ (1+v?){In[ - F(U)]}—3/2J dz 2%e—2

z=0
T, 1=p,. 28
(Tu ) =p (28) . Li? -
=N
{In[—F(v)]}*

Accordingly, the reciprocalﬁf)/TM,V is the average separa-
tion of side streams of order. Here,N"=N'T'(3/2)=N’/7/2, and we have used the sub-
First, we deriveP(T,, /1) from P(1) T, ). We then  stitution z=u/(1+v?)In[~F(v)].
consider some intuitive rescalings which will allow us to  The distribution forw=|§f’/TM,,,= 1/v follows simply
deduce the form of the normalizatio(p,q). from Eq.(32), and we find
We rewrite Eq.(25) as
1+w?

wHIn[ — F(1w)]}¥?

P(w)=N" (33

P(x,y)=N'x"2exp —xIn[ —F(y/x)]}. (29

Figures %a) and 3b) compare the predicted forms of
P(v) and P(w) with data from the Scheidegger model. In
both cases, the data are for order 2 side streams being
absorbed by streams of order=6. Note that both distribu-
tions show an initially exponential-like decay away from a

u?=x2+y? and v=y/x. (30)  central peak.
Finally, we quantify how changes in the ordetsand v
affect the width of the distributions by considering some
The inverse relations ae=u/(1+v?) andy=uv/(1+v?)  patural rescalings. Because the average length5ofin-

We transform(x,y) to the modified polar coordinate system
described by(u,v) with the relations

and we also havelx dy=xdu dv. Equation(31) leads to creases by a factd® (s with x, the typical number of side
streams increases by the same factor. Since we can decom-
( 112 U posel Y as
P(u,v)=N’ 5| exp — ——=In[—F(v)]. _ _
1+v 1+v (S)—(sb) (s y ... 4 (si)y(se)
31) I —IW+IW'/+ +|#1'V+IW, (34

where there ard@,, ,— 1 instances of ) 1% becomes bet-

To find P(v) we integrate out over the radial dimension  ter and better approximated by ( ,+ 1)(I§'L’).
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FIG. 6. Distributions of the number of side streams per unit length for the Scheidegger mode] thighorder of side streams, varying.
Dimensions are as per Fig. 4, with the addition that the drainage dgnsig/in inverse lattice units. For botta) and (b), the absorbing
stream order ist=6. Shown in(a) are the unrescaled distributions for=2 (circles, v=3 (squares andv=4 (triangles. Note that asy

increases, the mean number of side streams decreases as do the fluctuations. The distrifajiorogéther with the distribution for
=5 (diamond$, are shown rescaled i) as per Eq(37).

Hence the distribution oTW/IEf) peaks up aroung, as  the centers are situated at the separate values ¢f,thalso,
u increases, the typical width reducing by a factor ofthe typical number of side streams changes with oudso
1/’/Rl(s) for every step inu. We therefore have the widths of the distributions dilate as for the varyjgase

by a factoryR;). Note that the rescaling works well for
=2,...,5 but notv=1. As we have noted, deviations from
scaling from small orders are to be expected. We now write

P(TW/I<:>>:(Rus))ﬂfzel{m,vllf)fpy](R'(s))”’z}(, |
35

where the function is similar to the form &f(v) given in
Eq. (32). The mean drainage density pf has been sub-
tracted to center the distribution.

We are able to generalize this scaling form of the distri-where, againG,(z) is similar in form toP(v).
bution further by taking into account side stream order. Fig- We find the same rescalings apply for the Mississippi
ures &a) and &b), respectively, show the unrescaled anddata. For example, Fig.(& shows unrescaled distributions
rescaled distributions oT/M/IEf) with v allowed to vary. of TM'V/I(VS) for varying v. Figure 7b) then shows reasonable
This particular example taken from the Scheidegger model isgreement with the form of Ed36). In this case, the Sc-
for u=6, and the range=1-5. Sincev is now changing, heidegger model clearly affords valuable guidance in our in-

P(TM,V/I (,/S>)(R|(S))7V/ZGZ{[TMYV/| E}S)—pu](Rus))*V/Z},
(36)
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FIG. 7. Tokunaga statistics for the Mississippi river basin. The distributions are as pef&iglistributions of number of side streams
per unit length, withy, the order of side streams, varying. The dimensions of length and reciprocal depsigrehow given in meters, and
all other quantities are dimensionless. The absorbing stream order & and the individual distributions correspondite2 (circles,
v=23 (squarel andv=4 (triangles. Rescalings of the distributions shown (@, along with that forv=5 (diamond$, are found in(b).

Reasonable agreement with E§7) is observed.
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vestigations of real river networks. The rafps=2.40 was We extend the description of tributary structure provided
calculated from an analysis ¢fY andl,. The densityp, by Tokunaga’s law to find that side stream numbers are dis-
=0.0004 was estimated directly from the distributions oftributed exponentially. This in turn is seen to follow from the
L /19 and means that approximately four second-ordefact that the length of stream segments are themselves expo-

v

streams appear every ten kilometers. nentially distributed. We interpret this to be consequence of
Combining Eqgs.(35) and (36), we obtain the complete randomness in the spatial distribution of stream segments.
scaling form Furthermore, the presence of exponential distributions indi-
cates that fluctuations in variables are significant being on
P(T,, /1) =(Re) " V2G{[T, II'¥—p,] the order of mean values. For the example of stream segment
lengths, we thus identifys), a single parameter needed to
X(Rys) ¥ v~ D2, (37 describe all moments. This is simply related &a which

describes the distributions of Tokunaga ratios. The exponen-
tial distribution becomes the null hypothesis for the distribu-
Fons of these variables to be used in the examination of real
iver networks.

We are able to discern the finer details of the connection
between stream segment length and tributary numbers.
Analysis of the placement of side streams along a stream
r'§egment again reveals exponential distributions. We are then

able to postulate a joint probability distribution for stream
segment lengths and the Tokunaga ratios. The functional
form obtained agrees well with both model and real network
data. By further considering distributions of the number of
1-p side streams per unit length of individual stream segments,
—In——+Invp=0, (38) we are able to capture how variations in the separation of

q side streams are averaged out along higher-order absorbing
streams.

We end with a brief comment on the work of Cui, Will-
iams, and Kuczerfl3], who recently also proposed a sto-
chastic generalization of Tokunaga’'s law. They postulate
o o that the underlying distribution for th&, , is a negative
P(vm)=N"p~¥*=Np~+227%2 (39 pinomial distribution. One parameter additional To and
Ry, «, was introduced to reflect “regional variability,” i.e.,
statistical fluctuations in network structure. This is in the
same spirit as our identification of a single parameter
However, our work disagrees on the nature of the underlying

. . . distribution of T, ,. We have consistently observed expo-
7) — 1/2 m,v
of Eq. (37) givesN=cp ™ wherec is a constant. Since nential distributions forT , , in both model and real net-

p=p,, it is the only factor that can provide this variation. K
We thus have found the variation with stream order of theWor S - . . -
In closing, by finding randomness in the spatial distribu-

normallzat|onN, a_”d h_aved;uIII%/S)characterlzeB(x,y), the tion of stream segments, we have arrived at the most basic
continuum approximation oP(1,”,T,,,). description of river network architecture. Understanding the

origin of the exact values of quantities such as drainage den-
VIl. CONCLUDING REMARKS sity remains an open problem.

As per G; and G,, the functionG is similar in form to
P(v).

The above scaling form makes intuitive sense but is no
obviously obtained from an inspection of E§2). We there-
fore examineP(v) by determining the position and magni-
tude of its maximum. Rather than sol¥& (v)=0 directly,
we find an approximate solution by considering the argume
of the denominator;-In F(v), with F(v) given in Eq.(26).
Since the numerator dP(v) is 1+v?2, and the maximum
occurs for smallv this is a justifiable step. SettingF/dv
=0, we thus have

which givesv,,=p/(q+p)=p/(1-P). Note that forp<1,
we havev ,=p.
Substitutingy =v,,= p/(1—p) into Eq. (32), we find

presumingp?<1 andg=1. Returning to the scaling form of
Eq. (37), we see that thp~ ¥ factor in Eq.(39) accounts for

the factors of R(s))*/? sincep=p .« scales from level to level
by the ratioR,(s . We therefore find the other factoR((s) "’

v

This paper provides an investigation of detailed river net-
work architecture as viewed in planform. We identify the
self-similarity of a form of drainage density as the essence of The authors would like to thank J. S. Weitz for useful
the average connectivity and structure of networks. Frondiscussions. This work was supported in part by NSF Grant
previous work in Ref[5], we understand this to be a base No. EAR-9706220 and Department of Energy Grant No. DE
from which all river network scaling laws may obtained. = FG02-99ER 15004.
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