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Quantum phase transitions in the Ising model in a spatially modulated field
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The phase transitions in the transverse field Ising model in a competing spatially modpktiedic and
oscillatory longitudinal field are studied numerically. There is a multiphase point in absence of the transverse
field where the degeneracy for a longitudinal field of wavelengtis [ (1+5)/2]2N* for a system withN
spins, an exact result obtained from the known resulifer2. The phase transitions in the(transverse field
versush, (amplitude of the longitudinal fie)dphase diagram are obtained from the vanishing of the mass gap
A. We find that for all the phase transition points obtained in this waghows finite size scaling behavior
signifying a continuous phase transition everywhere. The values of the critical exponents show that the model
belongs to the universality class of the two dimensional Ising model. The longitudinal field is found to have the
same scaling behavior as that of the transverse field, which seems to be a unique feature for the competing
field. The phase boundaries for two different wavelengths of the modulated field are obtained. Close to the
multiphase point ah., the phase boundary behaves hsh,)®, whereb is alsox dependent.
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[. INTRODUCTION tures leading to novel concepts like the devil's stairdadde
Some interesting and relevant features of the model in the
Competitive interactions in magnetic models can generatelassical limit are discussed in Sec. Il. The phase transitions
frustration leading to the existence of a large number of dein the ferromagnetic model in the modulated field in one
generate statdd]. For example, in the ANNN(axial next dimension at zero temperature driven by quantum fluctua-
nearest neighbor Isingnodel[1—3], the presence of a sec- tions generated by the transverse field are described in Sec.
ond neighbor antiferromagnetic interaction induces a compell. The results are discussed and concluding remarks are
tition. In absence of any fluctuation, a large number of deimade in Sec. IV.
generate states exist at a so called multiphase point. In spin
glassed4], interactions are random, and the mixture of fer- Il. THE MODEL: CLASSICAL GROUND STATE
romagnetic and antiferromagnetic interactions result in frus- AND DEGENERACY
tration and huge degeneracy.
Phase transitions, both classical and quantum, in many of The Hamiltonian for the system witN spins is given by
these systems are well studigt-6]. While the short range
Ising like models do not have any finite temperature phase N N N
transition in one dimension, the phase diagram in higher di- Hq= —JE S |Z+1—,2 hiSIZ—Fz S (1)
mensions often shows very rich structures. The quantum =1 =1 =1
phase transitions are present even in one dimension. It is
interesting to observe that the zeroth order thermal fluctua- The form of the longitudinal periodic fielt; is like this:
tion in two dimensions and correspondingly zeroth ordehi=ho at i=(nA+1) to (2n+1)N2 (n=0,1,... N/A
quantum fluctuations in one dimension can destroy all order- 1) and —h, elsewhere. The wavelength of the field is
at the fully frustrated multiphase poif,5] in ANNNI-like ~ denoted byx. I is the strength of the transverse field.
models. Note that the modulated field can be chosen to be of vari-
The Ising models in transverse field form a special clas®us forms, for simplicity we will choose a square wave form.
of quantum systems and to the best of our knowledge, hav@hile the ferromagnetic interaction tries to align the spins
different features in comparison to quantum spin models irparallelly, the periodic field will try to modulate the system
which the quantum effect comes through the cooperative inspatially. We will consider periodic boundary condition.
teraction. We will first discuss some known results in the context of
In this paper, we will discuss a quantum Ising model withour model in the classical limiti.e., I'=0). The classical
competition, where the competition is generated by the pred-lamiltonian is
ence of an external longitudinal field which is spatially peri-
odic. We choose the periodicity of the field to be commen- N N
surate with the lattice periodicity. The field is also oscillatory Ho=-32 S§%.,— > hS. 2
so that the net field on the entire system sums out to zero. =1 =1
Classically, the ferromagnetic Ising system will not undergo
any phase transition in a uniform field. On the other hand, Let us first take the case=2: the field is positive on odd
spatially modulated fields can play important roles in criticalsites and negative on even. Now one can simply use a trans-
phenomena. Classical systems in periodic poteffia@nkel- formation S5,— — S5, . This effectively makes the Hamil-
Kontorova model for example, show very interesting fea- tonian
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N N 1.2
Ha=32 S'Sf,1—ho2, S, 3
i=1 i=1 16 i
i.e., an antiferromagnetic system in a uniform fi¢®{9] 08 i

which is solved exactly by transfer matrix method.
Again, if we consider the ANNNI chain, the Hamiltonian /o6 |
is

N N 04 =
Hannni= _3121 S|ZS|Z+1+~]221 SEPe (4) 02f 1

The above can be cast to the form of E8). by the transfor- o i 25

mationS'S’, ;— S [1] with J; playing the role oh, andJ, ho/J

the role ofJ. Note thatJ, is positive, describing antiferro- _ )

magnetic interaction by definition. The sign &f is unim- FIG. 1. The phase boundaries between ferromagnetic and para-

portant. magnetic regions are shown for the transverse Ising model in a

The two models described by Eq®) and (4) are well spatially modulated field for t_wo v_vavelengthyz and 4. N(;:ar
studied[8,1,3 and they have similar classical ground statesc(*)/J=4/(A), the boundaries fit to the foinﬁhco‘)_h(’] ’
up toJ/hy=0.5(or J,/J;=0.5), the system is antiferromag- ihown by the continuous curves, whese-0.77.-0.02 and 0.49
netic (ferromagnetic for ANNNI whed;>0), and paramag- +0.01 forh =2 andx =4, respectively.
netic (modulated for ANNNJ beyond this value. An infinite ) ) _
number of degenerate states exist at this point. The degen- e employ Lanczos’ method to diagonalize the Hamil-
eracy can be calculated exac{l§,8] and is equal toN  tonian matrix which is calculated in the basis in whighis
where 7= (14 y5)/2. In the language of the original classi- diagonal. The_ field beln_g spatlally_modulated and also com-
cal model defined in2) with A=2, one has ferromagnetic mensurate with th_e lattice per|od|C|_ty, the system sizes are
phase uptd,/J=2 and paramagnetic phase fog/J>2. restricted to specific _values for a given wavelength_. On the
Even when\ #2, one can rescale the system by a facto@ther hand, one requires data for dl_ffgrent.system sizes for a
of \/2 so that the Hamiltonian is effectively written as in Eq. finite size scaling procedure. Since it is difficult to work with

(3). It can easily be checked that the multiphase point is noW&'9€ Sizes in a diagonalization scheme anyway, we have
ath,/J=4/\ and the degeneracy given b§V/. obtained the phase diagrams for 2 and 4 only. The maxi-

It is extremely important to note here that although theMum size taken for both caseslis-16. The result for a very
antiferromagnetic and ferromagnetic systems have identicAf"9€ value ok can be easily guessed.
critical behavior, the presence of a field makes things drasti- W€ indeed find that\ vanishes with 1/ not only for
cally different. Therefore the modulated field in the ferro- Small values ofhy but right up to the critical fieldh,
magnetic system is effectively a uniform field in the mapped=4J/\. The critical pointsl’¢(ho) can be obtained by ex-
antiferromagnetic system. We will specifically take the inter-{rapolation, and a more accurate estimation is done using

action to be ferromagnetic in order to avoid any ambiguity or/iNit€ size scaling of the mass gap, which shows scaling be-
confusion. havior. We defer a detailed discussion on the scaling of mass

gaps and nature of transitions and first summarize the results
for the phase diagram.

In Fig. 1, the phase diagrams far=2 and 4 are shown.
We have calculated the ferromagnetic orde¢m)

There are two limits in which the results are exactly =(1/L)=(S) as well as the “staggered magnetization” de-
known for the quantum Hamiltoniafi) at zero temperature. fined as (1L)=(S’h;)/hy. The phase boundary we obtain
The classical limitl'=0 is already discussed. In the limit separates a ferromagnetic phase with nonZend and a
ho=0, the problem is also exactly solv¢dO]: there is a paramagnetic phase witfm)=0. However, since the longi-
phase transition at a finite value of the transverse fieldtudinal field is always present, the staggered magnetization is
I'.(0)/J=1. This is a quantum critical point and the phasenonzero all over the paramagnetic phase.
transition is continuous in nature. In a spatially periodic and It is also observed that as soontagJ=4/\ is reached,
oscillatory longitudinal field which is competing in nature, the system behaves as if only a field is present and therefore
the phase transition should occur even at lower values of theo phase transition is observed here for any nonkerthe
transverse fieldl";(hg). mass gap remains finite in the thermodynamic limit almost

Vanishing of the mass gap(=E;—E, whereE; andE,  without any system size dependence. As in some other mod-
are the energies of the first excited and the ground statels with competing interactions, in this model also, the zeroth
respectively in the thermodynamic limit is a signature of a order quantum fluctuation destroys the ordehatand lifts
continuous phase transition. We obtain the mass gaps fdhe degeneracy.
finite chains of length. (N=L%=L, whered the dimen- The entire phase boundary could not be fit to any simple
sionality is one hene form; we could obtain the behavior close to the multiphase

. QUANTUM PHASE TRANSITION AND PHASE
DIAGRAM AT T=0
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FIG. 2. The scaling plot for the scaled mass gaps with [T FIG. 3. The scaling plot for the scaled mass gagA with

—T¢(hg) LY for A=2. The four sets correspond to the values of [h,—h.(I')]JL*” for A\=2. The four sets correspond to the values
ho=1.9, 1.8, 1.6, and 1.0 from top to bottom, each showing theof I'=0.25, 0.45, 0.65, and 0.95 from top to bottom, each showing
collapse of data points fdc=8, 10, 12, and 16 witlz=1 andv the collapse of data points far=8, 10, 12, and 16 witz=1 and
=1. v=1.

point quite accurately for both =2 and\=4. Here the the transverse field. The results far=4 show the same
phase boundary appears to be of the form\(4h,/J)®  scaling behavior as in Figs. 2 and 3. We discuss this feature
where b=0.77+0.02 for A\=2 and b=0.49+0.01 for A again in Sec. IV.
=4. One may conclude from the above observations that the
For N—w, the critical fieldh.—0, the ferromagnetic phase transitions are continuous everywh@mecept atl’
phase exists only foh,=0, and “the phase boundary will =0) as the mass gaps vanish continuously and show scaling
coincide with theny=0 axis. The exponerit decreases with  behavior as in conventional critical phenomenon.
\, ultimately vanishing fol —oo.
We end this section with a discussion on the scaling be-
havior of mass gaps and the nature of phase transitions. In IV. DISCUSSION AND CONCLUSIONS

zero longitudinal field, the finite size scaling for the mass gap The Ising model in the presence of a transverse field and
gives a longitudinal field cannot be solved exactly. Recently, most
of the studies on transverse Ising models have involved ran-
A~L7# (T =T L"), (5 domness in the transverse field, interactions or longitudinal
field. We have considered a very simple model in which
where z is the dynamic exponent and is the correlation there are both quantum effects and frustration, where the
length exponentz=1 and v=1 for the one dimensional frustration comes as a result of the modulated nature of the
transverse field Ising model. The latter can be mapped to external field and no randomness is involved.
two dimensional classical Ising modélis a universal scal- In absence of the transverse field, the system has a mul-
ing function. tiphase point. The degeneracy at the multiphase point in the
We find the above finite size scaling form to be valid for absence of fluctuations is easily calculated for an§rom
non-zero values ofiy in the sense that whelnA is plotted  the known result corresponding o=2.
against ' —I'.(ho) JLY" the data for different system sizes  We have obtained the phase diagram of the model in the
again collapse for any value df, (see Fig. 2 The data TI'—h, plane at zero temperature using numerical methods.
collapses are obtained with=1 andv=1 for all hy, indi-  Our results show that a continuous phase transition occurs
cating that the model belongs to the universality class of th@verywhere except at the multiphase point whége=0 and
two dimensional classical Ising model even for nonzero lon-a first order phase transition is known to exist. The transition
gitudinal modulated fields. AR, is increased, the collapse at this point is of first order in the sense that the order pa-
gets limited to a smaller region. The scaling function de-rameter (magnetizatioh discontinuously vanishes at this
pends on the value dfj. point. The values of the critical exponenand v obtained in
The phase transition points depend on the values of botthis model are identical to those of the transverse Ising
I' andhg. The plots in Fig. 2 are done by keepihg fixed = model, showing that the periodic longitudinal field is irrel-
and varyingl’ around the critical value. One can study the evant. Thus it belongs to the classical two dimensional Ising
scaling the other way also: kedp fixed and varyhy. We  universality class.
find that there is a collapse of data for different sizes again, Our conclusions are based on the scaling behavior of the
as shown in Fig. 3. The striking feature is that the scalingmass gap. As in conventional critical phenomena, it shows
argument ig ho— h.(T") JL¥” with »=1. This shows that the finite size scaling behavior close to the critical point. It is to
competing longitudinal field scales in the same way as doebe noted that according to scaling arguments in classical

016112-3



PARONGAMA SEN PHYSICAL REVIEW E63 016112

critical phenomena, there are only two relevant fields formate ofb defined in Sec. lll.
magnetic systems, temperatuf® and magnetic field i), A few other points need to be mentioned. In the random
and the correlation length scales as field transverse model, a tricritical point was obtairéd].
The phase diagram of certain antiferromagnets like FeCl
— 1/v. (B+vy)lv ! . S . K
¢=Lg(Lt,hLImEE). ©6) a uniform field also show a tricritical point. In comparison,

The deviation from the critical temperature is denoted;by ©OUr model does not have any such point. Rather, the phase
8, andy are the critical exponents associated with the ordePOundary to the left of the multiphase point is very similar to
parameter and susceptibility respectively anid a universal that of the ANNNI model in higher dimensions. In the latter
scaling function. Here the fiell and the temperature have also, the next neighbor interaction cannot change the univer-
different scaling dimensions. There is, however, no critical-Sality class of the Ising model. The mapping to the antifer-
ity associated with the uniform ordering field In the romagnetic model in the classical limit and subsequent de-
present model, the two important quantities are the transscription of the ground state assumes that we are considering
verse field and the competing longitudinal field. The quan-hypercubic lattices only, where, in absence of any field at
tum fluctuations through’ may be compared to the thermal zero temperature, the antiferromagnet will order. This is not
fluctuations. The roles df and T may be considered to be true in lattices in which the antiferromagnetic system is geo-
equivalent; however, the roles of the competing field andmetrically frustratede.g., in a triangular lattie such sys-
ordering field are completely different. That is why a scalingtems in transvers@nd longitudinal field in two dimensions
form as in Eq.(6) will not be valid here. On the other hand, have been recently studi¢di2].
from the Study of the finite size Scaling of the mass gaps \We have considered 0n|y a square wave form for the
(Sec. lI, it appears that the competing field and the transmodulated field in this discrete model. The features should
verse field have the same scaling behavior. We claim this teot pe different for a different form, however, there will be
be a unique feature of the nonordering competing field.  quantitative changes. In a continuum model, it may be more
Beyond the multiphase point, the field is dominating, andconvenient to choose a sinusoidal form. More complex spin
no continuous phase transition can exist here; the mass I¥atterns are obtained ifantiferromagnetic systems with
remains finite in the thermOdynamiC limit. This is in Contrast|ong range interactions in a f|e|d, e.g., the |Ong range antifer-
to the competitive models like ANNNI model, where one romagnet in a uniform fieli13] exhibits a complete devil's
obtains phase transitions beyond the fully frustrated point agtajrcase. It is expected that there will also be very interest-

well. This difference is of course due to the different rolesing features if the modulation in the field is incommensurate
played by interaction and field. The correspondence betweegith the lattice periodicity.

the Ising model in competing field and the ANNNI model
mentioned in Sec. Il is valid only in one dimension and in
the classical limit.

From the present study, however, existence of other
modulated phases, separated by first order lines, cannot be The author is grateful to S. Dasgupta, A. Dutta and B. K.
ruled out. Such a possibility is strongest close to the multi-Chakrabarti for very useful and enlightening discussions and
phase point. A closer inspection, e.g., using perturbatiorsuggestions. She also thanks |. Bose for comments. The
methods could be done from which it may also be possible teomputational work was done on an Origin200 machine at
verify the behavior of the phase boundary and get an estithe Calcutta University Computer Center.
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