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Geometry of river networks. 1. Scaling, fluctuations, and deviations
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This paper is the first in a series of three papers investigating the detailed geometry of river networks.
Branching networks are a universal structure employed in the distribution and collection of material. Large-
scale river networks mark an important class of two-dimensional branching networks, being not only of
intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling
laws are uniformly observed. Reported values of scaling exponents vary, suggesting that no unique set of
scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a
fuller description of branching network structure, here we report a theoretical and empirical study of fluctua-
tions about and deviations from scaling. We examine data for continent-scale river networks such as the
Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We
center our investigations on the scaling of the length of a subbasin’s dominant stream with its area, a charac-
terization of basin shape known as Hack’s law. We generalize this relationship to a joint probability density,
and provide observations and explanations of deviations from scaling. We show that fluctuations about scaling
are substantial, and grow with system size. We find strong deviations from scaling at small scales which can
be explained by the existence of a linear network structure. At intermediate scales, we find slow drifts in
exponent values, indicating that scaling is only approximately obeyed and that universality remains indeter-
minate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations
with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations, and
will not be improved by increases in network resolution.
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[. INTRODUCTION ics of granular medif14,15, noting that erosion is arguably
far more complex. Nevertheless, a number of erosion equa-

Networks are intrinsic to a vast number of complex formstions have been proposed, ranging from deterministe:-
observed in the natural and manmade world. Networks re19] to stochastic theorig20—25. Each of these models at-
peatedly arise in the distribution and sharing of information,tempts to describe how eroding surfaces evolve dynamically.
stresses, and materials. Complex networks give rise to intetn addition, various heuristic models of both surface and net-
esting mathematical and physical properties as observed inork evolution also exist. Examples include simple lattice-
the Internef1], the “small-world” phenomenon2], the car-  pased models of erosidi7,26—2§, an analogy to invasion
diovascular systeni3], force chains in granular med[d],  percolation[29], the use of optimality principles and self-
and the wiring of the braif5]. organized criticality7,30,31, and even uncorrelated random
Branching, hierarchical geometries make up an importanketworks[10,32,33. Since river networks are an essential
subclass (_)f all r_1etworks. Our p_resent investigations concerfyaiyre of eroding landscapes, any appropriate theory of ero-
the paradigmatic example of river networks. The study Ofgijon myst yield surfaces with network structures comparable
river networks, though more general in application, iS any, ¢ of the real world. However, no model of eroding
integral part of geomorphology, the theory of earth Surfacq‘andscapes or even simply of netW(,)rk evolution unambigu-

processes and form. Furthermore, river networks are he]d t8usly reproduces the wide range of scaling behavior reported
be natural exemplars of allometry, i.e., how the dlmen3|on§ .
or real river networks.

of different parts of a structure scale or grow with respect to . . .
each othefl6—10. The shapes of drainage basins, for ex- A considerable problem facing these theories and models

ample, are reported to elongate with increasing basin sizl® that the values of sgalmg exponents for rlver_network scal-
[11-13. ing IaV\_/s are not pregsely known. One of the issues we ad-
At present, there is no generally accepted theory explaindress in this work is universality10,13. Do the scaling

ing the origin of this allometric scaling. The fundamental €xPonents of all river networks belong to a unique universal-
problem is that an equation of motion for erosion, formulatedty class, or are there a set of classes obtained for various
from first principles, is lacking. The situation is somewhatgeomorphological conditions? For example, theoretical mod-
analogous to issues surrounding a description of the dynan®!s suggest a variety of exponent values for networks that are
directed versus nondirected, created on landscapes with het-

erogeneous versus homogeneous erosivity, and so on
* Author to whom correspondence should be addressed; Electron[d 0,34,39. Clearly, refined measurements of scaling expo-
address: dodds@segovia.mit.edu; URL:http:/segovia.mit.edu/  nents are imperative if we are to be sure of any network
"Electronic address: dan@segovia.mit.edu belonging to a particular universality class. Moreover, given
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that there is no accepted theory derivable from simple physing laws. With this in mind, we will also discuss probability
ics, more detailed phenomenological studies are required. densities of stream length and drainage area.

Motivated by this situation, here we perform a detailed Hack’s law is stated rather loosely in E@), and implic-
investigation of the scaling properties of river networks. Weitly involves some type of averaging which needs to be made
analytically characterize fluctuations about scaling, showingxplicit. It is most usually considered to be the relationship
that they grow with system size. We also report significanbbetweenmeanmain stream length and drainage area, i.e.,
and ubiquitous deviations from scaling in real river net-
works. This implies surprisingly strong restrictions on the (Iyeal. ()
parameter regimes where scaling holds, and cautions against .
measurements of exponents that ignore such limitations. Iklere(-) denotes an ensemble average, dne-(I(a)) is the
the case of the Mississippi basin, for example, we find thaff®an main stream length of all basins of agedypically,
although our study region spans four orders of magnitude iiPn€ Performs linear regression analysis on(lloggainst
length, scaling may be deemed valid over no more than 1.9 to obtain the exponert.
orders of magnitude. Furthermore, we repeatedly find the
scaling within these bounds to be only approximate, and that B. Fluctuations and deviations
no exact, single exponent can be deduced. We show that |, geeking to understand Hack’s law, we are naturally led
scaling breaks down at small scales due to the presence Qf \;onder about the underlying distribution that gives rise to
linear basins and at large scales due to the inherent discretgys mean relationship. By considering fluctuations, we begin
ness of network structure and correlations with overall basify ¢ee Hack's law as an expression of basin morphology.

shape. Significantly, this latter correlation imprints uponyy4¢ shapes of basins characterized byl) are possible,
river network structure the effects and history of geology. .4 with what probability do they occur?

This paper is the first of a series of three on river network important point here is that Hack's law does not ex-

geometry. Having addressed scaling laws in the presenf.yy gnecify basin shapes. An additional connection to the

workj we proceed, in the second and third pamefs3ﬂ, ©0 " Eyclidean dimensions of a basin is required. We may think
consider river network structure at a more detailed level. Irbf a basin’s longitudinal lengtih, and its widthL, . The

Ref_. [36] we exam_ine the statistics of the “building blocks” main stream lengthis reported to scale with, as
of river networks, i.e., segments of streams and subnetworks.
In particular, we analytically connect distributions of various | oc Lﬁ‘ , 3)
kinds of stream length. Part of this material is employed in
the present paper, and is a direct generalization of Horton’ghere typically 1.8sd<1.1[12,50. Hence we haveao| "
laws [38,39. In the third papef37], we proceed from the | #h || other relevant scaling law exponents can be re-
findings of Ref.[36] to characterize how these building |5ied to the pair of exponentsl ) which therefore charac-
blocks fit together. Central to this last work is a study of theigrize the universality class of a river netwoik0,39. If
frequency and spatial distributions of tributary branchesd/hzz, we have that basins are self-similar, whereas if
along the'le.ngth 'of a stream, and is itself a generalization 05/h<2, we have that basins are elongating. So, while Hack’s
the descriptive picture of Tokunagd0—-42. law gives a sense of basin allometry, the scaling properties of
main stream lengths also need to be known in order to prop-
erly quantify the scaling of basin shape.
Il. BASIN ALLOMETRY In addition to fluctuations, complementary insights are
A. Hack’s law provided by the observation and understanding of deviations
from scaling. We are thus interested in discerning the regu-
drities and quirks of the joint probability distribution
(a,l). We will refer toP(a,l) as theHack distribution
Hack distributions for the Kansas River basin and the
Mississippi River basin are given in Figs(al and 1b).
locah, (1)  Fluctuations about and deviations from scaling are immedi-
ately evident for the Kansas River and to a lesser extent for
the Mississippi River. The first section of the paper will pro-
Known as Hack’s law[11], this relation is central to the pose and derive analytic forms for the Hack distribution un-
study of scaling in river netword.2,39. Hack’s exponenh  der the assumption of uniform scaling with no deviations.
is empirically found to lie in the range from 0.5 to QZ1—-  Here, as well as in the following two papers of this series
13,43-48. Here we postulate a generalized form of Hack’s[36,37], we will motivate our results with a random network
law that shows good agreement with data from real worldnodel originally due to Scheideggg33].
networks. We then expand our discussion to consider deviations
We focus on Hack’s law because of its intrinsic interest,from exact scaling. In the case of the Kansas River, a striking
and also because many interrelationships between a largexample of deviations from scaling is the linear branch sepa-
number of scaling laws are known, and only a small subsetated from the body of the main distribution shown in Fig.
are understood to be independ¢h®?,39. Thus our results 1(a). This feature is less prominent in the lower resolution
for Hack’s law will be in principle extendable to other scal- Mississippi data. Note that this linear branch is not an artifact

In addressing these broader issues of scaling in branchi
networks, we set as our goal to understand the river networ
scaling relationship between basin aeeand the length of
a basin’s main stream:
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lll. FLUCTUATIONS: AN ANALYTIC FORM FOR THE
& @ A’ HACK DISTRIBUTION

2 // 4 To provide some insight into the nature of the underlying
5 Hack distribution, we present a line of reasoning that will
1 build up from Hack’s law to a scaling form d&¥(a,l). First
45 let us assume for the present discussion of fluctuations that
an exact form of Hack’s law holds,
35 / 05 (Iy=6a", (4

loglol

o

where we have introduced the coefficighwvhich we discuss
fully later on. Now, since Hack’s law is a power law, it is

250 4
i " reasonable to postulate a generalization of the form
2|
4 5 6 7 8 9 10 11 1
P(lla)=—sF . 5
log  a (lla)=_rFi| 5p (5
6.5 yy The prefactor H" provides the correct normalization, aRd

is the “scaling function” we hope to understand. The above
will be our notation for all conditional probabilities. Implicit
in Eq. (5) is the assumption that all moments and the distri-

(b) I/'H
6 f
5.5 bution itself also scale. For example, tiggh moment of
- 1 P(lla) is
S ° |d ah
= , 6
B s (19(a))ea (6)
. 0.5 which implies
N (1%a)) =k~ (1%(ak)), (7
3 0 where ke R. Also, for the distributionP(l|a), it follows

~

from Eq. (5) that
6 7 8 9 10 11 12 a.)

logloa h

h
th(Ikh|ak):—rﬁk F
amkn !

A =P(l|a). (8

FIG. 1. The Full Hack distribution for the Kansds) and Mis-
sissippi (b) River basins. Area and lengthl are in nf and m,
respectively. For each value ef the distribution has been normal-
ized along thd direction by maxP(a,l) [49].

We note that previous investigations of Hack's law
[12,13 consider the generalization in E¢). The authors of
Ref.[48] also examined the behavior of the moments of the
of the measurement technique or data set used. This will bdistribution P(l|a) for real networks. Here we will go fur-
explained in our discussion of deviations at small scales ither to characterize the full distributioR(a,l) as well as
Sec. VII. both P(I|a) andP(all). Along these lines, Rigoet al.[13]

We then consider the more subtle deviations associatestiggested that the functidf(x) is a “finite-size” scaling
with intermediate scales. At first inspection, the scaling apfunction analogous to those found in statistical mechanics,
pears to be robust. However, we find gradual drifts in “ex-i.e., F{(x)—0 asx—« andF,(x)—c asx—0. As we will
ponents” that prevent us from identifying a precise value ofdetail below, the restrictions df(x) can be made stronger,

h, and hence a corresponding universality class. and we will postulate a simple Gaussian form. More gener-

Both distributions also show breakdowns in scaling forally, F;(x) should be a unimodal distribution that is nonzero
large areas and stream lengths, and this is addressed in tf@ an interval[x;,X,], wherex,;>0. This is so because for
final part of Sec. VIIl. The reason for such deviations isany given fixed basin ares there is a minimum and maxi-
partly due to the decrease in number of samples and hensaum| beyond which no basin exists. This is also clear upon
self-averaging, as area and stream lengths are increasedspection of Figs. (B) and 1b).

However, we will show that the direction of the deviations We observe that neither drainage area nor main stream
depends on the overall basin shape. We will quantify thdength possess any obvious features so as to be deemed the
extent to which such deviations can occur, and the effect thandependent variable. Hence we can also view Hack’s law as
they have on measurements of Hack’s expomerfthrough-  its inversion(a)=I. Note that the constant of proportion-

out the paper, we will return to the Hack distributions for theality is not necessarilg*", and is dependent on the nature of
Kansas and Mississippi Rivers, as well as data obtained fdhe full Hack distribution. We thus have another scaling an-
the Amazon, Nile and Congo Rivers. satz as per Eq5):
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YNNI TR I gregation[51,53, Abelian sandpile§54-56, and limiting
\ @2, Ay :s /\S cases of force chain models in granular mddih
Since Scheidegger’'s model is based on random flow di-
rections, its Hack distributions has a simple interpretation.
P ® The boundaries of drainage basins in the model are random
walks. Understanding Hack’s law therefore amounts to un-
) %? & derstanding the first collision time of two random walks that
M s W XY share the same origin in one dimension. If we subtract the

FIG. 2. Scheidegger's model of random, directed networks.graph of one walk from the other, we see that the latter

Flow is down the page, and, at each site, stream flow is randomliproblem is itself equivalent to the first return problem of
chosen to be in one of the two downward diagonals. Stream pattf@ndom walkg57].

and basin boundaries are thus discrete random walks. Many facets of the first return problem are well under-
stood. In particular, the probability of, the number of steps
P(all)=1/1""F (a/I1h). 9) taken by a random walk until it first returns to the origin, is

asymptotically given by

The conditional probabilitie®(l|a) and P(all) are re-
lated to the joint probability distribution as P(n)~ Ln*m. (14)
2\
But this number of steps is also the length of the bdsin
where P(l) and P(a) are the probability densities of the Therefore, we have
main stream length and the area. These distributions are in

P(a,l)=P(a)P(l|a)=P(l)P(a|l), (10

turn observed to be power laws both in real world networks 2
and model§7,51,53, PO~ (19
P(a)~N,a " and P(D)~N]I"7. (1) where, because we are considering the difference of two

_ . walks, we usd =2n. Also, we have found the prefactol
where N, and N, are appropriate prefactors, and the tllde_2/ p-

indicates asymptotic agreement between both sides for large We thus have thay=3/2 for the Scheidegger model. The
scaling relations of Eq(12) then giveh=2/3 andr=4/3.

values of the argument. Furthermore, the exponerasd y
are related to Hack’s exponehtvia the scaling relations The value ofh is also readily obtained by noting that the

[12,39 typical area of a basin of lengthis acx|x|¥2=|%2=|h
7=2—h and y=1h. 12 since the boundaries are random walks.
Equations(5), (9), (10), (11), and (12) combine to give us V. AREA-LENGTH DISTRIBUTION FOR RANDOM,

two forms forP(a,l), DIRECTED NETWORKS

Something that is less well studied is the joint distribution

— 2 hy — 2/h 1h
P(a,l)=1/a’F(I/a") =G (a/lI™™), (13 of the area enclosed by a random walk and the number of
o . steps to its first return. In terms of the Scheidegger model,
Vl@%rfG(;(_l,f)(x )=G(x) ~and, equivalently, F(y)  gis precisely the Hack distribution. '
: We motivate some general results based on observations
of the Scheidegger model. Figure 3 shows the normalized
IV. RANDOM DIRECTED NETWORKS distributionsP(al %2 andP(la~%%) as derived from simu-

We will use results from the Scheidegger mofia8] to lations of the model. Given the scaling ansatzesH¢k a)

H _ -2/
motivate the forms of these distributions. In doing so, wea"d P(all) in Egs. (5) and (9), we see thaP(y=Ia )

_ -3y
will also connect with some problems in the theory of ran-=F1(y) andP(x=al ?)=Fa(x). ,
dom walks. Note that we have already used Hack’s law for the Sc-

Scheidegger’'s model of river networks is defined on aheidegger model With=_§ to obtain these distributions. The
triangular lattice, as indicated by Fig. 2. Flow in the figure is"€Sults are for ten realizations of the model on é_txm)o“
directed down the page. At each site, the stream flow diredattice, taking 10 samples from each of the ten instances.
tion is randomly chosen between the two diagonal direction§©r P(all), only sites wherd =100 were taken, and simi-
shown. Periodic boundary conditions are applied in all of our@rly, for P(l|a), only sites wherea=500 were included in
simulations. We take the triangular lattice to be a square onf€ histogram. o -
tilted by 45°, so each site locally drains an arear®f where We postulate that the distributiofP(y=la"2%) is a
the lattice unite is the distance between neighboring sites,Gaussian having the form
and each segment of stream has a lengtlror simplicity,
we will take « to b_e unity. We note that connections_exist P(l|la)= ;exp{—(la*m— 0)2127%.  (16)
between the Scheidegger model and models of particle ag- \/ﬂa%n
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3.5 . \/;| 312

; P(all)= —2exp{— (I/1a?3~ 9)2/252},

2 \2ma’y

Na| 3/2
— _ 213_ p\2 2
2372a277exp{ (I/a 0) /277 },

2.5
2
1.5

1 Nj 3
=|—3@2—3/§(3/|3/2) 2
1

05 xexp{—[(a/l®¥?)~2P— 9121272 (18

oLd In rearranging the expression Bfa|l), we have made clear
0 1 2 3 that its form matches that of E¢5).

FIG. 3. Cross-sectional scaling functions of the Hack distribu- closed form expression for the normalization fady
tion for the Scheidegger model, with the lattice constant equal t"@y now be determined by employing the fact that
unity. Both distributions are normalized, and all quantities are di-f::odap(a“): 1,
mensionless. The right distribution is fbfixed anda varying, and

is postulated to be a normal distribution. The left distributiondor 1= fx da P(a|l)

fixed andl varying and is a form of an inverse Gauss[&8]. The a=0 ’

data used were obtained for all sites with with 100 anda=500

respectively. Each distribution was obtained from ten realizations of = da Ny 32 —2

the Scheidegger model on a*010" lattice. = L:O 132 m(a“ )

We estimate the mean & to be 6=1.675[this is the same x exp{ —[(a/1%?) 72~ 0]%1277},

0 as found in Eq.(4)], and the standard deviation to he N \/5 .

=0.321. The fit is shown in Fig. 3 as a solid line. The above —_a j du u2exp(— (u— 0)%272, (19
equation agrees with the form of the scaling ansatz of Eq. 25725 Ju=0

(5), and we now have the assertion tHatis a Gaussian

defined by the two parametesand 7. where we have used the substitutaf®?=u~%? and hence

Note that thed and 7 are coefficients for the actual mean alsol ~¥?da=(—3/2)u”>“du. We therefore have
and standard deviation. In other words, for fix@dhe mean

. . .. . . 5/2 o -1
of P(l|a) is #a?? and its standard deviation ia?>. Having 27| (= 2 g o N2ym 2
observed their context, we will refer #and » as the Hack Na= J3 u:OdU uexp(—(u=0)7277%| . (20
mean coefficient and the Hack standard deviation coefficient.
From this starting point we can cred®a,|) andP(all), We may thus write down all of the scaling functioRs,

the latter providing a useful test. SincB(a)~N,a ” F.. F, andG for the Scheidegger model:

=N,a *3, as per Eq(11), we have
1
F/(2)= exp{—(z— 60)%/27?, (21)
P(a,l)= R - exp{ — (la™ %~ 6)%129%} e " }
)T A J2ma? 7 N
Fa(2)= 2W;‘—”exm—(z*m— 0277, (22
Na
=———exp{—(la~??-9)2129%. 17 N
V2ma’y F(z)= ——exp[—(z— 0)2/25%}, and (23
J2my

As expected, we observe the form of Efj7) to be in accor-

dance with that of Eq(13). Note that the scaling functioR G(2)= Na
(and equivalenthG) is defined by the three parametéksy, \/%77
andN,, the latter of which may be determined in terms of

the former, as we will show below. Also, since we expect all Recall that all of these forms rest on the assumption that
scaling functions to be only asymptotically correct, we can-F|(z) is a Gaussian. In order to check this assumption, we
not use Eq(17) to find an expression for the normalization return to Fig. 3. The empirical distributioR(z=a/l*?) is

N.. Equation(17) ceases to be valid for smallandl. How-  shown on the left, marked with circles. The solid line
ever, we will be able to use it once we haRéa|l), since we through these points i5,(z), as given above in Eq22).

are able to presumieis large, and therefore that the scaling There is an excellent match so we may be confident about
form is exact. Using Eq(15 and the fact thatP(all) our proposed form for,(z). We note that the function
=P(a,l)/P(l) from Eq.(10), we then have Fa(z) may be thought of as a fractional inverse Gaussian

z %2exp— (27 2P-0)229%. (24
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distribution, the inverse Gaussian being a well known distri- 2.5
bution arising in the study of first passage times for random
walks [57]. It is worth contemplating the peculiar form of
P(all) in terms of first return random walks. Here we have
been able to postulate the functional form of the distribution
of areas bound by random walks that first return afteteps.

If one could understand the origin of the Gaussian and find
analytic expressions fa# and 7, then the problem would be
fully solved.

VI. AREA-LENGTH DISTRIBUTION EXTENDED TO
REAL NETWORKS

We now seek to extend these results for Scheidegger’'s
model to real world networks. We will look for the same
functional forms for the Hack distributions that we have
found above. The conditional probability distributions per-
taining to Hack’s law take the forms

FIG. 4. Cross-sectional scaling functions of the Hack distribu-
tion for the Mississippi. Area and lengthl are in nf and m,
respectively. The estimate used for Hack’'s exponehtH9.55, the
determination of which is discussed in Sec. VII. The fits indicated
by the smooth curves to the data are made as per the Scheidegger

-h

a
V2my

P(lla)=1/a""F(la~")= exp{—(la="—6)2/27?}

model in Fig. 3, and according to Eq25) and(26). The values of
the Hack mean coefficient and standard deviation coefficient are
estimated to b&=0.80 and»=0.20.

(25)
Mississippi and 9<log;pa<11 and 5.5log;ol<6 for the
and Nile (areas are in k& and lengths in ki Furthermore, we
observe that the estimate bfhas an effect on the resulting
P(a|l)=1""F (al~th)=|-1h Na (al~Vmy-2 forms of F| andF,. Nevertheless, h_ere we are attempting to
\/EN| 7 capture the essence of the generalized form of Hack’s law in
Cheh 21m 2 real networks.
Xexp{—[(al™™") "= 011277}, (26) We then use the parametdisé, and 5, and Eq.(26) to
e construct our theoreticdf,, the smooth curves in Figs. 4
and the full Hack distribution is given by and 5. As for the Scheidegger model data in Fig. 3, we see in
P(a,l)=a?F(la~M both examples approximate agreement between the mea-
suredF, and the one predicted from the formef. Table |
N shows estimates df, 6, and » for the five major river basins
=172hG(al ") = —— studied.
\/ﬂna Given our reservations about the precision of these values
xexp{—(la~"— 9)2/27%, (27  of 6 and 5, we are nevertheless able to make qualitative

distinctions. Recalling tha ) = 6a", we see that, for fixed,
with N, determined by Eq(20). The three parameters—the higher values off indicate relatively longer stream lengths
Hack exponenh, the Hack mean coefficiertt and the Hack

standard deviation coefficient—are in principle landscape g—02 04 06 08 8
dependent. Furthermore, in we have a basic measure of F (@)1 ;
fluctuations in the morphology of basins. ogt Bl ¢

Figures 4 and 5 present Hack scaling functions for the % 6
Mississippi and Nile River basins. These figures are to be o 5
compared with the results for the Scheidegger model in Fig. 06 A
3.

For both rivers, Hack's exponeifit was determined first 0.4 . 3
from a stream ordering analysi@e discuss stream ordering > F (/e 5
later in Sec. X. Estimates of the parametefsand » were 0.2}, !
then made using the scaling functibin presuming a Gauss- o 1
ian form. 0 0

We observe that the Gaussian fit for the Mississippi is 0 1 2 3 4

more satisfactory than that for the Nile. These fits are not g, 5. cross-sectional scaling functions of the Hack distribu-

rigorously made b?C?USG even though we have chosen dafgn for the Nile. Dimensions are as per Fig. 4. The top and right
ranges where deviatiorihich we address in Sec. Vl&re  axes correspond t6, and the bottom and left t&,. The Hack
minimal, deviations from scaling do still skew the distribu- exponent used ie=0.50, and the values of the Hack mean coeffi-

tions. The specific ranges used to obtkinandF,, respec-
tively, are 8.5<log;0a<9.5 and 4.75log;ol <6, for the

cient and standard deviation coefficient are estimated toébe
=2.45 andz=0.50[59].
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TABLE |. Estimates of Hack distribution parameters for real
river networks. The scaling exponehtis Hack's exponent. The
parameterd and » are coefficients of the mean and standard de-
viations of the conditional probability density functié{l|a), and
are fully discussed in the tek60].

River network 0 n h

Mississippi 0.80 0.20 0.55
Amazon 1.90 0.35 0.52
Nile 2.45 0.50 0.50
Kansas 0.70 0.15 0.57
Congo 0.89 0.18 0.54

9 10 11 12

for a given area, and hence longer and thinner basins. The

results therefore suggest the Nile, and to a lesser degree the 7 7
Amazon, have basins with thinner profiles than the Congo
and, in particular, the Mississippi and Kansas. This seems
not unreasonable since the Nile is a strongly directed net-
work constrained within a relatively narrow overall shape.
This is somewhat in spite of the fact that the shape of an
overall river basin is not necessarily related to its internal
basin morphology, an observation we will address later in
Sec. X.

The importance ofl is tempered by the value bf Hack’s
exponent affects not only the absolute measure of stream
length for a given area but also how basin shapes change
with increasing area. So, in the case of the Kansas, the higher
value of h suggests that basin profiles thin with increasing 6 7 8 9 10 11 12 13
size. This is in keeping with overall directedness of the net- 1Ogloa
work. Note that our measurements of the fractal dimendion
of stream lengths for the Kansas place it to the 1.04
+0.02. Therefored/h=1.9<2, and elongation is still ex-

pectﬁd Whlen Wg factor in th? scalllinr? lofvith IL” N v hi shown in Figs. 8a) and Xb) by finding{l) for each value of basin
The Nile and Amazon also all have relatively high areaa. Area samples are taken every 0.02 orders of magnitude in

indicating greater fluctuations in basin shape. In comparisonggarithmic space. The upper dashed lines represent a slope of unity
the Mississippi, Kansas, and Congo appear to have lesg poth plots, and the lower lines the Hack exponents 0.57 and 0.55
variation. Note that the variability of the Kansas is in reason+or the Kansas and Mississippi, respectively. For the Kansas, there
able agreement with that of the whole Mississippi River netys a clear deviation for small area which rolls over into a region of
work for which it is a sub-basin. very slowly changing derivative before breaking up at large scales.
Finally, regardless of the actual form of the distribution Deviations from scaling are present for the lower resolution dataset
underlying Hack’s law, fluctuations are always present, an@f the Mississippi, but to a lesser extent.
an estimate of their extent is an important measurement. , . o ,
Thus, the Hack mean and standard deviation coefficiénts W€ 9ain from this will be extendable to deviations for higher
and 7 are suggested to be of sufficient worth so as to bdnoments.

included with any measurement of the Hack exporfent To provide an overview of what follows, examples of
mean Hack distributions for the Kansas and Mississippi Riv-

ers are shown in Figs.(& and Gb). Hack's law for the
VIl. DEVIATIONS FROM SCALING Kansas River exhib?ts a mark_ed deviation for small areas,
starting with a near linear relationship between stream length
In generalizing Hack’s law, we have sought out regions ofand area. A long crossover region of several orders of mag-
robust scaling, discarding ranges where deviations becomgitude in area then leads to an intermediate scaling regime,
prominent. We now turn our attention to the nature of thewherein we attempt to determine the Hack exporfenin
deviations themselves. doing so, we show that such regions of robust scaling are
We observe three major classes of deviations which w&urprisingly limited for river network quantities. Moreover,
will define by the scales at which they occur: small, interme-we observe that, where present, scaling is only approximate,
diate, and large. Throughout the following sections we pri-and that no exact exponents can be ascribed to the networks
marily consider deviations from the mean version of Hack’swe study here. It follows that the identification of universal-
law, (I)=6a", given in Eq.(4). Much of the understanding ity classes based on empirical evidence is a hazardous step.

FIG. 6. The mean version of Hack’s law for the Kangasand
the Mississippi(b). The units of lengths and areas are meters and
square meters. These are calculated from the full Hack distributions
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FIG. 7. The linearity of Hack’s law at small scales for the Kan-
sas River. Dimensions are as per Fig. 6. The linear regime enters a '
crossover region after almost 1.5 orders of magnitude in area. This :
is an expanded detail of the mean Hack’s law given in Fig),&nd ;
areas and lengths are in square meters and meters.
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FIG. 8. Origin of the linear branch in the Hack distribution. The

Finally, the approximate scaling of this intermediate re-subbasins labeled 1 and 2 depictedahhave areas, anda, and
gion then gives way to a breakdown in scaling at largefengthsl, andl,. These subbasins combine to form a basin of area
scales due to low sampling and correlations with basira;=a;+a, and main stream length=maxl|,, I,=1,. Since sub-
shape. The same deviations are present in the relativelyasin 1 is a linear subnetwotk valley the pair @;,l,) lie along
coarse-grained Mississippi data, but are less pronounced. the linear branch of the Hack distribution as shown(bin Points
along the main stream of subbasin 1 lie along the dashed line,
leading to the coordinatea(,l;). On combining with the second
basin, the jump in the resultant area creates a jump framl {) to

At small scales, we find that the mean Hack distribution(as.l2) in the main body of the Hack distribution.
follows a linear relationship, i.elxa®. This feature is most

evident for the Kansas River, as shown in Figa)fand in  stream does not meet any streams of comparable size, then
more detail in Fig. 7. The linear regime persists for nearlyjts area and length will roughly increase in a linear fashion.
1.5 orders of magnitude in basin area. To a lesser extent, thghen it does meet such a stream, there is a jump in area, and
same trend is apparent in the Mississippi dgiag. 6(b)]. the trace of a new linear segment is started in the distribu-

Returning to the full Hack distribution of Figs(@ and 45, "\ye will see this most clearly later on, when we study
1(b), we begin to see the origin of this linear regime. In bOthdeviations at large scales

instances, a linear branch separates from the body of the For very fine scale maps, on the order of meters, we might

main distribution. Sincd cannot grow faster thaa!, the . .
. expect to pick up the scale of the unchannelized, convex
linear branch marks an upper bound on the extent of the

distribution in @,l) coordinates. When averaged to give the'©910NS of a landscape, i.e., “hillslopeg61]. This length

mean Hack distribution, this linear data dominates the resur?cale, represents the typical separation of branches at a net-
for small scales. work’s finest scale. The computation of stream networks for

We find this branch evident in all Hack distributions. It is these hillslope regions would result in largely nonconvergent
not an artifact of resolution, and in fact becomes more pro{divergent or paraligifiow. Therefore, we would have linear
nounced with increased map precision. The origin of this basins” that would in theory contribute to the linear branch
linear branch is simple: data points along the branch correwe observe[10]. Potentially, the crossover in Hack's law
spond to positions in narrow subnetworks, i.e., long, thincould be used as a determinant of hillslope scale, a crucial
“valleys.” To understand the separation of this linear branchparameter in geomorpholod$1,62. However, when long,
from the main body of the distribution, consider Fig. 8, thin network structures are present in a network, this hill-
which depicts a stream draining such a valley with lengthslope scale is masked by their contribution.
and areal(; ,a;) that meets a stream from a basin with char- Whether because of the hillslope scale or linear network
acteristics [,,a,). The area and length of the basin formed structure, we see that at small scales, Hack’s law will show a
at this junction is thug(as,l3) = (a;+a,,max{4,l,)] [in the  crossover in scaling fronm=1 to a lower exponent. The
figure, max(y,l,)=I,]. The greater jump in area moves the crossover’s position depends on the extent of linear basins in
point across into the main body of the Hack distribution,the network. For example, in the Kansas River basin, the
creating a separation of the linear branch. crossover occurs whenl,@)=(4x10°m, 10 m?. Since

In fact, the full Hack distribution is itself comprised of increased map resolution can only increase measures of
many such linear segments. As in the above example, until Ength, the crossover’s position must occur at least at such a

VIIl. DEVIATIONS AT SMALL SCALES
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length scale which may be many orders of magnitude greater
than the scale of the map.

However, the measurement of the area of such linear ba-
sins will potentially grow with coarse-graining. Note that for
the Mississippi mean Hack distribution, the crossover begins
arounda= 10°°m? whereas for the Kansas the crossover ini-
tiates nean=10>°m?, but the ends of the crossovers in both
cases appear to agree, occurring at arcand 0’ m?. Con-
tinued coarse graining will of course eventually destroy all
statistics, and introduce spurious deviations. Nevertheless,
we see here that the deviation which is only suggested in the
Mississippi data is well confirmed in the finer-grained Kan-
sas data.

logloa
IX. DEVIATIONS AT INTERMEDIATE SCALES

As the basin area increases, we move out of the linear
regime, observing a crossover to what would be considered 0.6
the normal scaling region of Hack’s law. We detail our at-
tempts to measure the Hack exponents for the Kansas and
Mississippi examples. Rather than relying solely on a single 0.55
regression on a mean Hack distribution, we employ a more
precise technique that examines the distribution’s derivative.
To determineh, we consider Hack’s lawEq. (4)] explic- 0.5
itly in logarithmic coordinates,

h(a)

log,o(l(a))=log,o 0+ hlog;pa. (29 0.45 ”J
The derivative of this equation with respect to {gg then 6 7 8 9 10 11 12
gives Hack’s exponent as a function of area: log,a
FIG. 9. Variation in Hack’s exponent for the Kangas and the
h(a)= ———logi(I(a)). (29 Mississippi(b). The areaa is in m’. The plots are derivatives of the
dlogea mean Hack distributions given in Figs(ab and @b). Both deriva-

tives have been smoothed by taking running averages over 0.64

We may think ofh(a) as a “local Hack exponent.” We orders of magnitude im. For the Kansas, the dashed line is set at
calculate the discrete derivative as above for the Kansas anf=0.57, Hack's exponent estimated via simple regression analysis
Mississippi. We smooth the data by taking running averagesor points with 16<a<10*“m? The local exponent is seen to
with varying window sizes oh samples, the results for  gradually rise through the=0.57 level, indicating that scaling is
=32 being shown in Figs.(8) and 4b), where the spacing not robust. For the Mississippi itb), the dashed line is a Hack
of loga is 0.02 orders of magnitude. Thus the running aver-exponent of 0.55 calculated from regression on data in the interval
ages for the figures are taken over area ranges correspondit@<a<10'*°m’. The local Hack exponent is seen to gradually
to 0.64 orders of magnitude. rise and fall about this value.

Now, if the scaling law in question is truly a scaling law,
the above type of derivative will fluctuate around a constanbefore reaching the end of the intermediate regime where the
value of exponent over several orders of magnitude. Wittputative scaling breaks down altogether.
increasingn, these fluctuations will necessarily decrease, and For the Kansas River data shown in Figa)9 the dashed
we should see the derivative holding steady around the exine representh=0.57, our estimate of Hack's exponent
ponent’s value. from simple regression on the mean Hack distribution of Fig.

At first glance, we note a considerable variationhifa) 6(a). For the regression calculation, the intermediate region
for both data sets, with the Kansas standing out. Fluctuationwas identified from the figure to be 1@a<10"m? We
are reduced with increasing, but we observe continuous see from the smoothed derivative in Figapthat the value
variation of the local Hack exponent with area. For the ex-h=0.57 is not precise. After the crossover from the linear
ample of the Kansas, the linear regime and ensuing crossoveggion has been completed, we observe a slow rise flom
appear as a steep rise followed by a drop and then another0.54 to h=0.63. Thus the local Hack exponehia)
rise during all of which the local Hack exponent moves wellgradually climbs aboveh=0.57 rather than fluctuating
below 1/2. around it.

It is after these small scale fluctuations that we would A similar slow change irh(a) is observed for the Mis-
expect to find Hack’'s exponent. For the Kansas River datasissippi data. In Fig. @) we see a gradual rise and then fall
we see the derivative gradually climbs for all valuesnof in h(a). The dashed line here represehts0.55, the value
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of which was determined from Fig(l) using regression on 45
the range 19<a<10'*°m? The range oh(a) is roughly 4 /
[0.52, 0.58. Again, whileh=0.55 approximates the deriva- 35 /
tive throughout this intermediate range of Hack’s law, we ’
cannot claim it to be a precise value. 3 /
We observe the same drifts i(a) in other datasets and 2.5 (’
for varying window sizen of the running average. The re- -, ] 1.5 o b /, !
sults suggest that we cannot assign specific Hack exponents ' 1 :}/'I/
to these river networks, and are therefore unable to even 13 Y/
consider what might be an appropriate universality class. The 1l 0.5
value ofh obtained by regression analysis is clearly sensitive 05 0
to the the range od used. Furthermore, these results indicate 0 0 0.15 0.3
that we should maintain healthy reservations about the exact 0 05 1 15 2 25 3
values of other reported exponents. a
FIG. 10. Hack distribution for the Mississippi plotted in linear
X. DEVIATIONS AT LARGE SCALES space. Area is given in units of 18#m? and lengthl in 10° m.

L , The discreteness of the basin structure is clearly indicated by the
We turn now to deviations from Hack's law at large jso|ated, linear fragments. The inset is a blowup of the box on the
scales. As we move beyond the intermediate region of apmain graph.

proximate scaling, fluctuations in(a) begin to grow rap-
idly. This is clear on inspection of the derivatives of Hack’s i i
law in Figs. 9a) and gb). There are two main factors con- WherexX=a, I, or 19, Note that all ratios are defined to be
spiring to drive these fluctuations up. The first is that thedr€ater than unity since areas and lengths increase but num-
number of samples of subbasins with asedecays algebra- ber decreases. Also, there are only two independent ratios
ically in a. This is just the observation thR(a)=a " as per SINC@Ra=R, and =R« [39]. Horton's laws mean that

Eq. (11). The second factor is that fluctuationslianda are stream-order quan'tmes change exponentially with order. For
on the order of the parameters themselves. This follows fron$X@mPple, Eq(30) gives thatl > (R))”.

our generalization of Hack’s law, which shows, for example,
that the momentg19) of P(l|a) grow like a?". Thus, the

standard deviation grows like the meanmz(l)=({I?%)
—<|>2)1/2xahx<|>, Returning to Hack’s law, we examine its large scale fluc-

tuations with the help of stream ordering. We are interested
in the size of these fluctuations, and also how they might
correlate with the overall shape of a basin. First, we note that
So as to understand these large scale deviations fromie structure of the network at large scales is explicitly dis-
Hack’s law, we need to examine network structure in depthcrete. Figure 10 demonstrates this by plotting the distribution
One way to do this is by using Horton-Strahler stream orderof (a,l) without the usual logarithmic transformation.
ing [38,63 and a generalization of the well-known Horton’s Hack’s law is seen to be composed of linear fragments. As
laws [36,38,39,64,6b This will naturally allow us to deal explained above in Fig. 8, areas and length increase in pro-
with the discrete nature of a network that is most apparent gsortion to each other along streams where no major tributar-
large scales. ies enter. As soon as a stream does combine with a compa-
Stream ordering discretizes a network into a set of strearmable one, a jump in drainage area occurs. Thus, in Fig. 10
segmentgor, equivalently, a set of nested bagiby an it- we see isolated linear segments which, upon ending at a
erative pruning. Source strearti®., those without tributar- point (a,,l;), begin again at &,+a,,l;), i.e., the main
ies) are designated as stream segments of aedell. These stream length stays the same but the area is shifted.
are removed from the network, and the new source streams We consider a stream ordering version of Hack’s law
are then Iabeleq as qrder:Z stream segments. The processgiven by the pointsd,,,I,). The scaling of these data points
is repeated until a single stream segment of owder() is s equivalent to scaling in the usual Hack’s law. Also, given
left, and the ba_sm itself is defined to be of order Horton's laws, it follows thath=InR/InR, (using R,
Natural metrics for an ordered river network arg, the =R ). Along the lines of the derivative we introduced to
number of orderw stream segmentfor basing a,, the  stydy intermediate scale fluctuations in E89), we have
average area of order basins;l ,, the average main stream here an order-based difference:

length of orderw basins; and®, the average length of

w !

B. Discrete version of Hack’s law

A. Stream ordering and Horton’s laws

order » stream segments. Horton's laws state that these _logly/ly-a 31
guantities change regularly from order to order, i.e., ©v~1"0ga,/a, ;"
n, Ya)Jrl . - .
=R, and —— =Ry, (300  We can further extend this definition to differences between
No+1 Xo nonadjacent orders:
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FIG. 11. Differences of the stream order-based version of FIG. 12. A comparison of the stream order Hack derivatives
Hack’s law for 104 ordef)=7 basins of the Mississipgcompare  hg,o-1 andhg_; o, for each of the 104 orde@ =7 basins of the
the continuous versions given in Fig).9The units of area are Mississippi. Both axes are dimensionless. The linear correlation co-
square meters, and the exponkpt,_; is dimensionless. The plots  efficient isr=—0.06, and the Spearman correlation coefficient is
are overlaid to give a sense of the increase in fluctuations of thés= —0.08. The latter has probability;=0.43, indicating there are
local Hack exponenh,, ,_; with increasing ordemw. The clusters o significant correlations.
correspond tav=1,2, . ..,7, noving from left to right.

C. Effect of basin shape on Hack’s law

In what follows, we extract two statistical measures of

o) = T (32 correlations between deviations in Hack’s law and overall
loga,/a, basin shape. These arethe standard linear correlation co-
efficient andrg, the Spearman rank-order correlation coeffi-

) _ cient[66—68. For N observations of data pairsi(,v;),r is
This type of difference, where’ <w, may be best thought defined to be

of as a measure of trends rather than an approximate discrete

logl,, /1,

N

derivative.
Using these discrete differences, we examine two features 241 (U= p) (Vi = py) Clu.w)
of the order-based versions of Hack’s law. First we consider r=-—- = . (33
correlations between large scale deviations within an indi- E (%= ) =N (Y= )2 TuTv
vidual basin and, second, correlations between overall devia- e TR =

tions and basin shape. For the latter, we will also consider

deviations as they move back into the intermediate scalevhereC(u,v) is the covariance of the;’s andv;’s, u, and

This will help to explain the gradual deviations from scaling u,, their means, and, ando, their standard deviations. The

we have observed at intermediate scales. value of Spearman’s, is determined in the same way, but
Since deviations at large scales are reflective of only dor theu; andv; replaced by their ranks. From, we deter-

few basins, we require an ensemble of basins to providenine a two-sided significanges via Student’st distribution

sufficient statistics. As an example of such an ensemble, wib6].

take the set of ordef)=7 basins of the Mississippi basin. ~ We definex, a measure of basin aspect ratio, as

For the dataset used here, where the overall basin itself is of

orderQ)=11, we have 104 ordel =7 subbasins. The Hor- k=L%a. (34)

ton averages for these basins as=16600kn%, I ) .
~350km. and o~ 210 km Long and narrow basins correspondx«® 1, while for short
y 7 . . .

For each basin, we first calculate the Horton averagegnd wide basins we hav;e_<1 " .
= ' ] We now examine the discrete derivatives of Hack’s law in
(a,.l,). We then computéh,, -1, the Hack difference more detail. In order to discern correlations between large
given in Eq.(31). To give a rough picture of what is ob- scale fluctuations within individual basins, we specifically
served, Figure 11 shows a scatter plohgf,,_; for all order ook at the last two differences in a basihg o, and
=7 basins. Note the increase in fluctuations with increashq,_,,_,. For each of the Mississippi's 104 ord€r=7
ing . This increase is qualitatively consistent with the basins, these values are plotted against each other in Fig. 12.
smooth versions found in the single basin examples of FigsBoth our correlation measurements strongly suggest these
9(a) and 9b). In part, less self-averaging for largerresults  differences are uncorrelated. The linear correlation coeffi-
in a greater spread in this discrete derivative. However, as weient isr=—0.06=0 and, similarly, we have ;=—0.08
will show, these fluctuations are also correlated with fluctua=0. The significancgs=0.43 implies that the null hypoth-
tions in basin shape. esis of uncorrelated data cannot be rejected.
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o] deviations will still occur. However, it is reasonable to sug-
065]? © ° © o gest that particularly strong deviations are more likely the
cloo result of geologic structure rather than simple fluctuations.
00 0% o
osf © o 08Py ©
’ o @° 9
o 5 @ @o
ossf 0o oS o XI. CONCLUSION
ST IR
= 05 o o o Hack’s law is a central relation in the study of river net-
) 2° o works and branching networks in general. We have shown
0.45 5o 8 o Hack’'s law to have a more complicated structure than is
6O o typically given attention. The starting generalization is to
0.4 o © consider fluctuations around scaling. Using the directed, ran-
A 09 o - dom network model, a form for the Hack distribution under-
0 02 04 06 08 1 lying Hack’s law may be postulated and reasonable agree-

ment with real networks is observed. Questions of the
validity of the distribution aside, the Hack mean coefficiént

FIG. 13. Correlation between trends in Hack's law and the as_gmddthe Hack standarcti) deV|at|onhcoeff|0|e_{jﬂhc;uIdhbe stap— f
pect ratio of a basin as estimated by the dimensionless quantity ar mgasurements ecause they provi E," urther points o
=L?/a. The data is for the ordeR =7 basins of the Mississippi, comparison between theory and other basins.

and the specific trend is;5. The correlation measurements give With the idealized Hack distribution proposed, we may
r=0.50,rs=0.53, andp,<10~&. begin to understand deviations from its form. As with any

scaling law pertaining to a physical system, cutoffs in scaling

Thus, for Hack’s law in an individual basin, large scale must exist and need to be understood. For small scales, we
fluctuations are seen to be uncorrelated. However, correldiave identified the presence of linear subbasins as the source
tions between these fluctuations and other factors may stiff an initial linear relation between area and stream length.
exist. This leads us to our second test which concerns thAt large scales, statistical fluctuations and geologic bound-
relationship between trends in Hack’s law and overall basirfries give rise to basins whose overall shape produces devia-
shape. tions in Hack’s laws. Both deviations extend over a consid-

Figure 13 shows a comparison of the aspect ratisnd ~ €rable range of areas, as do the crossovers which link them to
h, 5 for the orderQ =7 basins of the Mississippi. The mea- the region of intermediate scales, particularly the crossover
sured correlation coefficients are=0.50 andr;=0.53, giv-  from small scales. _
ing a significance ofp;<1078. Furthermore, we find the ~ Finally, by focusing in detail on a few large scale ex-
differencesh; ¢ (r=0.34,1,=0.39 andps<10~*) and hgs amples networks, we have found evidence that river net-
(r=0.35,r=0.34 andp,< 103) are individually correlated WOrks do not belong to well defined universality classes. The
with basin shape. We observe this correlation between basfi#lationship between basin area and stream length may be
shape and trends in Hack's law at large scales, namel#PProximately, and in some cases very well, described by
ho a1, No-10-2, andhg o_,, repeatedly in our other Scaling laws, but not exactly so. The gradual drift in expo-
data sets. In some cases, correlations extend further ®£Nts we observe suggests a more complicated picture, one
ho-20-3. where subtle correlations between basin shape and geologic

Since the area rati®®, is typically in the range 4-5, features are intrinsic to river network structure.
Hack’s law is affected by boundary conditions set by the
geometry of the overall basin down to subbasins 1-2 orders
of magnitude smaller in area than the overall basin. These
deviations are present regardless of the absolute size of the This work was supported in part by NSF Grant No. EAR-
overall basin. Furthermore, the origin of the basin boundarie®706220, and Department of Energy Grant No. DE FG02-
being geologic or chance or both is irrelevant—large scal®9ER 15004.

log,(k = L*a)
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