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Quantum phase transitions in the Ising model in a spatially modulated field
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The phase transitions in the transverse field Ising model in a competing spatially modulated~periodic and
oscillatory! longitudinal field are studied numerically. There is a multiphase point in absence of the transverse
field where the degeneracy for a longitudinal field of wavelengthl is @(11A5)/2#2N/l for a system withN
spins, an exact result obtained from the known result forl52. The phase transitions in theG ~transverse field!
versush0 ~amplitude of the longitudinal field! phase diagram are obtained from the vanishing of the mass gap
D. We find that for all the phase transition points obtained in this way,D shows finite size scaling behavior
signifying a continuous phase transition everywhere. The values of the critical exponents show that the model
belongs to the universality class of the two dimensional Ising model. The longitudinal field is found to have the
same scaling behavior as that of the transverse field, which seems to be a unique feature for the competing
field. The phase boundaries for two different wavelengths of the modulated field are obtained. Close to the
multiphase point athc , the phase boundary behaves as (hc2h0)b, whereb is alsol dependent.

DOI: 10.1103/PhysRevE.63.016112 PACS number~s!: 64.60.Cn, 64.60.Fr, 42.50.Lc
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I. INTRODUCTION

Competitive interactions in magnetic models can gene
frustration leading to the existence of a large number of
generate states@1#. For example, in the ANNNI~axial next
nearest neighbor Ising! model @1–3#, the presence of a sec
ond neighbor antiferromagnetic interaction induces a com
tition. In absence of any fluctuation, a large number of
generate states exist at a so called multiphase point. In
glasses@4#, interactions are random, and the mixture of fe
romagnetic and antiferromagnetic interactions result in fr
tration and huge degeneracy.

Phase transitions, both classical and quantum, in man
these systems are well studied@1–6#. While the short range
Ising like models do not have any finite temperature ph
transition in one dimension, the phase diagram in higher
mensions often shows very rich structures. The quan
phase transitions are present even in one dimension.
interesting to observe that the zeroth order thermal fluc
tion in two dimensions and correspondingly zeroth ord
quantum fluctuations in one dimension can destroy all or
at the fully frustrated multiphase point@3,5# in ANNNI-like
models.

The Ising models in transverse field form a special cl
of quantum systems and to the best of our knowledge, h
different features in comparison to quantum spin models
which the quantum effect comes through the cooperative
teraction.

In this paper, we will discuss a quantum Ising model w
competition, where the competition is generated by the p
ence of an external longitudinal field which is spatially pe
odic. We choose the periodicity of the field to be comme
surate with the lattice periodicity. The field is also oscillato
so that the net field on the entire system sums out to z
Classically, the ferromagnetic Ising system will not under
any phase transition in a uniform field. On the other ha
spatially modulated fields can play important roles in critic
phenomena. Classical systems in periodic potential~Frenkel-
Kontorova model!, for example, show very interesting fea
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tures leading to novel concepts like the devil’s staircase@7#.
Some interesting and relevant features of the model in

classical limit are discussed in Sec. II. The phase transiti
in the ferromagnetic model in the modulated field in o
dimension at zero temperature driven by quantum fluct
tions generated by the transverse field are described in
III. The results are discussed and concluding remarks
made in Sec. IV.

II. THE MODEL: CLASSICAL GROUND STATE
AND DEGENERACY

The Hamiltonian for the system withN spins is given by

Hq52J(
i 51

N

Si
zSi 11

z 2(
i 51

N

hiSi
z2G(

i 51

N

Si
x . ~1!

The form of the longitudinal periodic fieldhi is like this:
hi5h0 at i 5(nl11) to (2n11)l/2 (n50,1, . . . ,N/l
21) and 2h0 elsewhere. The wavelength of the field
denoted byl. G is the strength of the transverse field.

Note that the modulated field can be chosen to be of v
ous forms, for simplicity we will choose a square wave for
While the ferromagnetic interaction tries to align the sp
parallelly, the periodic field will try to modulate the syste
spatially. We will consider periodic boundary condition.

We will first discuss some known results in the context
our model in the classical limit~i.e., G50). The classical
Hamiltonian is

Hcl52J(
i 51

N

Si
zSi 11

z 2(
i 51

N

hiSi
z . ~2!

Let us first take the casel52: the field is positive on odd
sites and negative on even. Now one can simply use a tr
formation S2i

z →2S2i
z . This effectively makes the Hamil

tonian
©2000 The American Physical Society12-1
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Hcl5J(
i 51

N

Si
zSi 11

z 2h0(
i 51

N

Si
z , ~3!

i.e., an antiferromagnetic system in a uniform field@8,9#
which is solved exactly by transfer matrix method.

Again, if we consider the ANNNI chain, the Hamiltonia
is

HANNNI52J1(
i 51

N

Si
zSi 11

z 1J2(
i 51

N

Si
zSi 12

z . ~4!

The above can be cast to the form of Eq.~3! by the transfor-
mationSi

zSi 11
z →Si

z @1# with J1 playing the role ofh0 andJ2

the role ofJ. Note thatJ2 is positive, describing antiferro
magnetic interaction by definition. The sign ofJ1 is unim-
portant.

The two models described by Eqs.~3! and ~4! are well
studied@8,1,3# and they have similar classical ground stat
up toJ/h050.5 ~or J2 /J150.5), the system is antiferromag
netic~ferromagnetic for ANNNI whenJ1.0), and paramag-
netic ~modulated for ANNNI! beyond this value. An infinite
number of degenerate states exist at this point. The de
eracy can be calculated exactly@1,8# and is equal totN

wheret5(11A5)/2. In the language of the original class
cal model defined in~2! with l52, one has ferromagneti
phase uptoh0 /J52 and paramagnetic phase forh0 /J.2.

Even whenlÞ2, one can rescale the system by a fac
of l/2 so that the Hamiltonian is effectively written as in E
~3!. It can easily be checked that the multiphase point is n
at hc /J54/l and the degeneracy given byt2N/l.

It is extremely important to note here that although t
antiferromagnetic and ferromagnetic systems have iden
critical behavior, the presence of a field makes things dra
cally different. Therefore the modulated field in the ferr
magnetic system is effectively a uniform field in the mapp
antiferromagnetic system. We will specifically take the int
action to be ferromagnetic in order to avoid any ambiguity
confusion.

III. QUANTUM PHASE TRANSITION AND PHASE
DIAGRAM AT TÄ0

There are two limits in which the results are exac
known for the quantum Hamiltonian~1! at zero temperature
The classical limitG50 is already discussed. In the lim
h050, the problem is also exactly solved@10#: there is a
phase transition at a finite value of the transverse fie
Gc(0)/J51. This is a quantum critical point and the pha
transition is continuous in nature. In a spatially periodic a
oscillatory longitudinal field which is competing in natur
the phase transition should occur even at lower values of
transverse field,Gc(h0).

Vanishing of the mass gapD(5E12E0 whereE1 andE0
are the energies of the first excited and the ground st
respectively! in the thermodynamic limit is a signature of
continuous phase transition. We obtain the mass gaps
finite chains of lengthL (N5Ld5L, whered the dimen-
sionality is one here!.
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We employ Lanczos’ method to diagonalize the Ham
tonian matrix which is calculated in the basis in whichSz is
diagonal. The field being spatially modulated and also co
mensurate with the lattice periodicity, the system sizes
restricted to specific values for a given wavelength. On
other hand, one requires data for different system sizes f
finite size scaling procedure. Since it is difficult to work wi
large sizes in a diagonalization scheme anyway, we h
obtained the phase diagrams forl52 and 4 only. The maxi-
mum size taken for both cases isL516. The result for a very
large value ofl can be easily guessed.

We indeed find thatD vanishes with 1/L not only for
small values ofh0 but right up to the critical fieldhc
54J/l. The critical pointsGc(h0) can be obtained by ex
trapolation, and a more accurate estimation is done us
finite size scaling of the mass gap, which shows scaling
havior. We defer a detailed discussion on the scaling of m
gaps and nature of transitions and first summarize the res
for the phase diagram.

In Fig. 1, the phase diagrams forl52 and 4 are shown
We have calculated the ferromagnetic order:^m&
5(1/L)(^Si

z& as well as the ‘‘staggered magnetization’’ d
fined as (1/L)(^Si

zhi&/h0. The phase boundary we obta
separates a ferromagnetic phase with nonzero^m& and a
paramagnetic phase with^m&50. However, since the longi
tudinal field is always present, the staggered magnetizatio
nonzero all over the paramagnetic phase.

It is also observed that as soon ashc /J54/l is reached,
the system behaves as if only a field is present and there
no phase transition is observed here for any nonzeroG: the
mass gap remains finite in the thermodynamic limit alm
without any system size dependence. As in some other m
els with competing interactions, in this model also, the zer
order quantum fluctuation destroys the order athc and lifts
the degeneracy.

The entire phase boundary could not be fit to any sim
form; we could obtain the behavior close to the multipha

FIG. 1. The phase boundaries between ferromagnetic and p
magnetic regions are shown for the transverse Ising model
spatially modulated field for two wavelengthsl52 and 4. Near
hc(l)/J54/(l), the boundaries fit to the form@hc(l)2h0#b,
shown by the continuous curves, whereb50.7760.02 and 0.49
60.01 forl52 andl54, respectively.
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QUANTUM PHASE TRANSITION IN THE ISING . . . PHYSICAL REVIEW E63 016112
point quite accurately for bothl52 and l54. Here the
phase boundary appears to be of the form (4/l2h0 /J)b

where b50.7760.02 for l52 and b50.4960.01 for l
54.

For l→`, the critical field hc→0, the ferromagnetic
phase exists only forh050, and the phase boundary wi
coincide with theh050 axis. The exponentb decreases with
l, ultimately vanishing forl→`.

We end this section with a discussion on the scaling
havior of mass gaps and the nature of phase transitions
zero longitudinal field, the finite size scaling for the mass g
gives

D;L2zf „~G2Gc!L
1/n
…, ~5!

where z is the dynamic exponent andn is the correlation
length exponent.z51 and n51 for the one dimensiona
transverse field Ising model. The latter can be mapped
two dimensional classical Ising model.f is a universal scal-
ing function.

We find the above finite size scaling form to be valid f
non-zero values ofh0 in the sense that whenLD is plotted
against@G2Gc(h0)#L1/n the data for different system size
again collapse for any value ofh0 ~see Fig. 2!. The data
collapses are obtained withz51 andn51 for all h0, indi-
cating that the model belongs to the universality class of
two dimensional classical Ising model even for nonzero l
gitudinal modulated fields. Ash0 is increased, the collaps
gets limited to a smaller region. The scaling function d
pends on the value ofh0.

The phase transition points depend on the values of b
G andh0. The plots in Fig. 2 are done by keepingh0 fixed
and varyingG around the critical value. One can study t
scaling the other way also: keepG fixed and varyh0. We
find that there is a collapse of data for different sizes ag
as shown in Fig. 3. The striking feature is that the scal
argument is@h02hc(G)#L1/n with n51. This shows that the
competing longitudinal field scales in the same way as d

FIG. 2. The scaling plot for the scaled mass gapsLzD with @G
2Gc(h0)#L1/n for l52. The four sets correspond to the values
h051.9, 1.8, 1.6, and 1.0 from top to bottom, each showing
collapse of data points forL58, 10, 12, and 16 withz51 andn
51.
01611
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the transverse field. The results forl54 show the same
scaling behavior as in Figs. 2 and 3. We discuss this fea
again in Sec. IV.

One may conclude from the above observations that
phase transitions are continuous everywhere~except atG
50) as the mass gaps vanish continuously and show sca
behavior as in conventional critical phenomenon.

IV. DISCUSSION AND CONCLUSIONS

The Ising model in the presence of a transverse field
a longitudinal field cannot be solved exactly. Recently, m
of the studies on transverse Ising models have involved
domness in the transverse field, interactions or longitud
field. We have considered a very simple model in whi
there are both quantum effects and frustration, where
frustration comes as a result of the modulated nature of
external field and no randomness is involved.

In absence of the transverse field, the system has a m
tiphase point. The degeneracy at the multiphase point in
absence of fluctuations is easily calculated for anyl from
the known result corresponding tol52.

We have obtained the phase diagram of the model in
G2h0 plane at zero temperature using numerical metho
Our results show that a continuous phase transition oc
everywhere except at the multiphase point whereGc50 and
a first order phase transition is known to exist. The transit
at this point is of first order in the sense that the order
rameter ~magnetization! discontinuously vanishes at thi
point. The values of the critical exponentz andn obtained in
this model are identical to those of the transverse Is
model, showing that the periodic longitudinal field is irre
evant. Thus it belongs to the classical two dimensional Is
universality class.

Our conclusions are based on the scaling behavior of
mass gap. As in conventional critical phenomena, it sho
finite size scaling behavior close to the critical point. It is
be noted that according to scaling arguments in class

f
e

FIG. 3. The scaling plot for the scaled mass gapsLzD with
@h02hc(G)#L1/n for l52. The four sets correspond to the valu
of G50.25, 0.45, 0.65, and 0.95 from top to bottom, each show
the collapse of data points forL58, 10, 12, and 16 withz51 and
n51.
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PARONGAMA SEN PHYSICAL REVIEW E 63 016112
critical phenomena, there are only two relevant fields
magnetic systems, temperature~T! and magnetic field (h),
and the correlation length scales as

j5Lg~L1/nt,hL(b1g)/n!. ~6!

The deviation from the critical temperature is denoted bt,
b, andg are the critical exponents associated with the or
parameter and susceptibility respectively andg is a universal
scaling function. Here the fieldh and the temperature hav
different scaling dimensions. There is, however, no critic
ity associated with the uniform ordering fieldh. In the
present model, the two important quantities are the tra
verse field and the competing longitudinal field. The qua
tum fluctuations throughG may be compared to the therm
fluctuations. The roles ofG andT may be considered to b
equivalent; however, the roles of the competing field a
ordering field are completely different. That is why a scali
form as in Eq.~6! will not be valid here. On the other hand
from the study of the finite size scaling of the mass ga
~Sec. III!, it appears that the competing field and the tra
verse field have the same scaling behavior. We claim thi
be a unique feature of the nonordering competing field.

Beyond the multiphase point, the field is dominating, a
no continuous phase transition can exist here; the mass
remains finite in the thermodynamic limit. This is in contra
to the competitive models like ANNNI model, where on
obtains phase transitions beyond the fully frustrated poin
well. This difference is of course due to the different rol
played by interaction and field. The correspondence betw
the Ising model in competing field and the ANNNI mod
mentioned in Sec. II is valid only in one dimension and
the classical limit.

From the present study, however, existence of ot
modulated phases, separated by first order lines, canno
ruled out. Such a possibility is strongest close to the mu
phase point. A closer inspection, e.g., using perturba
methods could be done from which it may also be possibl
verify the behavior of the phase boundary and get an e
d

W
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A few other points need to be mentioned. In the rand

field transverse model, a tricritical point was obtained@11#.
The phase diagram of certain antiferromagnets like FeCl2 in
a uniform field also show a tricritical point. In compariso
our model does not have any such point. Rather, the ph
boundary to the left of the multiphase point is very similar
that of the ANNNI model in higher dimensions. In the latt
also, the next neighbor interaction cannot change the uni
sality class of the Ising model. The mapping to the antif
romagnetic model in the classical limit and subsequent
scription of the ground state assumes that we are conside
hypercubic lattices only, where, in absence of any field
zero temperature, the antiferromagnet will order. This is
true in lattices in which the antiferromagnetic system is g
metrically frustrated~e.g., in a triangular lattice!; such sys-
tems in transverse~and longitudinal! field in two dimensions
have been recently studied@12#.

We have considered only a square wave form for
modulated field in this discrete model. The features sho
not be different for a different form, however, there will b
quantitative changes. In a continuum model, it may be m
convenient to choose a sinusoidal form. More complex s
patterns are obtained in~antiferromagnetic! systems with
long range interactions in a field, e.g., the long range anti
romagnet in a uniform field@13# exhibits a complete devil’s
staircase. It is expected that there will also be very intere
ing features if the modulation in the field is incommensur
with the lattice periodicity.
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