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Dynamic ultrametricity in spin glasses
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We investigate the dynamics of spin glasses from the “rheological” point of view, in which aging is
suppressed by the action of small, nonconservative forces. The different features can be expressed in terms of
the scaling of relaxation times with the magnitude of the driving force, which plays the role of the critical
parameter. Stated in these terms, ultrametricity loses much of its mystery and can be checked rather easily.
This approach also seems a natural starting point to investigate what would be the real-space structures
underlying the hierarchy of time scales. We study in detail the appearance of this many-scale behavior in a
mean-field model, in which dynamic ultrametricity is clearly present. A similar analysis is performed on
numerical results obtained for a three-dimensional spin glass: In that case, our results are compatible with
either that dynamic ultrametricity is absent or that it develops so slowly that even in experimental time-
windows it is still hardly observable.
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[. INTRODUCTION ing the coupling of replicas. Their simulatigtogether with
their argument then suggests a situation for three dimen-
A remarkable feature of mean-field models of spin glassesions similar to the one observed in mean-field models.
is the fact that pure states are organized in a hierarchical From the experimental point of view, one obviously can-
way. Given three equilibrium configuratioi,2,3 they de-  not use the method ¢f.2]. Moreover, noise autocorrelations
termine a triangle whose sides are measured by the overlapse extremely difficult to measure, but one can check the
012, Q13 andg,s. If the configurations are chosen with the version of Eq.(1) involving the response functions]:
Gibbs weight then the two smallest overlaps are equal. This
property, valid in the thermodynamic limit, defines an ultra- MT™™M(t)|, — =min{MT™™(t})[; - ,MTRM(t,)], _.},
metric spacd1-3]. vl v v @)
A first question to ask is whether ultrametricity exists in

finite-dimensional systems. Numerically, this is investigatedyhere MT*M(t,)|, _, is the thermoremanent magnetization
w b

by searching low temperature ground states of very Smalzlat time t, when the field was cut off at time,. Such a

systems, and looking for an ultrametric organization betwee'?elation is not observed experimentallydeed, the fit
them[4]. Experimentally, however, spin glasses are always P '

out of equilibrium, and another relevant question may be

i ici i ) h(ta)
what signatures of ultrametricity can be observable in a non MTRM(t )|, _, =M 3)
equilibrium system in the thermodynamic limit. In a relaxing M= h(tp)
(aging mean-field system, it has been shown that ultra-
metricity would manifest itself in the dynamical behavior works very well for suitable function&(t) [8], and it is
[5-8]: the correlation functions at three timég>t,>t; incompatiblewith dynamic ultrametricity.

>1, C(tq,ty), C(t,,t3), andC(t4,t3) satisfy the relation As has been often remarked, glassy dynamics can be stud-
ied in two complementary forms. One can study the relax-
C(tq,t3)=min{C(t;,t5),C(ts,t3)}. (1) ational aging system—and then the large parameter is the

waiting timet,,—or one can drive the system in such a way
This property is often termed “dynamic ultrametricity.” A that it becomestationary[13—15. In this second “rheologi-
link between dynamic and static ultrametricity has been eseal” form, the relevant parameter is the intensity of the driv-
tablished by Franet al.[9], who showed that the existence ing force. Superconducting vortex systems with disorder
of an ultrametric solution from the dynamic point of view have been studied this wd{6,17: in the presence of cur-
implies, under certain assumptions, the hierarchical organirent the vortices are driven by a Lorentz force. In a spin
zation of pure states in short-range systems. However, we agdass, though less obvious to implement in experiments, the
not aware of any report of dynamical ultrametricfip the  role of a “stirring” force can be played by nonsymmetric
form (1)] in a simulated finite-dimensional system, or in ex- couplings[18—-20.
periments[8,10|. The reason may be that dynamic ultra- Consider a system to which some nonconservative force
metricity such as described i) is extremely difficult to  of strengthe is added. It is by now well established that in a
observe numerically in an aging systéfri]. Hence, for the quench experiment, after some transient, the system becomes
three-dimensiondl3D) Edwards-Anderson model, Franz and stationary. If the system is glassy, the relaxation times in the
Ricci-Tersenghj12] resorted to an indirect argument involv- stationary regime will diverge as— 0. (The time necessary
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to achieve stationarity is of the same order, and will divergechical scaling in a very straightforward way. In the stationary
as well—we will not study this in the present papéndeed, case, dynamic ultrametricity simply differs from simple scal-
we have that correlations decay for smalhs C(t) = Cy(t) ing in that to make the correlation curves for different small
+Cq(t,e), where the subindices denote “fast” and “slow.” & collapse,one has to rescale ) instead of t with a func-
[Recall that since we are in a stationary state, all the function of .

tions depend on a single time argumeRt;(t) represents the Let us emphasize that such a simple statement of ultra-
“cage” motion, or the fluctuations inside a domain, and is metricity is not possible in the aging case. Consider, as an
not affected by a small perturbatio@4(t,e) is the slow example, an aging system with correlations evolving as
motion, in which the system moves along the “almost flat” C(7+t,,,t,) = In(t,)/In(t,+ 7), which isnonultrametricsince
directions that are responsible for agifegg., structural rear- C(t3,t;)=C(t3,t5)* C(t,,t;) [as opposed to Eql)]. If we
rangements in a glass, domain wall motions in coarseningcompare the time-differencegC) to reach two correlation
The Edwards-Anderson parameter is given by valuesC,<C,, itis easy to find

=lim;_.lim,_,C(t). A similar decomposition holds for

MTRM(t).
The dynamic ultrametricity discussed above becomes ex- 7(Cyq) () Ve, o )
tremely simple in terms of the scaling 6f(t,e) ase—0. 7(Cy) w o
One possibility is indeedimple scaling v
C _ t Hence, a criterion likg6) with t,, playing the role of the
(te)=fl =, (4) : . . .
t(e) large parameter igot applicable in the aging case, and one
has to go back to Eq1).
where t(s)—o when e—0, andf is a scaling function. Our aims in this paper are the following. _
Whenever Eq(4) holds, we have that for two values of the (i) Within mean field, the solution exhibiting dynamical
correlationC;<C,<q: ultrametricity relies on an asymptotic analysis of the dynami-
cal equations involving two-point correlation and response
t(Cy) functions, which may thus be questionable. We will show
t(C,) gjo constant, (®  that this analysis is indeed correct by solving numerically the

dynamical equations governing the driven dynamics of a
mean-field spin glass in the stationary regime. This is done
on a very wide range of time scales, making us confident that
the asymptotic solution is the correct one.

(i) Since ultrametricity should hold strictly in the
asymptotic limit of zero driving forcéor equivalently in the
infinite waiting time limit in the aging cageit is important
to study also the preasymptotic regime to understand how
t(Cy) ultrametricity gradually develops, and how a full hierarchy'
(C,) — (6) of time scales appears. We analyze then this preasymptotic

2/ e-0 regime in detail, thus characterizing the onset of ultrametric-
ity.

) : -~ (iii) Having the mean-field dynamical behavior in mind, it
since, in the limit ¢e—0, one has C(t(C1)*+1(C2)) s very tempting to see if something similar happens in a
~C(t(C4))=min{C(t(C4)),C(t(C7))}, which is the appli-  finitedimensional system. We have then performed a Monte
cation of Eq.(1) to a stationary situation. This point iS 4o simulation of the 3D Edwards-Anderson model with
discussed in more detail in Seg:. 1] C'. The two .foIIo_wmg asymmetrical couplings. As icunfortunately usual in 3D

examples illustrate our discussion. Simple scaling is, forspin glass simulations, our numerical results may be inter-
smalle, preted in two different ways. They are indeed compatible
t _ with an extremely slow appearance of dynamic ultrametric-

Cs(t)~f(——) & H(C)~1t(e)j(C), (7) ity, i.e., much slower than in the mean-field case. But an

t(e) alternative view is that there is asymptotically only one rel-

evant time scale, or, in other words, that dynamic ultra-
metricity is not present at all. In both cases the conclusion is
that even if one assumes that ultrametricity is present, it has

where the relatiolC(t) has been inverted to giv€C). The
behavior of Eqs(4) and (5) is not the only possibility. An
alternative would be thaE(t) is the sum of several terms of
the type(4), each having a different scaling with An ex-
treme example of this is theltrametric law, which for all
C,<C,<q results in

The relationship of this property to E¢l) is immediate

wherej(C) is the inverse function df while dynamic ultra-
metricity may be obtained with the smallscaling

. In(t) not fully developed for experimentally accessible time win-
In[t(C)]~t(e)j(C) <« Cs(t)~f(— ) , (8  dows.
t(e) The paper is organized as follows. In the next section, the

o - mean-field model under study is presented, and its preasymp-
where t(e) may diverge withe—0 as, for examplet(g) totic behavior is detailed in Sec. Ill. Section IV presents our
~g~2andj(C) is a positive decreasing function 6f Equa-  numerical results in three dimensions and Sec. V contains
tion (8) clearly implies(6) and(1), and expresses the hierar- our conclusions.
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II. A MEAN-FIELD DRIVEN SPIN GLASS

fe— Jirheig g 15
A. Model ' jl<'2<jk—1 i i1 i1 (15
f1eik-1#i

We focus in this paper on a mean-field spin glass model
first introduced in Ref[21], where the statics was solved. 1o parametes controls the strength of the force. The cou-
The equilibrium dynamics was recently worked ¢2g]. It L~ - . .

plings J’'s in the driving force are random Gaussian vari-

consists of a slight modification of the spherigadspin ) o ;
model. We consider indeel continuous variables; (i at_)les, symmetrical at.)OUt the permutationsjgf (. . .jx-1).
with mean 0 and variance

=1,... N) interacting through the Hamiltonian
- NI LSE S TESRR (S k! I AR (S R AR IS e
(16)
In this expression, thd’s are random Gaussian variables, ] ) ]
symmetrical about the permutation of(...,,) with  These couplings are partially uncorrelated and contain thus
mean zero and variance P an antisymmetrical part. This makes it impossible to write

the driving force as the derivative of an energy. The param-
eter u(t) ensures the spherical constraint amg(t) (i
(11  =1,...N) are random Gaussian variables with 0 mean and
variance I, whereT is the temperature of the heat bath.
o ) ) The dynamics of the model is better analyzed in terms of
so that the thermodynamic limit is well defined. A sphericaline autocorrelation functio®(t,t')=3(s;(t)s;(t"))/N and
constraints . ;s7(t) =N is, moreover, imposed on the spins. the response functioR(t,t')==(s;(t)/57;(t"))/N, since
It is convenient to define also the function in the thermodynamic limitN—o, C(t,t’) and R(t,t")
verify closed Dyson equationi8]. The presence of the non-
conservative force makes it possible to replace two-time
functionsC(t,t") with single argument function€(t—t’),
and the following equations are obtained:
The interesting case is when quadratic couplings are present
together with quartic and/or higher-order interactions. It was dc(t) _
shown that the model belongs then to the universality class a
of the Sherrington-Kirkpatrick modéR1,22: it has a con-
tinuous transition between a paramagnetic phase and a spin
glass phase characterized by a full replica symmetry pattern
and a nontrivial probability distribution of overlag3(q).

2
37 p!Jy

11"‘jp: ZNpil,

1 el
9(C)=5 pzz J2CP. (12)

—,uC(t)+fOtdt’E(t—t’)C(t’)

+ Jmdt’[E(H—t’)C(t’)—i—D(t+t’)R(t’)],
0

Quantitatively, below the transition, one has dR(t) ¢
Tz—,uR(tHf dt'S(t—t")R(t"),
(C<Q) fcd "P(q")=T 9"(C) (C>q)=1 i
X = =T———; X =1,
q 0 q q 2(gn(C))3/2 a -
(13 ,u=T+f dt'[D(t")R(t")+2(t")C(t")],
0

whereq is the Edwards-Anderson parameter. This holds only
if J, is big enough thak’(C)=P(C)>0. We consider in . ,K o1 .,

the following the combination of second- and sixth-order Dt)=g"(C))+e EC(t) » 2(H=g"(CORO).
terms, keeping then only, and Jg different from zero. In (17

this particular case, one h@s=J, (independent odg). The

positivity of x'(C) gives, moreover, the inequalit;&f3 These integrodifferential equations are associated with initial
<J2/15. conditions C(0)=1, R(0")=1 and with the condition
R(t<0)=0 (causality. The use ofC(—t)=C(t) in the
derivation of Egs.(17) made these equations noncausal in

) _ o the time difference, as can be seen from the last integral in
To study the driven dynamics of the model, it is usual tothe equation folC(t).

consider a Langevin equation

B. Driven dynamics

si(t C. Asymptotic solution of the dynamical equations

SH e
ot ~rUsO= osi(t) Tl O+ m). (14 In order to make the paper self-contained, and to set our
notations, the asymptotic analysis of E¢s?) is now briefly
As discussed in the Introduction, we take for thenconser- recalled. A more detailed computation can be found5h
vative) driving force “Asymptotic analysis” means that the limig—0 is taken.
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The first step of the analysis consists in making the depossible to rewrite Eqs(19) in such a way that the time
composition C(t) =Cg(t) + C¢(t) and R(t)=Rq(t) +R¢(t) disappears:
between a fast and a slow part, and to derive the equations
verified by each part. The equations for andR; are solved 0= — LC i 1_—qg’(C )
by making the ansatz that they satisfy the fluctuation- 1-q % T s
dissipation theorenFDT) TR;(t) = —dC;(t)/dt. Taking the

limit t—oo gives then the following relation:

+@1’(q)—g’(l)_ T
M T _1_q!

1(q —
T jc dCg"(CLX(CLT(CL,Cy)

(18) 1(Cs -
+ 1] Taexcengiesie, o
whereqg=lim,_,lim,_,C(t) is the Edwards-Anderson pa-

ify: 1 Cs [ ’ Ty, ’
rameter. The slow parts verify: _ TL dClg"(CLF[F(Cs,CL)1,

dCS(t) ! ’ ’ ’
TZ—MCS(t)+det S (t—=t")C4(t") T —q
0=— HF[CS]‘F ?H[CS]
+f dt’'[S4(t+1")Cy(t’) +Dg(t+1t")R(t")] 1(a , R
0 + ffc dC¢g"(CX(C)F[F(Cg,Cy)],
"(1)—g’ 1- °
+ 9 64 2,0, :
F[Cs E—f dCiX(CY),
CS
dRs(t) t
d—:_MRs(t)“‘f dt’Sg(t—t")Ry(t") q
t 0 H[C¢]=— fc dC.X(CL)g"(CL), (22)
9'(1)-g'(q) -q )
t—= RO+ ?Es(t). where Eq.(18) has been used.
The last step consists in computing explicyandf from
" Egs. (22). This is done by introducing “fixed points” of
u=T+ fo dt'[Dy(t)R(t") +24(t")C(t')] [5]. A fixed pointq* of f satisfies
' ) f(a*,0")=q". (23
9'(1)—ag’(a) ) . . .
+f, In the stationary context we are discussing, the physical

meaning of such values of the correlation is very clear, since
from the definition off

_ q"=Cs()=Cy(2t) =f(Cs(1),Cy(1))=Cy(1), (29
The second step stems from the observation that once the
first-order derivatives are dropped ofthich is of course ~Which simply means thay™ is a plateauin the correlation
justified in the slow regime the above equations become function. Two such trivial fixed points aig=0 andq=1. It
invariant under a reparametrization of timesh(t). This is then rather straightforwarfb] to solve Eqs.(22). This
suggests thatC; and Ry are related through a 9ivesX(C) for Ce[0a],
reparametrization-invariant formula, namely,

Ds(1)=g"(C(1)), Z()=g"(C{t)Rs(1). (19

g/H(C)
X(C)=T ——, 25
X(C_F(t)) dc;t(t). 20 (C) 2 () (25

and the matching with the FDT regin@®(C>q) = 1) deter-
This amounts to an extension of the FDT to this nonequilibmines q which satisfiesT=(1—q)+/g"(q). The fact that
rium situation[14] by the introduction of an effective tem- x(C) coincides withx(C) [Eq. (13)] is a remarkable prop-
peratureT (C)=T/X(C). In the same spirit, the functioh  erty of this class of mean-field spin glass mod&®]. The
defining “triangles™ is introduced: properties off are also obtained. It is first shown thetC
e[0,], f(C,C)=C, and there is hence a continuum of
fixed points. Crudely speaking, it can be said that, in the

. ] ] ~asymptotic limit, each value a€<q corresponds to a pla-
Let us emphasize that the main assumption of the analysis {gay value in the correlation functidin the sense that the

that the functionX(Cs, &) andf(C,,C;,¢) have a continu-  correlation will not decay below this value in a finite time
ous limit whene—0. It is also convenient to define the This ultimately means that we will have a behavior as de-
function f: C4(t;)=f(C4(ty),Cs(t1+15)). This makes it scribed by Eq(6). It is also shown that

Ry(t)=—

Co(t1 1) =F(C(t1),Cs(t2)). (21)
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FIG. 1. Correlation function as a function of time for different FIG. 2. Two different ratios of relaxation times as a function of
values of the asymmetry for the mean-field model,Tat0.25.  the asymmetry for the mean-field model. Note that the vertical axis
From left to right,e=2.25, 0.8, 0.5, 0.35, 0.248. The horizontal js i a |ogarithmic scale. Also plotted is the divergence (@F.5).
dagf;%(i line is the value of the Edwards-Anderson parameter The fines are fits of the forrf27), with j(C) as a fitting parameter.

by Eq.(6). In order to test this separation of time scales, we
Y(C;,C,) €[0,112—[q,1]> f(C,;,Cy)=min{C,,C,}, compute the ratio of relaxation times for two fixed val@s
(26)  andC, of the correlation as a function ef Two such ratios
are represented in Fig. 2, where it is clearly seen that they
which is the ultrametric relation, as presented in the Introindeed diverge in the small asymmetry limit. A consequence
duction. is that the relaxation cannot be represented by a single time

The conclusion of this section is that, apart from thescale, but involves a full hierarchy of them. In particular, a
trivial short-time behavior wher€(t)>q and FDT holds stretched exponential fit such as the one proposé¢tidhfor
X(C>q)=1, the relaxation belovy is characterized by a the Sherrington-Kirkpatrick model with asymmetry can only
hierarchy of time scales and a nontrivial FDI(C<q) be approximate.
<1. The numerical solution of the dynamical equations sug-

gests the following dependence 16K Q:

1. ULTRAMETRICITY FROM DYNAMICAL — .. - 065
CORRELATIONS t(C)~exdt(e)j(C)]; t(e)~e "™ 27

As stated in the preceding section, the asymptotic solutiot this expressionj(C) is a positive decreasing function of
of the dynamical equations exhibits a “many-plateau patthe correlation. It plays the same role as in the example of
tern,” which is an unusual feature. To see how thisthe Introduction, Eq.(8). Numerically, j(C) is consistent
asymptotic solution is approached, Eq$7) were solved Wwith a linear variation:j(C)=j(C=0)—bC. For a fixed
numerically, in the particular case wherg(C)=C?2  valueC of the correlationt(C) grows faster than a power
+C%30, andk=2. We shall mainly work atT=0.25 law of &, as was noted in Ref19]. It also follows that
=0.25T;, where the Edwards-Anderson parameterqis (Cy)
=0.787. To solve these equations, a combination of numeri- v ; o v
cal methods of Refd23,24 has been used. t(Cy) X ((Cy) =i (CDt(e)], (28)

which means that the ratios of two time scales may be fitted
by the same functional forn27) as the time scales them-
The first element that is missed by the above analysis iselves. This is also displayed in Fig. 2.
the functional form of the correlation functions. They are Let us note that the scalin@7) is very reminiscent of the
depicted in Fig. 1, for different values of and for T “creep” regime scaling for vortex glassé$6], with the role
=0.25. As expected, two different regimes are clearlyof & played by the current an@ a measure of the average
present. FOC(t)>q, the relaxation depends very weakly on squared transverse displacements along the vortex.
the asymmetry, while fo€(t)<q, the smaller the asymme- The presence of this hierarchy of time scale4d) im-
try, the slower the relaxation. plies that the correlation curves cannot be superimposed by
The main thing that cannot be determined analytically isrescaling the time. This is illustrated in Fig. 3, where the
the precise dependence of the relaxation times on the parartime is rescaled so that the curves meet at the v&ue
eter ¢ that controls the strength of the asymmetry. The=0.3. It can be seen that the curves are more and more
“many-plateau pattern” discussed above means that, in théorizontal aroundC= 0.3, when the asymmetry is decreased.
preasymptotic regiménonzeroe), the correlation will stay On the contrary, if we rescale the logarithm of the time to
for a long, albeit finite, time around the same value. Thismake the curves meet &=0.3 (Fig. 4 we find that the
characteristic time increases with decreasih@s expressed curves tend to collapse. In other wordsifting In(t) (as in

A. Hierarchy of time scales
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FIG. 5. Functionf [Eg. (21)], for the valuee=0.248 in the
mean-field model. The curves shown in tl@, (C,) plane are pro-
FIG. 3. Correlation function for the same values of the asym-jections of horizontal cuts through the surface fof
metry as in Fig. 1. The time is rescaled by0.3) so that curves =0.1,0.2...,0.9.
superpose fo€=0.3. Away from this value, there is no collapse
for smalle. the analysis of the preceding section.

It is interesting to compare these curves with the ones
simple scaling does not make the curves collapse, whileobtained from Ref[15] for a system p-spin with p=3)
stretchingIn(t) does. A similar picture would have been ob- with a single time scale, i.e., without ultrametricity. The re-
tained by choosing any valuee[0,q]. sult is shown in Fig. 7, for correlations that evolve on a

This rescalingor absence therepdf the correlation func-  similar range of time scales to make the comparison relevant.
tions in the driven dynamics of a spin glass is a direct andn this case, the asymptotic analysis reveals that there exists
very simple test of dynamic ultrametricity. Let us emphasizeasymptotically a functiorf defined as above, but it is not
again that, as already mentioned in the Introduction, this igiven by the ultrametric relatiofi26). The difference be-
not true for the aging regime. tween the two systems is very clear from the comparison of
Figs. 6 and 7: in the latter, the functiémapidly saturates to
its asymptotic(nonultrametri¢ value.

To make the analysis of the mean-field dynamics com-

The functionf(C,,C,) introduced in Eq(21) satisfies in  plete, the usual plof5] of the integrated response function
the asymptotic limit the ultrametric relatiaf26). It is then  y(t)=[{dt'R(t") as a function of the correlation function
natural to try to understand its preasymptotic behavior. AC(t), parametrized by the time is done in Fig. 8. As ex-
three dimensional view of this two-variable function is given pected from the above analytical results, the FDT holds for
in Fig. 5, for £=0.248 (the slowest relaxation in Fig.)1  C(t)>q and it is strongly violated for smaller values of the
Also plotted in the plane@,,C,) are the constanft-con-  correlation. It is clear that in the limit of zero asymmetry, the
tours. These contours would be right angles in the limit ofanalytic expression for the functiod(C) that generalizes
vanishing asymmetry. the FDT to nonequilibrium situations will be recovered. The

To see how the functiohevolves towards its asymptotic fact that the same limiting FDT violations happen in gently
value[the ultrametric relatiori26)], the evolution of the con- driven and aging systems has been suggested in[R&f.
tours for differents is represented in Fig. 6. These curves are
very clearly evolving toward right angles, as expected from 1

B. Ultrametric relation and FDT

1 08|
0.8 0.6 [
S
08 04
5%
04 02}
0.2 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
0 1 1 1 G
-2 -1 0 1 2 . A
1n[f]/ 1n[t(0.3)] FIG. 6. Evolution of the projections fdr=0.1, 0.25, 0.4 and 0.6

(see textin the plane C,,C,) for the values of the asymmetry as
FIG. 4. Correlation function for the same values of the asym-in Fig. 1: e=2.25, 0.8, 0.5, 0.35, and 0.248. At each lefiethe
metry as in Fig. 3, but here thegarithm of time is rescaled by upper curve is for the larger asymmetry, and decreasing the asym-
In[t(0.3)]. The collapse for smal is good. metry make the curves move towards right angles.
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T wheres; (i=1, ... N) areN=L? Ising spins located on the
sites of 3D cubic lattice of linear sidg with periodic bound-
. ary conditions. The sunfi,j) runs over nearest neighbors
and theJ’s are chosen randomly from a bimodal distribution
- Jij==1. The model has been extensively studjadl: it
exhibits a second order phase transition at the critical tem-
- peratureT,=1.11+ 0.04 from a paramagnetic to a spin glass
phas€ 25].

To drive the system, a couplirﬁgj is added on each link.
TheJ’s are chosen from a bimodal distributiﬁnz +g, and

are antisymmetricall;; = —J;; . The small parameter con-
trols the strength of the driving force. The spins are ran-
domly sequentially updated through a standard Metropolis
FIG. 7. Evolution of the projections for=0.05, 0.1, 0.2, 0.3, algorithm, and one Monte Carlo step represéwtattempts
and 0.45(see textin the plane C,,C,) for the p-spin model(here  to update a spin. Numerical results are presented for a linear
p=3) studied in Ref[15]. At each levelf, the upper curve is for  sjze L=20 (N=8000 sping where finite size effects are
the larger asymmetry. In this case, the Edwards-Anderson paranpegligible for the time scales investigated hE2é).
eter isq=0.501. The asymmetr{four values are represenfeis The temperature has been chosen such that the Edwards-
chosen such that correlation functions cover a range of time scalegngerson parameter is comparable to the one of the mean-
similar to that of Fig. 1. When the asymmetry is decreased, thefield case studied before. At=0.6=0.54T., the Edwards-
function evolves rapidly towards its limitingnonultrametri¢ shape. Anderson parameter was roughly est(i:mated in an off-
equilibrium simulation[with £=0) through its dynamical
definiton g=lim,_.lim; _.C(t,t,)~0.8 (we had q
=(0.787 in the mean-field studlySimilarly, five different
values of the asymmetry were studied: 0.5, 0.4, 0.3, 0.25,
and 0.2, so that the range of time scales is comparable to the
previous mean-field results. Remarkably, initial conditions
We turn now to the numerical results obtained for a 3Dare irrelevant, since a stationary state is reached after a time
spin glass model, the results of the preceding sections beirtfpat depends on the intensity of the drive. As was already
a guide to investigate its stationary driven dynamics. We us@oted in Ref[27], this is an unusual feature for glassy sys-
the same notations for quantities that play a similar role intems, where cooling procedures are known to be crucial.
the simulation and in the mean-field model, the distinctionMoreover, stationarity makes it possible to average the cor-

0.8 -

0.6 |-

C

04

02

and we have verified here that thimean-field result holds
also for systems with many time scales.

IV. SIMULATION OF THE 3D EDWARDS-ANDERSON
MODEL

between the two cases being clear from the context. relation functions over different initial times, so that very
few averages over the disorder have been necesbariy
A. Model and details of the simulation cally 5), provided the first steps of the simulation are dis-

_ . ) .. carded. Stationarity has been carefully checked throughout
The model under study is defined through its Hamiltonianhe simulation.

H=— 2 JiiSiSj (29 B. Looking for ultrametricity
) The dynamical quantity of interest is the spin-spin auto-
12 : : : : correlation function, which in the TTI regime reads
1 N
| _ B -
~~~~~ C=y 2 (s(t+to)si(to)). (30
0.8 | . .
- ' The overline means that an average over disorder is per-
= 06 7 formed, while(- - -) stands for an average over different ini-
o4 b | tial timestg, all chosen in the TTI regime.
’ The autocorrelation functions for different values of the
02 - asymmetry afT=0.6 are represented in Fig. 9. As for the
mean-field case, two different regimes are present. The short
00 0'2 0'4 0'6 0'8 ] time relaxation towardg]~0.8 is very weakly affected by

the driving force, while the time to relax towards zero dra-
matically increases whes is lowered.

FIG. 8. Parametric plot of the susceptibilitis the correlation The crucial point is to look for the possible presence of
functions for T=0.25 ande=0.8, 0.5, 0.35, and 0.248 for the the ultrametric relaxation pattern described in the preceding
mean-field model. The dashed curve is the analytic result(Zy. ~ sections. We have seen above that a simple test of the pres-
for the limit e—0. ence of ultrametricity is the rescaling of the time. The same

c®)
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1l —— T T T 1
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0.6 - 0.6 |- —
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0.2 |- 0.2 | -
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10° 10! 10? 103 10* 10° 108 0 0.2 0.4 0.6 0.8 1
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FIG. 9. Correlation functions for the 3D Edwards-Anderson  FIG. 11. Test of the functiori for the 3D Edwards-Anderson
model for different values of the asymmetry Tt 0.6. model forf=0.6, 0.4, 0.25, and 0.15. The values of the asymmetry
are the same as in Figs. 9 and 10, and are represented with the same
rescaling that was done in Fig. 3 for the mean-field case i§ymbols. This curve must be compared with Figs. 6 and 7.
now performed for the 3D case in Fig. 10. Although not
perfect, this rescaling works remarkably well for the smallestcide clearly between a limiting smooth—as it is for the
values ofC. It is important to note that even if ultrametricity =3 case—or ultrametricf-function, because interesting
is absent, the values of correlatiorcC=<q (which do not things may happen on time scales that are inaccessible in our
depend on the asymmejrwill not scale together with the simulation time.
C<q portion of the curves. This may be a source of errors if In our opinion, the important point that clearly emerges
the value ofg is unknown. Thus, preasymptotic effects affectfrom the figures is that, on a given time windgwe have
the quality of the rescaling in the regi®@~q, since it can four decades hejgthe relaxation does not appear to be typi-
be seen from Fig. 9 that the plateau is not completely develeal of an ultrametric system and a single-time-scale descrip-
oped. All these points may explain why the rescaling is goodion is very accurate. This may explain why dynamic ultra-
only for the smallest values d. metricity has not been observed in aging experiments, which
However, a very slow flattening of the curves around thespan some six decades(100 Hz—10 h).
value C=0.3 cannot be completely excluded from this fig-

ure. But it is very clear that if there is a separation of time C. FDT
scales, then iwvill become evident only if a much larger time . e o )
window is analyzed We have also investigated the way the FDT is violated in

The second interesting quantity to study is the functionthe driven 3D Edwards-Anderson model, since the mean-
f(Cy,C,) introduced in Eq(21). Its evolution for different ~ field theory suggests that these violations are the same as for
values of the asymmetry is depicted in Fig. 11, with the samé&n aging system. To our knowledge, there are no numerical
construction as for Figs. 6 and 7. The functiérindeed confirmations of this prediction for spin glasses in the litera-
evolves, but very slowly when compared to the mean-fieldure. For this purpose, correlation functions have to be com-
case. The quantitative behaviorfdbr the 3D model is more pared to Susceptlblllty curves. The correlation functions are
reminiscent of thep=3 case than of the mean-field spin taken from Fig. 9. The method of computing the susceptibil-

glass case. Once again, this figure does not allow us to ddly is now standard28]. A stationary magnetic fieldh; is
applied at each site at tintg. It is random in space, and we

1 et e et et ettt mr—T —_ take it from a Gaussian distribution with mean 0 and vari-

P T T L —_
° she anceh;h; =h2s{ij}. The staggered magnetization
08 | e=03 - |
eE:ZObQS f 1 N
L m(t) =g 2 s (31
S
041 is recorded for alt>t,. In the linear response regintfeve
work with hy=0.1, as in previous studi¢40,28), the sus-
02 ceptibility is obtained fromm(t) as x(t)=m(t)/hy. The re-
sults are averaged over sevefiabm 50 to 300 realizations
0 PEEETENT BEPR AN]SR Ar] SN A RN B B

of the field, and over different initial timek,. They are
presented in Fig. 12.
The results for the violations of the FDT are clearly very
FIG. 10. Rescaling of the correlation functions of the Fig. 9. Thesimilar to the mean-field ones. These curves exhibit two dif-
rescaled time is such that all the curves meet at the v@®.3.  ferent regimes: for short time<€&q), the FDT is well sat-
This figure must be compared with Fig. 3. isfied, whereas for longer time€&q), it is violated. The

1076 10~ 10~* 10=* 10~ 10! 10 10! 10® 103
£/t(0.3)
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0.5 T T T T justified for mean-field models only as an approximation
Sty S valid in some time window, but do not hold strictly in the

0.4 [ PNy - long time limit. Previous numerical studies of the aging dy-
@ glz o namics of the Sherrington-Kirkpatrick model had pointed out

gl

0.3 _ the lack of simplet/t,, scaling[30], but did not investigate
= the presence of ultrametricity. Since there now exist power-
= 02 | ful algorithms to solve dynamical two-time equations for
) long times[31], it would be interesting to have an analysis of
the aging dynamics of a mean-field ultrametric model fol-
0.1 & lowing the lines introduced in this paper.
K For the 3D spin glass, our simulation suggests that the
00 0'2 0'4 0'6 0'8 '1 stationary driven dynamics is accurately interpreted within a

single time scale relaxation pattern. We cannot decide
whether our results imply an extremely slow appearance of
FIG. 12. Parametric plot of the susceptibility vs the correlationUltrametricity (such that, even at experimental times, it is not
functions for the 3D model for different values of the asymmetry, atfully observable, or its absence. ) ]
T=0.6. The curves saturate, in the small asymmetry limit, to a hether transient or permanent, the single time scale re-
smooth limiting curve. laxation obtained in our 3D simulation is in complete accor-
dance with all the known numerical and experimental studies
curves also clearly saturate to a smooth limiting curve in th&f the aging regime of 3D spin glass¢8,10,33. In all
small asymmetry limit. The shape of this limiting curve is Known cases, two-time functions are indeed very well ap-
compatible with the limiting nontrivial parametric curves Proximated byM(t,t,)=M(t/t,), in contradiction to the
that have already been found in simulations of 3D spindynamical mean-field theory, as we emphasized throughout
glasses in the aging regini28]. The fact that both situations the paper. It is interesting to note that the version of the
(aging and driven dynamigexhibit the same kind of FDT “droplet theory” [33] which predicts the scaling(t.t,)
violations deepens, in our opinion, the physical meaning of~C(IN(t/In(t,)) fails also in reproducing experiments and
the quantityX(C) (the so-called fluctuation-dissipation ratio Simulations, since the logarithmic law is too slow.

o

that can be extracted from this plkg,14,29. Numerical results on 4D spin glasses also show that cor-
relation functions are rather well represented hytg scal-
V. CONCLUSIONS ing in the aging regim¢34], as is found in 3D. It would be

extremely interesting to go back to the 4D simulations with

We have studied in this paper the behavior of spin glasseasymmetrical couplingg20], or even to higher dimensions
in a “rheological” setting, in which the dynamics is station- [35], to study precisely the stationary regime and see if, as in
ary and the control parameter is the strength of the drivingour simulation, there is a single time scale. It would be a
force. We have checked the asymptotic analySis7] for  disappointing result if all the richness of the ultrametric con-
mean-field models through the numerical integration of thestruction in spin glasses were a pibe-c feature.
equations governing the dynamics. This has confirmed the The situation is made even more puzzling by the fact that
presence of a full hierarchy of time scales in the relaxation othis construction and the associated separation of time scales
the correlation, Eq(26), and a “many-time-scale, many- are often invoked to explain the results of temperature cy-
temperature scenarid15]. This scenario can be seen as thecling experiment$8,36]. This is perhaps related to the diffi-
dynamic counterpart of static ultrametricity. Simple scalingculty in reproducing these experimental results with the 3D
time dependencies, such as assumed in Ré&fl could be  Edwards-Anderson model with numerical simulatig8%).
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