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Geometry of river networks. I. Scaling, fluctuations, and deviations
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This paper is the first in a series of three papers investigating the detailed geometry of river networks.
Branching networks are a universal structure employed in the distribution and collection of material. Large-
scale river networks mark an important class of two-dimensional branching networks, being not only of
intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling
laws are uniformly observed. Reported values of scaling exponents vary, suggesting that no unique set of
scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a
fuller description of branching network structure, here we report a theoretical and empirical study of fluctua-
tions about and deviations from scaling. We examine data for continent-scale river networks such as the
Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We
center our investigations on the scaling of the length of a subbasin’s dominant stream with its area, a charac-
terization of basin shape known as Hack’s law. We generalize this relationship to a joint probability density,
and provide observations and explanations of deviations from scaling. We show that fluctuations about scaling
are substantial, and grow with system size. We find strong deviations from scaling at small scales which can
be explained by the existence of a linear network structure. At intermediate scales, we find slow drifts in
exponent values, indicating that scaling is only approximately obeyed and that universality remains indeter-
minate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations
with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations, and
will not be improved by increases in network resolution.
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I. INTRODUCTION

Networks are intrinsic to a vast number of complex form
observed in the natural and manmade world. Networks
peatedly arise in the distribution and sharing of informatio
stresses, and materials. Complex networks give rise to in
esting mathematical and physical properties as observe
the Internet@1#, the ‘‘small-world’’ phenomenon@2#, the car-
diovascular system@3#, force chains in granular media@4#,
and the wiring of the brain@5#.

Branching, hierarchical geometries make up an import
subclass of all networks. Our present investigations conc
the paradigmatic example of river networks. The study
river networks, though more general in application, is
integral part of geomorphology, the theory of earth surfa
processes and form. Furthermore, river networks are hel
be natural exemplars of allometry, i.e., how the dimensi
of different parts of a structure scale or grow with respec
each other@6–10#. The shapes of drainage basins, for e
ample, are reported to elongate with increasing basin
@11–13#.

At present, there is no generally accepted theory expl
ing the origin of this allometric scaling. The fundamen
problem is that an equation of motion for erosion, formula
from first principles, is lacking. The situation is somewh
analogous to issues surrounding a description of the dyn
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ics of granular media@14,15#, noting that erosion is arguabl
far more complex. Nevertheless, a number of erosion eq
tions have been proposed, ranging from deterministic@16–
19# to stochastic theories@20–25#. Each of these models at
tempts to describe how eroding surfaces evolve dynamica
In addition, various heuristic models of both surface and n
work evolution also exist. Examples include simple lattic
based models of erosion@17,26–28#, an analogy to invasion
percolation@29#, the use of optimality principles and sel
organized criticality@7,30,31#, and even uncorrelated rando
networks @10,32,33#. Since river networks are an essent
feature of eroding landscapes, any appropriate theory of
sion must yield surfaces with network structures compara
to that of the real world. However, no model of erodin
landscapes or even simply of network evolution unambi
ously reproduces the wide range of scaling behavior repo
for real river networks.

A considerable problem facing these theories and mod
is that the values of scaling exponents for river network sc
ing laws are not precisely known. One of the issues we
dress in this work is universality@10,12#. Do the scaling
exponents of all river networks belong to a unique univers
ity class, or are there a set of classes obtained for var
geomorphological conditions? For example, theoretical m
els suggest a variety of exponent values for networks that
directed versus nondirected, created on landscapes with
erogeneous versus homogeneous erosivity, and so
@10,34,35#. Clearly, refined measurements of scaling exp
nents are imperative if we are to be sure of any netw
belonging to a particular universality class. Moreover, giv

ic
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PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 016115
that there is no accepted theory derivable from simple ph
ics, more detailed phenomenological studies are require

Motivated by this situation, here we perform a detail
investigation of the scaling properties of river networks. W
analytically characterize fluctuations about scaling, show
that they grow with system size. We also report signific
and ubiquitous deviations from scaling in real river n
works. This implies surprisingly strong restrictions on t
parameter regimes where scaling holds, and cautions ag
measurements of exponents that ignore such limitations
the case of the Mississippi basin, for example, we find t
although our study region spans four orders of magnitud
length, scaling may be deemed valid over no more than
orders of magnitude. Furthermore, we repeatedly find
scaling within these bounds to be only approximate, and
no exact, single exponent can be deduced. We show
scaling breaks down at small scales due to the presenc
linear basins and at large scales due to the inherent disc
ness of network structure and correlations with overall ba
shape. Significantly, this latter correlation imprints up
river network structure the effects and history of geology

This paper is the first of a series of three on river netw
geometry. Having addressed scaling laws in the pres
work, we proceed, in the second and third papers@36,37#, to
consider river network structure at a more detailed level
Ref. @36# we examine the statistics of the ‘‘building blocks
of river networks, i.e., segments of streams and subnetwo
In particular, we analytically connect distributions of vario
kinds of stream length. Part of this material is employed
the present paper, and is a direct generalization of Horto
laws @38,39#. In the third paper@37#, we proceed from the
findings of Ref. @36# to characterize how these buildin
blocks fit together. Central to this last work is a study of t
frequency and spatial distributions of tributary branch
along the length of a stream, and is itself a generalization
the descriptive picture of Tokunaga@40–42#.

II. BASIN ALLOMETRY

A. Hack’s law

In addressing these broader issues of scaling in branc
networks, we set as our goal to understand the river netw
scaling relationship between basin areaa and the lengthl of
a basin’s main stream:

l}ah. ~1!

Known as Hack’s law@11#, this relation is central to the
study of scaling in river networks@12,39#. Hack’s exponenth
is empirically found to lie in the range from 0.5 to 0.7@11–
13,43–48#. Here we postulate a generalized form of Hack
law that shows good agreement with data from real wo
networks.

We focus on Hack’s law because of its intrinsic intere
and also because many interrelationships between a l
number of scaling laws are known, and only a small sub
are understood to be independent@12,39#. Thus our results
for Hack’s law will be in principle extendable to other sca
01611
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ing laws. With this in mind, we will also discuss probabilit
densities of stream length and drainage area.

Hack’s law is stated rather loosely in Eq.~1!, and implic-
itly involves some type of averaging which needs to be ma
explicit. It is most usually considered to be the relationsh
betweenmeanmain stream length and drainage area, i.e.

^ l &}ah. ~2!

Here^•& denotes an ensemble average, and^ l &5^ l (a)& is the
mean main stream length of all basins of areaa. Typically,
one performs linear regression analysis on log^l& against
loga to obtain the exponenth.

B. Fluctuations and deviations

In seeking to understand Hack’s law, we are naturally
to wonder about the underlying distribution that gives rise
this mean relationship. By considering fluctuations, we be
to see Hack’s law as an expression of basin morpholo
What shapes of basins characterized by (a,l ) are possible,
and with what probability do they occur?

An important point here is that Hack’s law does not e
actly specify basin shapes. An additional connection to
Euclidean dimensions of a basin is required. We may th
of a basin’s longitudinal lengthL i and its widthL' . The
main stream lengthl is reported to scale withL i as

l}L i
d , ~3!

where typically 1.0&d&1.1 @12,50#. Hence we havea} l 1/h

}L i
d/h . All other relevant scaling law exponents can be

lated to the pair of exponents (d,h) which therefore charac
terize the universality class of a river network@10,39#. If
d/h52, we have that basins are self-similar, whereas
d/h,2, we have that basins are elongating. So, while Hac
law gives a sense of basin allometry, the scaling propertie
main stream lengths also need to be known in order to pr
erly quantify the scaling of basin shape.

In addition to fluctuations, complementary insights a
provided by the observation and understanding of deviati
from scaling. We are thus interested in discerning the re
larities and quirks of the joint probability distributio
P(a,l ). We will refer to P(a,l ) as theHack distribution.

Hack distributions for the Kansas River basin and t
Mississippi River basin are given in Figs. 1~a! and 1~b!.
Fluctuations about and deviations from scaling are imme
ately evident for the Kansas River and to a lesser extent
the Mississippi River. The first section of the paper will pr
pose and derive analytic forms for the Hack distribution u
der the assumption of uniform scaling with no deviation
Here, as well as in the following two papers of this ser
@36,37#, we will motivate our results with a random networ
model originally due to Scheidegger@33#.

We then expand our discussion to consider deviati
from exact scaling. In the case of the Kansas River, a strik
example of deviations from scaling is the linear branch se
rated from the body of the main distribution shown in Fi
1~a!. This feature is less prominent in the lower resoluti
Mississippi data. Note that this linear branch is not an artif
5-2
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GEOMETRY OF RIVER NETWORKS. I. SCALING, . . . PHYSICAL REVIEW E63 016115
of the measurement technique or data set used. This wi
explained in our discussion of deviations at small scales
Sec. VII.

We then consider the more subtle deviations associ
with intermediate scales. At first inspection, the scaling
pears to be robust. However, we find gradual drifts in ‘‘e
ponents’’ that prevent us from identifying a precise value
h, and hence a corresponding universality class.

Both distributions also show breakdowns in scaling
large areas and stream lengths, and this is addressed i
final part of Sec. VIII. The reason for such deviations
partly due to the decrease in number of samples and h
self-averaging, as area and stream lengths are increa
However, we will show that the direction of the deviatio
depends on the overall basin shape. We will quantify
extent to which such deviations can occur, and the effect
they have on measurements of Hack’s exponenth. Through-
out the paper, we will return to the Hack distributions for t
Kansas and Mississippi Rivers, as well as data obtained
the Amazon, Nile and Congo Rivers.

FIG. 1. The Full Hack distribution for the Kansas,~a! and Mis-
sissippi ~b! River basins. Areaa and lengthl are in m2 and m,
respectively. For each value ofa, the distribution has been norma
ized along thel direction by maxl P(a,l) @49#.
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III. FLUCTUATIONS: AN ANALYTIC FORM FOR THE
HACK DISTRIBUTION

To provide some insight into the nature of the underlyi
Hack distribution, we present a line of reasoning that w
build up from Hack’s law to a scaling form ofP(a,l ). First
let us assume for the present discussion of fluctuations
an exact form of Hack’s law holds,

^ l &5uah, ~4!

where we have introduced the coefficientu which we discuss
fully later on. Now, since Hack’s law is a power law, it i
reasonable to postulate a generalization of the form

P~ l ua!5
1

ah Fl S l

ahD . ~5!

The prefactor 1/ah provides the correct normalization, andFl
is the ‘‘scaling function’’ we hope to understand. The abo
will be our notation for all conditional probabilities. Implici
in Eq. ~5! is the assumption that all moments and the dis
bution itself also scale. For example, theqth moment of
P( l ua) is

^ l q~a!&}aqh, ~6!

which implies

^ l q~a!&5k2qh^ l q~ak!&, ~7!

where kPR. Also, for the distributionP( l ua), it follows
from Eq. ~5! that

khP~ lkhuak!5
kh

ahkh Fl S lkh

ahkhD5P~ l ua!. ~8!

We note that previous investigations of Hack’s la
@12,13# consider the generalization in Eq.~5!. The authors of
Ref. @48# also examined the behavior of the moments of
distribution P( l ua) for real networks. Here we will go fur-
ther to characterize the full distributionP(a,l ) as well as
both P( l ua) andP(au l ). Along these lines, Rigonet al. @13#
suggested that the functionFl(x) is a ‘‘finite-size’’ scaling
function analogous to those found in statistical mechan
i.e., Fl(x)→0 asx→` andFl(x)→c as x→0. As we will
detail below, the restrictions onFl(x) can be made stronger
and we will postulate a simple Gaussian form. More gen
ally, Fl(x) should be a unimodal distribution that is nonze
for an interval@x1 ,x2#, wherex1.0. This is so because fo
any given fixed basin areaa, there is a minimum and maxi
mum l beyond which no basin exists. This is also clear up
inspection of Figs. 1~a! and 1~b!.

We observe that neither drainage area nor main stre
length possess any obvious features so as to be deeme
independent variable. Hence we can also view Hack’s law
its inversion^a&} l 1/h. Note that the constant of proportion
ality is not necessarilyu1/h, and is dependent on the nature
the full Hack distribution. We thus have another scaling a
satz as per Eq.~5!:
5-3
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PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 016115
P~au l !51/l 1/hFa~a/ l 1/h!. ~9!

The conditional probabilitiesP( l ua) and P(au l ) are re-
lated to the joint probability distribution as

P~a,l !5P~a!P~ l ua!5P~ l !P~au l !, ~10!

where P( l ) and P(a) are the probability densities of th
main stream length and the area. These distributions ar
turn observed to be power laws both in real world netwo
and models@7,51,52#,

P~a!;Naa2t and P~ l !;Nll
2g. ~11!

where Na and Nl are appropriate prefactors, and the til
indicates asymptotic agreement between both sides for l
values of the argument. Furthermore, the exponentst andg
are related to Hack’s exponenth via the scaling relations
@12,39#

t522h and g51/h. ~12!

Equations~5!, ~9!, ~10!, ~11!, and ~12! combine to give us
two forms forP(a,l ),

P~a,l !51/a2F~ l /ah!51/l 2/hG~a/ l 1/h!, ~13!

where x22F(x2h)5G(x) and, equivalently, F(y)
5y22G(y21/h).

IV. RANDOM DIRECTED NETWORKS

We will use results from the Scheidegger model@33# to
motivate the forms of these distributions. In doing so,
will also connect with some problems in the theory of ra
dom walks.

Scheidegger’s model of river networks is defined on
triangular lattice, as indicated by Fig. 2. Flow in the figure
directed down the page. At each site, the stream flow di
tion is randomly chosen between the two diagonal directi
shown. Periodic boundary conditions are applied in all of o
simulations. We take the triangular lattice to be a square
tilted by 45°, so each site locally drains an area ofa2, where
the lattice unita is the distance between neighboring site
and each segment of stream has a lengtha. For simplicity,
we will take a to be unity. We note that connections ex
between the Scheidegger model and models of particle

FIG. 2. Scheidegger’s model of random, directed networ
Flow is down the page, and, at each site, stream flow is rando
chosen to be in one of the two downward diagonals. Stream p
and basin boundaries are thus discrete random walks.
01611
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gregation@51,53#, Abelian sandpiles@54–56#, and limiting
cases of force chain models in granular media@4#.

Since Scheidegger’s model is based on random flow
rections, its Hack distributions has a simple interpretati
The boundaries of drainage basins in the model are ran
walks. Understanding Hack’s law therefore amounts to
derstanding the first collision time of two random walks th
share the same origin in one dimension. If we subtract
graph of one walk from the other, we see that the lat
problem is itself equivalent to the first return problem
random walks@57#.

Many facets of the first return problem are well unde
stood. In particular, the probability ofn, the number of steps
taken by a random walk until it first returns to the origin,
asymptotically given by

P~n!;
1

2Ap
n23/2. ~14!

But this number of steps is also the length of the basinl.
Therefore, we have

P~ l !;
2

Ap
l 23/2, ~15!

where, because we are considering the difference of
walks, we usel 52n. Also, we have found the prefactorNl

52/Ap.
We thus have thatg53/2 for the Scheidegger model. Th

scaling relations of Eq.~12! then giveh52/3 andt54/3.
The value ofh is also readily obtained by noting that th
typical area of a basin of lengthl is a} l 3 l 1/25 l 3/25 l 1/h,
since the boundaries are random walks.

V. AREA-LENGTH DISTRIBUTION FOR RANDOM,
DIRECTED NETWORKS

Something that is less well studied is the joint distributi
of the area enclosed by a random walk and the numbe
steps to its first return. In terms of the Scheidegger mo
this is precisely the Hack distribution.

We motivate some general results based on observat
of the Scheidegger model. Figure 3 shows the normali
distributionsP(al23/2) andP( la22/3) as derived from simu-
lations of the model. Given the scaling ansatzes forP( l ua)
and P(au l ) in Eqs. ~5! and ~9!, we see thatP(y5 la22/3)
5Fl(y) andP(x5al23/2)5Fa(x).

Note that we have already used Hack’s law for the S
heidegger model withh5 2

3 to obtain these distributions. Th
results are for ten realizations of the model on a 1043104

lattice, taking 107 samples from each of the ten instance
For P(au l ), only sites wherel>100 were taken, and simi
larly, for P( l ua), only sites wherea>500 were included in
the histogram.

We postulate that the distributionP(y5 la22/3) is a
Gaussian having the form

P~ l ua!5
1

A2pa2/3h
exp$2~ la22/32u!2/2h2%. ~16!

.
ly
hs
5-4
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GEOMETRY OF RIVER NETWORKS. I. SCALING, . . . PHYSICAL REVIEW E63 016115
We estimate the mean ofFl to beu.1.675@this is the same
u as found in Eq.~4!#, and the standard deviation to beh
.0.321. The fit is shown in Fig. 3 as a solid line. The abo
equation agrees with the form of the scaling ansatz of
~5!, and we now have the assertion thatFl is a Gaussian
defined by the two parametersu andh.

Note that theu andh are coefficients for the actual mea
and standard deviation. In other words, for fixeda, the mean
of P( l ua) is ua2/3 and its standard deviation isha2/3. Having
observed their context, we will refer tou andh as the Hack
mean coefficient and the Hack standard deviation coeffici

From this starting point we can createP(a,l ) andP(au l ),
the latter providing a useful test. SinceP(a);Naa2t

5Naa24/3, as per Eq.~11!, we have

P~a,l !5
Na

a4/3

1

A2pa2/3h
exp$2~ la22/32u!2/2h2%,

5
Na

A2pa2h
exp$2~ la22/32u!2/2h2%. ~17!

As expected, we observe the form of Eq.~17! to be in accor-
dance with that of Eq.~13!. Note that the scaling functionF
~and equivalentlyG! is defined by the three parametersu, h,
andNa , the latter of which may be determined in terms
the former, as we will show below. Also, since we expect
scaling functions to be only asymptotically correct, we ca
not use Eq.~17! to find an expression for the normalizatio
Na . Equation~17! ceases to be valid for smalla andl. How-
ever, we will be able to use it once we haveP(au l ), since we
are able to presumel is large, and therefore that the scalin
form is exact. Using Eq.~15! and the fact thatP(au l )
5P(a,l )/P( l ) from Eq. ~10!, we then have

FIG. 3. Cross-sectional scaling functions of the Hack distrib
tion for the Scheidegger model, with the lattice constant equa
unity. Both distributions are normalized, and all quantities are
mensionless. The right distribution is forl fixed anda varying, and
is postulated to be a normal distribution. The left distribution foa
fixed andl varying and is a form of an inverse Gaussian@58#. The
data used were obtained for all sites with withl>100 anda>500
respectively. Each distribution was obtained from ten realization
the Scheidegger model on a 1043104 lattice.
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P~au l !5
Ap l 3/2

2

Na

A2pa2h
exp$2~ l /a2/32u!2/2h2%,

5
Nal 3/2

23/2a2h
exp$2~ l /a2/32u!2/2h2%,

5
1

l 3/2

Na

23/2h
~a/ l 3/2!22

3exp$2@~a/ l 3/2!22/32u#2/2h2%. ~18!

In rearranging the expression ofP(au l ), we have made clea
that its form matches that of Eq.~5!.

A closed form expression for the normalization factorNa
may now be determined by employing the fact th
*a50

` daP(au l )51,

15E
a50

`

da P~au l !,

5E
a50

` da

l 3/2

Na

23/2h
~a/ l 3/2!22

3exp$2@~a/ l 3/2!22/32u#2/2h2%,

5
NaA3

25/2h
E

u50

`

du u1/2exp$2~u2u!2/2h2%, ~19!

where we have used the substitutiona/ l 3/25u23/2, and hence
also l 23/2da5(23/2)u25/2du. We therefore have

Na5
25/2h

A3
F E

u50

`

du u1/2exp$2~u2u!2/2h2%G21

. ~20!

We may thus write down all of the scaling functionsFl ,
Fa , F, andG for the Scheidegger model:

Fl~z!5
1

A2ph
exp$2~z2u!2/2h2%, ~21!

Fa~z!5
Na

23/2h
exp$2~z22/32u!2/2h2%, ~22!

F~z!5
Na

A2ph
exp$2~z2u!2/2h2%, and ~23!

G~z!5
Na

A2ph
z22 exp$2~z22/32u!2/2h2%. ~24!

Recall that all of these forms rest on the assumption t
Fl(z) is a Gaussian. In order to check this assumption,
return to Fig. 3. The empirical distributionP(z5a/ l 3/2) is
shown on the left, marked with circles. The solid lin
through these points isFa(z), as given above in Eq.~22!.
There is an excellent match so we may be confident ab
our proposed form forFa(z). We note that the function
Fa(z) may be thought of as a fractional inverse Gauss

-
o
i-

f
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PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 016115
distribution, the inverse Gaussian being a well known dis
bution arising in the study of first passage times for rand
walks @57#. It is worth contemplating the peculiar form o
P(au l ) in terms of first return random walks. Here we ha
been able to postulate the functional form of the distribut
of areas bound by random walks that first return aftern steps.
If one could understand the origin of the Gaussian and
analytic expressions foru andh, then the problem would be
fully solved.

VI. AREA-LENGTH DISTRIBUTION EXTENDED TO
REAL NETWORKS

We now seek to extend these results for Scheidegg
model to real world networks. We will look for the sam
functional forms for the Hack distributions that we ha
found above. The conditional probability distributions pe
taining to Hack’s law take the forms

P~ l ua!51/a2hFl~ la2h!5
a2h

A2ph
exp$2~ la2h2u!2/2h2%

~25!

and

P~au l !5 l 21/hFa~al21/h!5 l 21/h
Na

A2pNlh
~al21/h!22

3exp$2@~al21/h!2h2u#2/2h2%, ~26!

and the full Hack distribution is given by

P~a,l !5a2F~ la2h!

5 l 22/hG~al21/h!5
Na

A2pha2

3exp$2~ la2h2u!2/2h2%, ~27!

with Na determined by Eq.~20!. The three parameters—th
Hack exponenth, the Hack mean coefficientu, and the Hack
standard deviation coefficienth—are in principle landscape
dependent. Furthermore, inh we have a basic measure
fluctuations in the morphology of basins.

Figures 4 and 5 present Hack scaling functions for
Mississippi and Nile River basins. These figures are to
compared with the results for the Scheidegger model in F
3.

For both rivers, Hack’s exponenth was determined firs
from a stream ordering analysis~we discuss stream orderin
later in Sec. X!. Estimates of the parametersu and h were
then made using the scaling functionFl presuming a Gauss
ian form.

We observe that the Gaussian fit for the Mississipp
more satisfactory than that for the Nile. These fits are
rigorously made because even though we have chosen
ranges where deviations~which we address in Sec. VII! are
minimal, deviations from scaling do still skew the distrib
tions. The specific ranges used to obtainFl andFa , respec-
tively, are 8.5, log10a,9.5 and 4.75, log10 l ,6, for the
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Mississippi and 9, log10a,11 and 5.5, log10 l ,6 for the
Nile ~areas are in km2, and lengths in km!. Furthermore, we
observe that the estimate ofh has an effect on the resultin
forms ofFl andFa . Nevertheless, here we are attempting
capture the essence of the generalized form of Hack’s law
real networks.

We then use the parametersh, u, andh, and Eq.~26! to
construct our theoreticalFa , the smooth curves in Figs.
and 5. As for the Scheidegger model data in Fig. 3, we se
both examples approximate agreement between the m
suredFa and the one predicted from the form ofFl . Table I
shows estimates ofh, u, andh for the five major river basins
studied.

Given our reservations about the precision of these va
of u and h, we are nevertheless able to make qualitat
distinctions. Recalling that̂l &5uah, we see that, for fixedh,
higher values ofu indicate relatively longer stream length

FIG. 4. Cross-sectional scaling functions of the Hack distrib
tion for the Mississippi. Areaa and lengthl are in m2 and m,
respectively. The estimate used for Hack’s exponent ish50.55, the
determination of which is discussed in Sec. VII. The fits indica
by the smooth curves to the data are made as per the Scheid
model in Fig. 3, and according to Eqs.~25! and~26!. The values of
the Hack mean coefficient and standard deviation coefficient
estimated to beu.0.80 andh.0.20.

FIG. 5. Cross-sectional scaling functions of the Hack distrib
tion for the Nile. Dimensions are as per Fig. 4. The top and ri
axes correspond toFa and the bottom and left toFl . The Hack
exponent used ish50.50, and the values of the Hack mean coe
cient and standard deviation coefficient are estimated to bu
.2.45 andh.0.50 @59#.
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GEOMETRY OF RIVER NETWORKS. I. SCALING, . . . PHYSICAL REVIEW E63 016115
for a given area, and hence longer and thinner basins.
results therefore suggest the Nile, and to a lesser degre
Amazon, have basins with thinner profiles than the Con
and, in particular, the Mississippi and Kansas. This see
not unreasonable since the Nile is a strongly directed
work constrained within a relatively narrow overall shap
This is somewhat in spite of the fact that the shape of
overall river basin is not necessarily related to its inter
basin morphology, an observation we will address later
Sec. X.

The importance ofu is tempered by the value ofh. Hack’s
exponent affects not only the absolute measure of str
length for a given area but also how basin shapes cha
with increasing area. So, in the case of the Kansas, the hi
value of h suggests that basin profiles thin with increasi
size. This is in keeping with overall directedness of the n
work. Note that our measurements of the fractal dimensiod
of stream lengths for the Kansas place it to bed51.04
60.02. Therefore,d/h.1.9,2, and elongation is still ex-
pected when we factor in the scaling ofl with L i .

The Nile and Amazon also all have relatively highh,
indicating greater fluctuations in basin shape. In comparis
the Mississippi, Kansas, and Congo appear to have
variation. Note that the variability of the Kansas is in reaso
able agreement with that of the whole Mississippi River n
work for which it is a sub-basin.

Finally, regardless of the actual form of the distributio
underlying Hack’s law, fluctuations are always present, a
an estimate of their extent is an important measurem
Thus, the Hack mean and standard deviation coefficienu
and h are suggested to be of sufficient worth so as to
included with any measurement of the Hack exponenth.

VII. DEVIATIONS FROM SCALING

In generalizing Hack’s law, we have sought out regions
robust scaling, discarding ranges where deviations bec
prominent. We now turn our attention to the nature of t
deviations themselves.

We observe three major classes of deviations which
will define by the scales at which they occur: small, interm
diate, and large. Throughout the following sections we p
marily consider deviations from the mean version of Hac
law, ^ l &5uah, given in Eq.~4!. Much of the understanding

TABLE I. Estimates of Hack distribution parameters for re
river networks. The scaling exponenth is Hack’s exponent. The
parametersu and h are coefficients of the mean and standard
viations of the conditional probability density functionP( l ua), and
are fully discussed in the text@60#.

River network u h h

Mississippi 0.80 0.20 0.55
Amazon 1.90 0.35 0.52
Nile 2.45 0.50 0.50
Kansas 0.70 0.15 0.57
Congo 0.89 0.18 0.54
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we gain from this will be extendable to deviations for high
moments.

To provide an overview of what follows, examples
mean Hack distributions for the Kansas and Mississippi R
ers are shown in Figs. 6~a! and 6~b!. Hack’s law for the
Kansas River exhibits a marked deviation for small are
starting with a near linear relationship between stream len
and area. A long crossover region of several orders of m
nitude in area then leads to an intermediate scaling regi
wherein we attempt to determine the Hack exponenth. In
doing so, we show that such regions of robust scaling
surprisingly limited for river network quantities. Moreove
we observe that, where present, scaling is only approxim
and that no exact exponents can be ascribed to the netw
we study here. It follows that the identification of universa
ity classes based on empirical evidence is a hazardous s

-

FIG. 6. The mean version of Hack’s law for the Kansas~a! and
the Mississippi~b!. The units of lengths and areas are meters a
square meters. These are calculated from the full Hack distribut
shown in Figs. 1~a! and 1~b! by finding ^ l & for each value of basin
areaa. Area samples are taken every 0.02 orders of magnitud
logarithmic space. The upper dashed lines represent a slope of
in both plots, and the lower lines the Hack exponents 0.57 and 0
for the Kansas and Mississippi, respectively. For the Kansas, t
is a clear deviation for small area which rolls over into a region
very slowly changing derivative before breaking up at large sca
Deviations from scaling are present for the lower resolution data
of the Mississippi, but to a lesser extent.
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Finally, the approximate scaling of this intermediate
gion then gives way to a breakdown in scaling at larg
scales due to low sampling and correlations with ba
shape. The same deviations are present in the relati
coarse-grained Mississippi data, but are less pronounced

VIII. DEVIATIONS AT SMALL SCALES

At small scales, we find that the mean Hack distributi
follows a linear relationship, i.e.,l}a1. This feature is most
evident for the Kansas River, as shown in Fig. 6~a!, and in
more detail in Fig. 7. The linear regime persists for nea
1.5 orders of magnitude in basin area. To a lesser extent
same trend is apparent in the Mississippi data,@Fig. 6~b!#.

Returning to the full Hack distribution of Figs. 1~a! and
1~b!, we begin to see the origin of this linear regime. In bo
instances, a linear branch separates from the body of
main distribution. Sincel cannot grow faster thana1, the
linear branch marks an upper bound on the extent of
distribution in (a,l ) coordinates. When averaged to give t
mean Hack distribution, this linear data dominates the re
for small scales.

We find this branch evident in all Hack distributions. It
not an artifact of resolution, and in fact becomes more p
nounced with increased map precision. The origin of t
linear branch is simple: data points along the branch co
spond to positions in narrow subnetworks, i.e., long, t
‘‘valleys.’’ To understand the separation of this linear bran
from the main body of the distribution, consider Fig.
which depicts a stream draining such a valley with len
and area (l 1 ,a1) that meets a stream from a basin with ch
acteristics (l 2 ,a2). The area and length of the basin form
at this junction is thus@(a3 ,l 3)5(a11a2 ,max(l1,l2)# @in the
figure, max(l1,l2)5l2#. The greater jump in area moves th
point across into the main body of the Hack distributio
creating a separation of the linear branch.

In fact, the full Hack distribution is itself comprised o
many such linear segments. As in the above example, un

FIG. 7. The linearity of Hack’s law at small scales for the Ka
sas River. Dimensions are as per Fig. 6. The linear regime ent
crossover region after almost 1.5 orders of magnitude in area.
is an expanded detail of the mean Hack’s law given in Fig. 6~a!, and
areas and lengths are in square meters and meters.
01611
-
r
n
ly

y
he

he

e

lt

-
s
e-
n

h
-

,

l a

stream does not meet any streams of comparable size,
its area and length will roughly increase in a linear fashio
When it does meet such a stream, there is a jump in area,
the trace of a new linear segment is started in the distri
tion. We will see this most clearly later on, when we stu
deviations at large scales.

For very fine scale maps, on the order of meters, we m
expect to pick up the scale of the unchannelized, con
regions of a landscape, i.e., ‘‘hillslopes’’@61#. This length
scale represents the typical separation of branches at a
work’s finest scale. The computation of stream networks
these hillslope regions would result in largely nonconverg
~divergent or parallel! flow. Therefore, we would have linea
‘‘basins’’ that would in theory contribute to the linear branc
we observe@10#. Potentially, the crossover in Hack’s law
could be used as a determinant of hillslope scale, a cru
parameter in geomorphology@61,62#. However, when long,
thin network structures are present in a network, this h
slope scale is masked by their contribution.

Whether because of the hillslope scale or linear netw
structure, we see that at small scales, Hack’s law will sho
crossover in scaling fromh51 to a lower exponent. The
crossover’s position depends on the extent of linear basin
the network. For example, in the Kansas River basin,
crossover occurs when (l ,a)5(43103 m, 107 m2). Since
increased map resolution can only increase measure
length, the crossover’s position must occur at least at su

s a
is

FIG. 8. Origin of the linear branch in the Hack distribution. Th
subbasins labeled 1 and 2 depicted in~a! have areasa1 anda2 and
lengthsl 1 and l 2 . These subbasins combine to form a basin of a
a35a11a2 and main stream lengthl 35max l 1 , l 25 l 2 . Since sub-
basin 1 is a linear subnetwork~a valley! the pair (a1 ,l 1) lie along
the linear branch of the Hack distribution as shown in~b!. Points
along the main stream of subbasin 1 lie along the dashed
leading to the coordinate (a1 ,l 1). On combining with the second
basin, the jump in the resultant area creates a jump from (a1 ,l 1) to
(a3 ,l 2) in the main body of the Hack distribution.
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length scale which may be many orders of magnitude gre
than the scale of the map.

However, the measurement of the area of such linear
sins will potentially grow with coarse-graining. Note that f
the Mississippi mean Hack distribution, the crossover beg
arounda5106.5m2 whereas for the Kansas the crossover i
tiates neara5105.5m2, but the ends of the crossovers in bo
cases appear to agree, occurring at arounda5107 m2. Con-
tinued coarse graining will of course eventually destroy
statistics, and introduce spurious deviations. Neverthel
we see here that the deviation which is only suggested in
Mississippi data is well confirmed in the finer-grained Ka
sas data.

IX. DEVIATIONS AT INTERMEDIATE SCALES

As the basin area increases, we move out of the lin
regime, observing a crossover to what would be conside
the normal scaling region of Hack’s law. We detail our a
tempts to measure the Hack exponents for the Kansas
Mississippi examples. Rather than relying solely on a sin
regression on a mean Hack distribution, we employ a m
precise technique that examines the distribution’s derivat

To determineh, we consider Hack’s law@Eq. ~4!# explic-
itly in logarithmic coordinates,

log10̂ l ~a!&5 log10u1h log10a. ~28!

The derivative of this equation with respect to log10a then
gives Hack’s exponent as a function of area:

h~a!5
d

d log10a
log10̂ l ~a!&. ~29!

We may think ofh(a) as a ‘‘local Hack exponent.’’ We
calculate the discrete derivative as above for the Kansas
Mississippi. We smooth the data by taking running avera
with varying window sizes ofn samples, the results forn
532 being shown in Figs. 9~a! and 9~b!, where the spacing
of loga is 0.02 orders of magnitude. Thus the running av
ages for the figures are taken over area ranges correspon
to 0.64 orders of magnitude.

Now, if the scaling law in question is truly a scaling law
the above type of derivative will fluctuate around a const
value of exponent over several orders of magnitude. W
increasingn, these fluctuations will necessarily decrease, a
we should see the derivative holding steady around the
ponent’s value.

At first glance, we note a considerable variation inh(a)
for both data sets, with the Kansas standing out. Fluctuat
are reduced with increasingn, but we observe continuou
variation of the local Hack exponent with area. For the e
ample of the Kansas, the linear regime and ensuing cross
appear as a steep rise followed by a drop and then ano
rise during all of which the local Hack exponent moves w
below 1/2.

It is after these small scale fluctuations that we wo
expect to find Hack’s exponent. For the Kansas River d
we see the derivative gradually climbs for all values ofn
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before reaching the end of the intermediate regime where
putative scaling breaks down altogether.

For the Kansas River data shown in Fig. 9~a!, the dashed
line representsh50.57, our estimate of Hack’s expone
from simple regression on the mean Hack distribution of F
6~a!. For the regression calculation, the intermediate reg
was identified from the figure to be 107,a,1010m2. We
see from the smoothed derivative in Fig. 9~a! that the value
h50.57 is not precise. After the crossover from the line
region has been completed, we observe a slow rise fromh
.0.54 to h.0.63. Thus the local Hack exponenth(a)
gradually climbs aboveh50.57 rather than fluctuating
around it.

A similar slow change inh(a) is observed for the Mis-
sissippi data. In Fig. 9~b! we see a gradual rise and then fa
in h(a). The dashed line here representsh50.55, the value

FIG. 9. Variation in Hack’s exponent for the Kansas~a! and the
Mississippi~b!. The areaa is in m2. The plots are derivatives of the
mean Hack distributions given in Figs. 6~a! and 6~b!. Both deriva-
tives have been smoothed by taking running averages over
orders of magnitude ina. For the Kansas, the dashed line is set
h50.57, Hack’s exponent estimated via simple regression ana
for points with 107,a,1010 m2. The local exponent is seen t
gradually rise through theh50.57 level, indicating that scaling is
not robust. For the Mississippi in~b!, the dashed line is a Hack
exponent of 0.55 calculated from regression on data in the inte
109,a,1011.5m2. The local Hack exponent is seen to gradua
rise and fall about this value.
5-9



-
e

d
-
e
ve
Th
iv
at
xa

e
a

’s
-
h
-

o
le

ro
th
e
’s

t

a

am
ss

f
es

e
um-
tios

t
For

c-
ted
ght
that
is-
ion
.
As

pro-
tar-
pa-
10
t a

w
ts
en

to

en

r

the
the

PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 016115
of which was determined from Fig. 6~b! using regression on
the range 109,a,1011.5m2. The range ofh(a) is roughly
@0.52, 0.58#. Again, whileh50.55 approximates the deriva
tive throughout this intermediate range of Hack’s law, w
cannot claim it to be a precise value.

We observe the same drifts inh(a) in other datasets an
for varying window sizen of the running average. The re
sults suggest that we cannot assign specific Hack expon
to these river networks, and are therefore unable to e
consider what might be an appropriate universality class.
value ofh obtained by regression analysis is clearly sensit
to the the range ofa used. Furthermore, these results indic
that we should maintain healthy reservations about the e
values of other reported exponents.

X. DEVIATIONS AT LARGE SCALES

We turn now to deviations from Hack’s law at larg
scales. As we move beyond the intermediate region of
proximate scaling, fluctuations inh(a) begin to grow rap-
idly. This is clear on inspection of the derivatives of Hack
law in Figs. 9~a! and 9~b!. There are two main factors con
spiring to drive these fluctuations up. The first is that t
number of samples of subbasins with areaa decays algebra
ically in a. This is just the observation thatP(a)}a2t as per
Eq. ~11!. The second factor is that fluctuations inl anda are
on the order of the parameters themselves. This follows fr
our generalization of Hack’s law, which shows, for examp
that the momentŝl q& of P( l ua) grow like aqh. Thus, the
standard deviation grows like the mean:s( l )5(^ l 2&
2^ l &2)1/2}ah}^ l &.

A. Stream ordering and Horton’s laws

So as to understand these large scale deviations f
Hack’s law, we need to examine network structure in dep
One way to do this is by using Horton-Strahler stream ord
ing @38,63# and a generalization of the well-known Horton
laws @36,38,39,64,65#. This will naturally allow us to deal
with the discrete nature of a network that is most apparen
large scales.

Stream ordering discretizes a network into a set of stre
segments~or, equivalently, a set of nested basins! by an it-
erative pruning. Source streams~i.e., those without tributar-
ies! are designated as stream segments of orderv51. These
are removed from the network, and the new source stre
are then labeled as orderv52 stream segments. The proce
is repeated until a single stream segment of orderv5V is
left, and the basin itself is defined to be of orderV.

Natural metrics for an ordered river network arenv , the
number of orderv stream segments~or basins!; āv , the
average area of orderv basins;l̄ v , the average main stream
length of orderv basins; andl̄ v

(s) , the average length o
order v stream segments. Horton’s laws state that th
quantities change regularly from order to order, i.e.,

nv

nv11

5Rn and
X̄v11

X̄v

5RX , ~30!
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whereX5a, l, or l (s). Note that all ratios are defined to b
greater than unity since areas and lengths increase but n
ber decreases. Also, there are only two independent ra
since Ra[Rn and Rl[Rl (s) @39#. Horton’s laws mean tha
stream-order quantities change exponentially with order.
example, Eq.~30! gives thatl v}(Rl)

v.

B. Discrete version of Hack’s law

Returning to Hack’s law, we examine its large scale flu
tuations with the help of stream ordering. We are interes
in the size of these fluctuations, and also how they mi
correlate with the overall shape of a basin. First, we note
the structure of the network at large scales is explicitly d
crete. Figure 10 demonstrates this by plotting the distribut
of (a,l ) without the usual logarithmic transformation
Hack’s law is seen to be composed of linear fragments.
explained above in Fig. 8, areas and length increase in
portion to each other along streams where no major tribu
ies enter. As soon as a stream does combine with a com
rable one, a jump in drainage area occurs. Thus, in Fig.
we see isolated linear segments which, upon ending a
point (a1 ,l 1), begin again at (a11a2 ,l 1), i.e., the main
stream length stays the same but the area is shifted.

We consider a stream ordering version of Hack’s la
given by the points (āv , l̄ v). The scaling of these data poin
is equivalent to scaling in the usual Hack’s law. Also, giv
Horton’s laws, it follows that h5 ln Rl /ln Rn ~using Ra
[Rn). Along the lines of the derivative we introduced
study intermediate scale fluctuations in Eq.~29!, we have
here an order-based difference:

hv,v215
log l̄ v / l̄ v21

log āv /āv21
. ~31!

We can further extend this definition to differences betwe
nonadjacent orders:

FIG. 10. Hack distribution for the Mississippi plotted in linea
space. Areaa is given in units of 1012 m2, and lengthl in 106 m.
The discreteness of the basin structure is clearly indicated by
isolated, linear fragments. The inset is a blowup of the box on
main graph.
5-10
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hv,v85
log l̄ v / l̄ v8
log āv /āv8

. ~32!

This type of difference, wherev8,v, may be best though
of as a measure of trends rather than an approximate dis
derivative.

Using these discrete differences, we examine two featu
of the order-based versions of Hack’s law. First we consi
correlations between large scale deviations within an in
vidual basin and, second, correlations between overall de
tions and basin shape. For the latter, we will also cons
deviations as they move back into the intermediate sc
This will help to explain the gradual deviations from scali
we have observed at intermediate scales.

Since deviations at large scales are reflective of onl
few basins, we require an ensemble of basins to prov
sufficient statistics. As an example of such an ensemble
take the set of orderV57 basins of the Mississippi basin
For the dataset used here, where the overall basin itself
orderV511, we have 104 orderV57 subbasins. The Hor

ton averages for these basins areā7.16600 km2, l̄ 7

.350 km, andL̄7.210 km.
For each basin, we first calculate the Horton avera

(āv , l̄ v). We then computehv,v21 , the Hack difference
given in Eq. ~31!. To give a rough picture of what is ob
served, Figure 11 shows a scatter plot ofhv,v21 for all order
V57 basins. Note the increase in fluctuations with incre
ing v. This increase is qualitatively consistent with th
smooth versions found in the single basin examples of F
9~a! and 9~b!. In part, less self-averaging for largerv results
in a greater spread in this discrete derivative. However, as
will show, these fluctuations are also correlated with fluct
tions in basin shape.

FIG. 11. Differences of the stream order-based version
Hack’s law for 104 orderV57 basins of the Mississippi~compare
the continuous versions given in Fig. 9!. The units of area are
square meters, and the exponenthv,v21 is dimensionless. The plot
are overlaid to give a sense of the increase in fluctuations of
local Hack exponenthv,v21 with increasing orderv. The clusters
correspond tov51,2, . . . ,7, moving from left to right.
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C. Effect of basin shape on Hack’s law

In what follows, we extract two statistical measures
correlations between deviations in Hack’s law and ove
basin shape. These arer, the standard linear correlation co
efficient andr s , the Spearman rank-order correlation coef
cient @66–68#. For N observations of data pairs (ui ,v i),r is
defined to be

r 5

(
i 51

N

~ui2mu!~v i2mv!

(
i 51

N

~xi2mu!2( i 51
N ~yi2mv!2

5
C~u,v !

susv
, ~33!

whereC(u,v) is the covariance of theui ’s andv i ’s, mu and
mv their means, andsu andsv their standard deviations. Th
value of Spearman’sr s is determined in the same way, bu
for theui andv i replaced by their ranks. Fromr s , we deter-
mine a two-sided significanceps via Student’st distribution
@66#.

We definek, a measure of basin aspect ratio, as

k5L2/a. ~34!

Long and narrow basins correspond tok@1, while for short
and wide basins we havek!1

We now examine the discrete derivatives of Hack’s law
more detail. In order to discern correlations between la
scale fluctuations within individual basins, we specifica
look at the last two differences in a basin:hV,V21 and
hV21,V22 . For each of the Mississippi’s 104 orderV57
basins, these values are plotted against each other in Fig
Both our correlation measurements strongly suggest th
differences are uncorrelated. The linear correlation coe
cient is r 520.06.0 and, similarly, we haver s520.08
.0. The significanceps50.43 implies that the null hypoth
esis of uncorrelated data cannot be rejected.

f

e

FIG. 12. A comparison of the stream order Hack derivativ
hV,V21 andhV21,V22 for each of the 104 orderV57 basins of the
Mississippi. Both axes are dimensionless. The linear correlation
efficient is r 520.06, and the Spearman correlation coefficient
r s520.08. The latter has probabilityps50.43, indicating there are
no significant correlations.
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Thus, for Hack’s law in an individual basin, large sca
fluctuations are seen to be uncorrelated. However, corr
tions between these fluctuations and other factors may
exist. This leads us to our second test which concerns
relationship between trends in Hack’s law and overall ba
shape.

Figure 13 shows a comparison of the aspect ratiok and
h7,5 for the orderV57 basins of the Mississippi. The mea
sured correlation coefficients arer 50.50 andr s50.53, giv-
ing a significance ofps,1028. Furthermore, we find the
differencesh7,6 (r 50.34, r s50.39 andps,1024) and h6,5
~r 50.35,r s50.34 andps,1023) are individually correlated
with basin shape. We observe this correlation between b
shape and trends in Hack’s law at large scales, nam
hV,V21 , hV21,V22 , and hV,V22 , repeatedly in our othe
data sets. In some cases, correlations extend furthe
hV22,V23 .

Since the area ratioRa is typically in the range 4–5
Hack’s law is affected by boundary conditions set by t
geometry of the overall basin down to subbasins 1–2 ord
of magnitude smaller in area than the overall basin. Th
deviations are present regardless of the absolute size o
overall basin. Furthermore, the origin of the basin bounda
being geologic or chance or both is irrelevant—large sc

FIG. 13. Correlation between trends in Hack’s law and the
pect ratio of a basin as estimated by the dimensionless quantk
5L2/a. The data is for the orderV57 basins of the Mississippi
and the specific trend ish7,5. The correlation measurements giv
r 50.50, r s50.53, andps,1028.
n
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deviations will still occur. However, it is reasonable to su
gest that particularly strong deviations are more likely t
result of geologic structure rather than simple fluctuation

XI. CONCLUSION

Hack’s law is a central relation in the study of river ne
works and branching networks in general. We have sho
Hack’s law to have a more complicated structure than
typically given attention. The starting generalization is
consider fluctuations around scaling. Using the directed, r
dom network model, a form for the Hack distribution unde
lying Hack’s law may be postulated and reasonable ag
ment with real networks is observed. Questions of
validity of the distribution aside, the Hack mean coefficienu
and the Hack standard deviation coefficienth should be stan-
dard measurements because they provide further point
comparison between theory and other basins.

With the idealized Hack distribution proposed, we m
begin to understand deviations from its form. As with a
scaling law pertaining to a physical system, cutoffs in scal
must exist and need to be understood. For small scales
have identified the presence of linear subbasins as the so
of an initial linear relation between area and stream leng
At large scales, statistical fluctuations and geologic bou
aries give rise to basins whose overall shape produces de
tions in Hack’s laws. Both deviations extend over a cons
erable range of areas, as do the crossovers which link the
the region of intermediate scales, particularly the crosso
from small scales.

Finally, by focusing in detail on a few large scale e
amples networks, we have found evidence that river n
works do not belong to well defined universality classes. T
relationship between basin area and stream length ma
approximately, and in some cases very well, described
scaling laws, but not exactly so. The gradual drift in exp
nents we observe suggests a more complicated picture,
where subtle correlations between basin shape and geo
features are intrinsic to river network structure.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant No. EA
9706220, and Department of Energy Grant No. DE FG
99ER 15004.

-

,

.

Sci.
@1# R. Albert, H. Jeong, and A.-L. Barabasi, Nature~London! 406,
378 ~2000!.

@2# D. J. Watts and S. J. Strogatz, Nature~London! 393, 440
~1998!.

@3# M. Zamir, J. Theor. Biol.197, 517 ~1999!.
@4# S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, a

T. A. Witten, Phys. Rev. E53, 4673~1996!.
@5# C. Cherniak, M. Changizi, and D. W. Kang, Phys. Rev. E.59,

6001 ~1999!.
@6# B. B. Mandelbrot,The Fractal Geometry of Nature~Freeman,
d

San Francisco, 1983!.
@7# I. Rodrı́guez-Iturbe and A. Rinaldo,Fractal River Basins:

Chance and Self-Organization~Cambridge University Press
Cambridge, 1997!.

@8# A. Rinaldo, I. Rodrı´guez-Iturbe, and R. Rigon, Annu. Rev
Earth Planet Sci.26, 289 ~1998!.

@9# P. Ball,The Self-Made Tapestry~Oxford University Press, Ox-
ford, 1998!.

@10# P. S. Dodds and D. H. Rothman, Annu. Rev. Earth Planet
28, 571 ~2000!.
5-12



I.

.

.

.

p

.

.

r.

is a
ital
ov.
ntal
na-
as
olu-

-

-

he
set,
gov.
xtra

n of
ata
il-

d

P.

n

GEOMETRY OF RIVER NETWORKS. I. SCALING, . . . PHYSICAL REVIEW E63 016115
@11# J. T. Hack, U.S. Geol. Surv. Prof. Pap.,294-B, 45 ~1957!.
@12# A. Maritan, A. Rinaldo, R. Rigon, A. Giacometti, and

Rodrı́guez-Iturbe, Phys. Rev. E53, 1510~1996!.
@13# R. Rigon, I. Rodrı´guez-Iturbe, A. Maritan, A. Giacometti, D

G. Tarboton, and A. Rinaldo, Water Resour. Res.32, 3367
~1996!.

@14# H. Jaeger, S. Nagel, and R. Behringer, Rev. Mod. Phys.68,
1259 ~1996!.

@15# L. Kadanoff, Rev. Mod. Phys.71, 435 ~1999!.
@16# T. R. Smith and F. P. Bretherton, Water Resour. Res.3, 1506

~1972!.
@17# S. Kramer and M. Marder, Phys. Rev. Lett.68, 205 ~1992!.
@18# N. Izumi and G. Parker, J. Fluid Mech.283, 341 ~1995!.
@19# K. Sinclair and R. C. Ball, Phys. Rev. Lett.76, 3360~1996!.
@20# J. R. Banavar, F. Colaiori, A. Flammini, A. Giacometti, A

Maritan, and A. Rinaldo, Phys. Rev. Lett.78, 4522~1997!.
@21# E. Somfai and L. M. Sander, Phys. Rev. E56, R5 ~1997!.
@22# R. Pastor-Satorras and D. H. Rothman, Phys. Rev. Lett.80,

4349 ~1998!.
@23# R. Pastor-Satorras and D. H. Rothman, J. Stat. Phys.93, 477

~1998!.
@24# M. Cieplak, A. Giacometti, A. Maritan, A. Rinaldo, I

Rodrı́guez-Iturbe, and J. R. Banavar, J. Stat. Phys.91, 1
~1998!.

@25# A. Giacometti~unpublished!.
@26# H. Takayasu and H. Inaoka, Phys. Rev. Lett.68, 966 ~1992!.
@27# R. L. Leheny, Phys. Rev. E52, 5610~1995!.
@28# G. Caldarelli, A. Giacometti, A. Maritan, I. Rodrı´guez-Iturbe,

and A. Rinaldo, Phys. Rev. E55, 4865~1997!.
@29# C. P. Stark, Nature~London! 352, 405 ~1991!.
@30# T. Sun, P. Meakin, and T. Jo”ssang, Phys. Rev. E49, 4865

~1994!.
@31# T. Sun, P. Meakin, and T. Jo”ssang, Phys. Rev. E51, 5353

~1995!.
@32# L. B. Leopold and W. B. Langbein, U.S. Geol. Surv. Prof. Pa

500-A, 1 ~1962!.
@33# A. E. Scheidegger, Bull. Int. Assoc. Sci. Hydrol.12, 15 ~1967!.
@34# S. S. Manna and B. Subramanian, Phys. Rev. Lett.76, 3460

~1996!.
@35# A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R

Banavar, Science272, 984 ~1996!.
@36# P. S. Dodds and D. H. Rothman, following paper, Phys. Rev

63, 016116~2000!.
@37# P. S. Dodds and D. H. Rothman, third paper, Phys. Rev. E63,

016117~2000!.
@38# R. E. Horton, Bull. Geol. Soc. Am.56, 275 ~1945!.
@39# P. S. Dodds and D. H. Rothman, Phys. Rev. E59, 4865

~1999!.
@40# E. Tokunaga, Geophys. Bull. Hokkaido Univ.15, 1 ~1966!.
@41# E. Tokunaga, Geogr. Rep., Tokyo Metrop. Univ.13, 1 ~1978!.
@42# E. Tokunaga, Trans. Jpn. Geomorphol. Union.5, 71 ~1984!.
@43# D. M. Gray, J. Geophys. Res.66, 1215~1961!.
@44# J. E. Mueller, Geol. Soc. Am. Bull.83, 3471~1972!.
01611
.

E

@45# M. P. Mosley and R. S. Parker, Geol. Soc. Am. Bull.84, 3123
~1973!.

@46# J. E. Mueller, Geol. Soc. Am. Bull.84, 3127~1973!.
@47# D. R. Montgomery and W. E. Dietrich, Science255, 826

~1992!.
@48# R. Rigon, I. Rodrı´guez-Iturbe, and A. Rinalod, Water Resou

Res.34, 3181~1998!.
@49# The topography used to extract areas and stream lengths

composite of United States Geological Survey 3-arcsec dig
elevation models available on the Internet at www.usgs.g
These datasets provide grids of elevation data with horizo
resolution on the order of 90 m. The Kansas river was a
lyzed directly from the data, while the Mississippi basin w
studied on a coarse-grained version with a horizontal res
tion of approximately 1000 m.

@50# D. G. Tarboton, R. L. Bras, and I. Rodrı´guez-Iturbe, Water
Resour. Res.26, 2243~1990!.

@51# H. Takayasu, I. Nishikawa, and H. Tasaki, Phys. Rev. A37,
3110 ~1988!.

@52# P. Meakin, J. Feder, and T. Jo”ssang, Physica A176, 409
~1991!.

@53# G. Huber, Physica A170, 463 ~1991!.
@54# D. Dhar and S. N. Majumdar, J. Phys. A23, 4333~1990!.
@55# D. Dhar, Physica A186, 82 ~1992!.
@56# D. Dhar, Physica A263, 4 ~1999!.
@57# W. Feller, An Introduction to Probability Theory and Its Ap

plicatioins, 3rd ed.~Wiley, New York, 1968!, Vol. I.
@58# W. Feller, An Introduction to Probability Theory and Its Ap

plications, 2nd ed.~Wiley, New York, 1971!, Vol II.
@59# The data for the Nile and Congo were obtained from t

United States Geological Survey’s 30-arcsec Hydrol K data
which may be accessed on the Internet at edcftp.cr.usgs.
Note that these Hydrol K datasets have undergone the e
processing of projection onto a uniform grid.

@60# The dataset used for the Amazon has a horizontal resolutio
approximately 1000 m and comes from 30-arcsec terrain d
provided by the National Imagery and Mapping Agency ava
able on the Internet at www.nima.mil.

@61# W. Dietrich and D. Montgomery, inScale Dependence an
Scale Invariance in Hydrology, edited by G. Sposito~Cam-
bridge University Press, Cambridge, 1998!, pp. 30–60.

@62# W. E. Dietrich and T. Dunne, inChannel Network Hydrology,
edited by K. Beven and M. Kirkby~Wiley, New York, 1993!,
Chap. 7, pp. 175–219.

@63# A. N. Strahler, EOS Trans. AGU38, 913 ~1957!.
@64# S. A. Schumm, Bull. Geol. Soc. Am.67, 597 ~1956!.
@65# S. Peckham and V. Gupta, Water Resour. Res.35, 2763

~1999!.
@66# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.

Flannery,Numerical Recipes in C2nd ed.~Cambridge Univer-
sity Press, Cambridge, 1992!.

@67# E. L. Lehman,Nonparametrics: Statistical Methods Based o
Ranks~Holden-Day, San Francisco, 1975!.

@68# P. Sprent,Applied Nonparametric Statistical Methods, 2nd ed.
~Chapman & Hall, New York, 1993!.
5-13


