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Dynamic ultrametricity in spin glasses
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We investigate the dynamics of spin glasses from the ‘‘rheological’’ point of view, in which aging is
suppressed by the action of small, nonconservative forces. The different features can be expressed in terms of
the scaling of relaxation times with the magnitude of the driving force, which plays the role of the critical
parameter. Stated in these terms, ultrametricity loses much of its mystery and can be checked rather easily.
This approach also seems a natural starting point to investigate what would be the real-space structures
underlying the hierarchy of time scales. We study in detail the appearance of this many-scale behavior in a
mean-field model, in which dynamic ultrametricity is clearly present. A similar analysis is performed on
numerical results obtained for a three-dimensional spin glass: In that case, our results are compatible with
either that dynamic ultrametricity is absent or that it develops so slowly that even in experimental time-
windows it is still hardly observable.
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I. INTRODUCTION

A remarkable feature of mean-field models of spin glas
is the fact that pure states are organized in a hierarch
way. Given three equilibrium configurations~1,2,3! they de-
termine a triangle whose sides are measured by the ove
q12, q13, andq23. If the configurations are chosen with th
Gibbs weight then the two smallest overlaps are equal. T
property, valid in the thermodynamic limit, defines an ultr
metric space@1–3#.

A first question to ask is whether ultrametricity exists
finite-dimensional systems. Numerically, this is investiga
by searching low temperature ground states of very sm
systems, and looking for an ultrametric organization betw
them @4#. Experimentally, however, spin glasses are alwa
out of equilibrium, and another relevant question may
what signatures of ultrametricity can be observable in a n
equilibrium system in the thermodynamic limit. In a relaxin
~aging! mean-field system, it has been shown that ult
metricity would manifest itself in the dynamical behavi
@5–8#: the correlation functions at three timest1.t2.t3
@1, C(t1 ,t2), C(t2 ,t3), andC(t1 ,t3) satisfy the relation

C~ t1 ,t3!5min$C~ t1 ,t2!,C~ t2 ,t3!%. ~1!

This property is often termed ‘‘dynamic ultrametricity.’’ A
link between dynamic and static ultrametricity has been
tablished by Franzet al. @9#, who showed that the existenc
of an ultrametric solution from the dynamic point of vie
implies, under certain assumptions, the hierarchical org
zation of pure states in short-range systems. However, we
not aware of any report of dynamical ultrametricity@in the
form ~1!# in a simulated finite-dimensional system, or in e
periments@8,10#. The reason may be that dynamic ultr
metricity such as described by~1! is extremely difficult to
observe numerically in an aging system@11#. Hence, for the
three-dimensional~3D! Edwards-Anderson model, Franz an
Ricci-Tersenghi@12# resorted to an indirect argument involv
1063-651X/2000/63~1!/016105~10!/$15.00 63 0161
s
al

ps

is
-

d
ll
n
s
e
-

-

s-

i-
re

ing the coupling of replicas. Their simulation~together with
their argument! then suggests a situation for three dime
sions similar to the one observed in mean-field models.

From the experimental point of view, one obviously ca
not use the method of@12#. Moreover, noise autocorrelation
are extremely difficult to measure, but one can check
version of Eq.~1! involving the response functions@5#:

MTRM~ t1!u tw5t3
5min$MTRM~ t1!u tw5t2

,MTRM~ t2!u tw5t3
%,
~2!

whereMTRM(ta)u tw5tb
is the thermoremanent magnetizatio

at time ta when the field was cut off at timetb . Such a
relation is not observed experimentally. Indeed, the fit

MTRM~ ta!u tw5tb
.MS h~ ta!

h~ tb! D ~3!

works very well for suitable functionsh(t) @8#, and it is
incompatiblewith dynamic ultrametricity.

As has been often remarked, glassy dynamics can be s
ied in two complementary forms. One can study the rel
ational aging system—and then the large parameter is
waiting time tw—or one can drive the system in such a w
that it becomesstationary@13–15#. In this second ‘‘rheologi-
cal’’ form, the relevant parameter is the intensity of the dr
ing force. Superconducting vortex systems with disord
have been studied this way@16,17#: in the presence of cur
rent the vortices are driven by a Lorentz force. In a sp
glass, though less obvious to implement in experiments,
role of a ‘‘stirring’’ force can be played by nonsymmetr
couplings@18–20#.

Consider a system to which some nonconservative fo
of strength« is added. It is by now well established that in
quench experiment, after some transient, the system beco
stationary. If the system is glassy, the relaxation times in
stationary regime will diverge as«→0. ~The time necessary
©2000 The American Physical Society05-1
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BERTHIER, BARRAT, AND KURCHAN PHYSICAL REVIEW E63 016105
to achieve stationarity is of the same order, and will dive
as well—we will not study this in the present paper.! Indeed,
we have that correlations decay for small« asC(t)5Cf(t)
1Cs(t,«), where the subindices denote ‘‘fast’’ and ‘‘slow.
@Recall that since we are in a stationary state, all the fu
tions depend on a single time argument.# Cf(t) represents the
‘‘cage’’ motion, or the fluctuations inside a domain, and
not affected by a small perturbation.Cs(t,«) is the slow
motion, in which the system moves along the ‘‘almost fla
directions that are responsible for aging~e.g., structural rear-
rangements in a glass, domain wall motions in coarseni!.
The Edwards-Anderson parameter is given byq
[ limt→`lim«→0C(t). A similar decomposition holds fo
MTRM(t).

The dynamic ultrametricity discussed above becomes
tremely simple in terms of the scaling ofCs(t,«) as«→0.
One possibility is indeedsimple scaling:

Cs~ t,«!5 f S t

t̄ ~«!
D , ~4!

where t̄ («)→` when «→0, and f is a scaling function.
Whenever Eq.~4! holds, we have that for two values of th
correlationC1,C2,q:

t~C1!

t~C2!
→

«→0
constant, ~5!

where the relationCs(t) has been inverted to givet(C). The
behavior of Eqs.~4! and ~5! is not the only possibility. An
alternative would be thatCs(t) is the sum of several terms o
the type~4!, each having a different scaling with«. An ex-
treme example of this is theultrametric law, which for all
C1,C2,q results in

t~C1!

t~C2!
→

«→0
`. ~6!

The relationship of this property to Eq.~1! is immediate
since, in the limit «→0, one has C„t(C1)1t(C2)…
;C„t(C1)…5min$C„t(C1)…,C„t(C2)…%, which is the appli-
cation of Eq. ~1! to a stationary situation. This point i
discussed in more detail in Sec. II C. The two followin
examples illustrate our discussion. Simple scaling is,
small «,

Cs~ t !; f S t

t̄ ~«!
D ⇔ t~C!; t̄ ~«! j ~C!, ~7!

wherej (C) is the inverse function off, while dynamic ultra-
metricity may be obtained with the small« scaling

ln@ t~C!#; t̄ ~«! j ~C! ⇔ Cs~ t !; f S ln~ t !

t̄ ~«!
D , ~8!

where t̄ («) may diverge with«→0 as, for example,t̄ («)
;«2a and j (C) is a positive decreasing function ofC. Equa-
tion ~8! clearly implies~6! and~1!, and expresses the hiera
01610
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chical scaling in a very straightforward way. In the stationa
case, dynamic ultrametricity simply differs from simple sca
ing in that to make the correlation curves for different sm
« collapse,one has to rescale ln(t) instead of t with a func-
tion of «.

Let us emphasize that such a simple statement of u
metricity is not possible in the aging case. Consider, as
example, an aging system with correlations evolving
C(t1tw ,tw)5 ln(tw)/ln(tw1t), which isnonultrametricsince
C(t3 ,t1)5C(t3 ,t2)* C(t2 ,t1) @as opposed to Eq.~1!#. If we
compare the time-differencest(C) to reach two correlation
valuesC1,C2, it is easy to find

t~C1!

t~C2!
;~ tw!1/C121/C2 →

tw→`

`. ~9!

Hence, a criterion like~6! with tw playing the role of the
large parameter isnot applicable in the aging case, and on
has to go back to Eq.~1!.

Our aims in this paper are the following.
~i! Within mean field, the solution exhibiting dynamica

ultrametricity relies on an asymptotic analysis of the dynam
cal equations involving two-point correlation and respon
functions, which may thus be questionable. We will sho
that this analysis is indeed correct by solving numerically
dynamical equations governing the driven dynamics o
mean-field spin glass in the stationary regime. This is do
on a very wide range of time scales, making us confident
the asymptotic solution is the correct one.

~ii ! Since ultrametricity should hold strictly in th
asymptotic limit of zero driving force~or equivalently in the
infinite waiting time limit in the aging case!, it is important
to study also the preasymptotic regime to understand h
ultrametricity gradually develops, and how a full hierarc
of time scales appears. We analyze then this preasymp
regime in detail, thus characterizing the onset of ultramet
ity.

~iii ! Having the mean-field dynamical behavior in mind,
is very tempting to see if something similar happens in
finite-dimensional system. We have then performed a Mo
Carlo simulation of the 3D Edwards-Anderson model w
asymmetrical couplings. As is~unfortunately! usual in 3D
spin glass simulations, our numerical results may be in
preted in two different ways. They are indeed compati
with an extremely slow appearance of dynamic ultramet
ity, i.e., much slower than in the mean-field case. But
alternative view is that there is asymptotically only one r
evant time scale, or, in other words, that dynamic ult
metricity is not present at all. In both cases the conclusio
that even if one assumes that ultrametricity is present, it
not fully developed for experimentally accessible time w
dows.

The paper is organized as follows. In the next section,
mean-field model under study is presented, and its preasy
totic behavior is detailed in Sec. III. Section IV presents o
numerical results in three dimensions and Sec. V conta
our conclusions.
5-2
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DYNAMIC ULTRAMETRICITY IN SPIN GLASSES . . . PHYSICAL REVIEW E 63 016105
II. A MEAN-FIELD DRIVEN SPIN GLASS

A. Model

We focus in this paper on a mean-field spin glass mo
first introduced in Ref.@21#, where the statics was solve
The equilibrium dynamics was recently worked out@22#. It
consists of a slight modification of the sphericalp-spin
model. We consider indeedN continuous variablessi ( i
51, . . . ,N) interacting through the Hamiltonian

H52 (
p52

`

(
j 1,•••, j p

Jj 1••• j p
sj 1

•••sj p
. ~10!

In this expression, theJ’s are random Gaussian variable
symmetrical about the permutation of (j 1 , . . . ,j p) with
mean zero and variance

Jj 1••• j p

2 5
p!Jp

2

2Np21
, ~11!

so that the thermodynamic limit is well defined. A spheric
constraint( i 51

N si
2(t)5N is, moreover, imposed on the spin

It is convenient to define also the function

g~C![
1

2 (
p52

`

Jp
2Cp. ~12!

The interesting case is when quadratic couplings are pre
together with quartic and/or higher-order interactions. It w
shown that the model belongs then to the universality c
of the Sherrington-Kirkpatrick model@21,22#: it has a con-
tinuous transition between a paramagnetic phase and a
glass phase characterized by a full replica symmetry pat
and a nontrivial probability distribution of overlapsP(q).
Quantitatively, below the transition, one has

x~C,q![E
0

C

dq8P~q8!5T
g-~C!

2~g9~C!!3/2
; x~C.q!51,

~13!

whereq is the Edwards-Anderson parameter. This holds o
if J2 is big enough thatx8(C)5P(C).0. We consider in
the following the combination of second- and sixth-ord
terms, keeping then onlyJ2 and J6 different from zero. In
this particular case, one hasTc5J2 ~independent ofJ6). The
positivity of x8(C) gives, moreover, the inequalityJ6

2

,J2
2/15.

B. Driven dynamics

To study the driven dynamics of the model, it is usual
consider a Langevin equation

]si~ t !

]t
52m~ t !si~ t !2

dH

dsi~ t !
1« f i

nc~ t !1h i~ t !. ~14!

As discussed in the Introduction, we take for the~nonconser-
vative! driving force
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j 1,•••, j k21
j 1 ,•••, j k21Þ i

J̃i
j 1••• j k21sj 1

•••sj k21
. ~15!

The parameter« controls the strength of the force. The co
plings J̃’s in the driving force are random Gaussian va
ables, symmetrical about the permutations of (j 1 , . . . ,j k21),
with mean 0 and variance

J̃i
j 1••• j k21J̃i

j 1••• j k215
k!

2Nk21
; J̃i

j 1••• j k21J̃ j r

j 1••• i ••• j k2150.

~16!

These couplings are partially uncorrelated and contain t
an antisymmetrical part. This makes it impossible to wr
the driving force as the derivative of an energy. The para
eter m(t) ensures the spherical constraint andh i(t) ( i
51, . . . ,N) are random Gaussian variables with 0 mean a
variance 2T, whereT is the temperature of the heat bath.

The dynamics of the model is better analyzed in terms
the autocorrelation functionC(t,t8)[( i^si(t)si(t8)&/N and
the response functionR(t,t8)[( i^dsi(t)/dh i(t8)&/N, since
in the thermodynamic limit,N→`, C(t,t8) and R(t,t8)
verify closed Dyson equations@8#. The presence of the non
conservative force makes it possible to replace two-ti
functionsC(t,t8) with single argument functionsC(t2t8),
and the following equations are obtained:

dC~ t !

dt
52mC~ t !1E

0

t

dt8S~ t2t8!C~ t8!

1E
0

`

dt8@S~ t1t8!C~ t8!1D~ t1t8!R~ t8!#,

dR~ t !

dt
52mR~ t !1E

0

t

dt8S~ t2t8!R~ t8!,

m5T1E
0

`

dt8@D~ t8!R~ t8!1S~ t8!C~ t8!#,

D~ t ![g8„C~ t !…1«2
k

2
C~ t !k21, S~ t ![g9„C~ t !…R~ t !.

~17!

These integrodifferential equations are associated with in
conditions C(0)51, R(01)51 and with the condition
R(t,0)50 ~causality!. The use ofC(2t)5C(t) in the
derivation of Eqs.~17! made these equations noncausal
the time difference, as can be seen from the last integra
the equation forC(t).

C. Asymptotic solution of the dynamical equations

In order to make the paper self-contained, and to set
notations, the asymptotic analysis of Eqs.~17! is now briefly
recalled. A more detailed computation can be found in@5#.
‘‘Asymptotic analysis’’ means that the limit«→0 is taken.
5-3
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The first step of the analysis consists in making the
composition C(t)5Cs(t)1Cf(t) and R(t)5Rs(t)1Rf(t)
between a fast and a slow part, and to derive the equat
verified by each part. The equations forCf andRf are solved
by making the ansatz that they satisfy the fluctuatio
dissipation theorem~FDT! TRf(t)52dCf(t)/dt. Taking the
limit t→` gives then the following relation:

m1
g8~q!2g8~1!

T
5

T

12q
, ~18!

whereq[ limt→`lim«→0C(t) is the Edwards-Anderson pa
rameter. The slow parts verify:

dCs~ t !

dt
52mCs~ t !1E

0

t

dt8Ss~ t2t8!Cs~ t8!

1E
0

`

dt8@Ss~ t1t8!Cs~ t8!1Ds~ t1t8!Rs~ t8!#

1
g8~1!2g8~q!

T
Cs~ t !1

12q

T
Ds~ t !,

dRs~ t !

dt
52mRs~ t !1E

0

t

dt8Ss~ t2t8!Rs~ t8!

1
g8~1!2g8~q!

T
Rs~ t !1

12q

T
Ss~ t !,

m5T1E
0

`

dt8@Ds~ t8!Rs~ t8!1Ss~ t8!Cs~ t8!#

1
g8~1!2qg8~q!

T
,

Ds~ t ![g8„Cs~ t !…, Ss~ t ![g9„Cs~ t !…Rs~ t !. ~19!

The second step stems from the observation that once
first-order derivatives are dropped out~which is of course
justified in the slow regime!, the above equations becom
invariant under a reparametrization of timet→h(t). This
suggests that Cs and Rs are related through a
reparametrization-invariant formula, namely,

Rs~ t !52
X„Cs~ t !…

T

dCs~ t !

dt
. ~20!

This amounts to an extension of the FDT to this nonequi
rium situation@14# by the introduction of an effective tem
peratureTeff(C)[T/X(C). In the same spirit, the functionf
defining ‘‘triangles’’ is introduced:

Cs~ t11t2![ f „Cs~ t1!,Cs~ t2!…. ~21!

Let us emphasize that the main assumption of the analys
that the functionsX(Cs ,«) and f (C1 ,C2 ,«) have a continu-
ous limit when «→0. It is also convenient to define th
function f̄ : Cs(t1)[ f̄ „Cs(t2),Cs(t11t2)…. This makes it
01610
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possible to rewrite Eqs.~19! in such a way that the time
disappears:

052
T

12q
Cs1

12q

T
g8~Cs!

1
1

TECs

q

dCs8g9~Cs8!X~Cs8! f̄ ~Cs8 ,Cs!

1
1

TE0

Cs
dCs8X~Cs8!g9~Cs8! f̄ ~Cs ,Cs8!

2
1

TE0

Cs
dCs8g9~Cs8!F@ f̄ ~Cs ,Cs8!#,

052
T

12q
F@Cs#1

12q

T
H@Cs#

1
1

TECs

q

dCs8g9~Cs8!X~Cs8!F@ f̄ ~Cs8 ,Cs!#,

F@Cs#[2E
Cs

q

dCs8X~Cs8!,

H@Cs#[2E
Cs

q

dCs8X~Cs8!g9~Cs8!, ~22!

where Eq.~18! has been used.
The last step consists in computing explicitlyX andf from

Eqs. ~22!. This is done by introducing ‘‘fixed points’’ off
@5#. A fixed pointq! of f satisfies

f ~q!,q!!5q!. ~23!

In the stationary context we are discussing, the phys
meaning of such values of the correlation is very clear, si
from the definition off

q!5Cs~ t !⇒Cs~2t !5 f „Cs~ t !,Cs~ t !…5Cs~ t !, ~24!

which simply means thatq! is a plateau in the correlation
function. Two such trivial fixed points areq50 andq51. It
is then rather straightforward@5# to solve Eqs.~22!. This
givesX(C) for CP@0,q#,

X~C!5T
g-~C!

2„g9~C!…3/2
, ~25!

and the matching with the FDT regime„X(C.q)51… deter-
mines q which satisfiesT5(12q)Ag9(q). The fact that
X(C) coincides withx(C) @Eq. ~13!# is a remarkable prop-
erty of this class of mean-field spin glass models@5,9#. The
properties off are also obtained. It is first shown that; C
P@0,q#, f (C,C)5C, and there is hence a continuum
fixed points. Crudely speaking, it can be said that, in
asymptotic limit, each value ofC,q corresponds to a pla
teau value in the correlation function~in the sense that the
correlation will not decay below this value in a finite time!.
This ultimately means that we will have a behavior as d
scribed by Eq.~6!. It is also shown that
5-4
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;~C1 ,C2!P@0,1#22@q,1#2 f ~C1 ,C2!5min$C1 ,C2%,
~26!

which is the ultrametric relation, as presented in the Int
duction.

The conclusion of this section is that, apart from t
trivial short-time behavior whereC(t).q and FDT holds
X(C.q)51, the relaxation belowq is characterized by a
hierarchy of time scales and a nontrivial FDTX(C,q)
,1.

III. ULTRAMETRICITY FROM DYNAMICAL
CORRELATIONS

As stated in the preceding section, the asymptotic solu
of the dynamical equations exhibits a ‘‘many-plateau p
tern,’’ which is an unusual feature. To see how th
asymptotic solution is approached, Eqs.~17! were solved
numerically, in the particular case whereg(C)5C2/2
1C6/30, and k52. We shall mainly work atT50.25
50.25Tc , where the Edwards-Anderson parameter isq
.0.787. To solve these equations, a combination of num
cal methods of Refs.@23,24# has been used.

A. Hierarchy of time scales

The first element that is missed by the above analysi
the functional form of the correlation functions. They a
depicted in Fig. 1, for different values of« and for T
50.25. As expected, two different regimes are clea
present. ForC(t).q, the relaxation depends very weakly o
the asymmetry, while forC(t),q, the smaller the asymme
try, the slower the relaxation.

The main thing that cannot be determined analytically
the precise dependence of the relaxation times on the pa
eter « that controls the strength of the asymmetry. T
‘‘many-plateau pattern’’ discussed above means that, in
preasymptotic regime~nonzero«), the correlation will stay
for a long, albeit finite, time around the same value. T
characteristic time increases with decreasingC, as expressed

FIG. 1. Correlation function as a function of time for differe
values of the asymmetry for the mean-field model, atT50.25.
From left to right,«52.25, 0.8, 0.5, 0.35, 0.248. The horizont
dashed line is the value of the Edwards-Anderson parameteq
.0.787.
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by Eq. ~6!. In order to test this separation of time scales,
compute the ratio of relaxation times for two fixed valuesC1
andC2 of the correlation as a function of«. Two such ratios
are represented in Fig. 2, where it is clearly seen that t
indeed diverge in the small asymmetry limit. A consequen
is that the relaxation cannot be represented by a single
scale, but involves a full hierarchy of them. In particular,
stretched exponential fit such as the one proposed in@19# for
the Sherrington-Kirkpatrick model with asymmetry can on
be approximate.

The numerical solution of the dynamical equations su
gests the following dependence forC,q:

t~C!;exp@ t̄ ~«! j ~C!#; t̄ ~«!;«20.65. ~27!

In this expression,j (C) is a positive decreasing function o
the correlation. It plays the same role as in the example
the Introduction, Eq.~8!. Numerically, j (C) is consistent
with a linear variation:j (C). j (C50)2bC. For a fixed
value C of the correlation,t(C) grows faster than a powe
law of «, as was noted in Ref.@19#. It also follows that

t~C1!

t~C2!
;exp@„j ~C1!2 j ~C2!… t̄ ~«!#, ~28!

which means that the ratios of two time scales may be fit
by the same functional form~27! as the time scales them
selves. This is also displayed in Fig. 2.

Let us note that the scaling~27! is very reminiscent of the
‘‘creep’’ regime scaling for vortex glasses@16#, with the role
of « played by the current andC a measure of the averag
squared transverse displacements along the vortex.

The presence of this hierarchy of time scales in~27! im-
plies that the correlation curves cannot be superimposed
rescaling the time. This is illustrated in Fig. 3, where t
time is rescaled so that the curves meet at the valueC
50.3. It can be seen that the curves are more and m
horizontal aroundC50.3, when the asymmetry is decrease
On the contrary, if we rescale the logarithm of the time
make the curves meet atC50.3 ~Fig. 4! we find that the
curves tend to collapse. In other words:shifting ln(t) ~as in

FIG. 2. Two different ratios of relaxation times as a function
the asymmetry for the mean-field model. Note that the vertical a
is in a logarithmic scale. Also plotted is the divergence oft(0.5).
The lines are fits of the form~27!, with j (C) as a fitting parameter
5-5
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simple scaling! does not make the curves collapse, wh
stretchingln(t) does. A similar picture would have been o
tained by choosing any valueCP@0,q#.

This rescaling~or absence thereof! of the correlation func-
tions in the driven dynamics of a spin glass is a direct a
very simple test of dynamic ultrametricity. Let us emphas
again that, as already mentioned in the Introduction, thi
not true for the aging regime.

B. Ultrametric relation and FDT

The functionf (C1 ,C2) introduced in Eq.~21! satisfies in
the asymptotic limit the ultrametric relation~26!. It is then
natural to try to understand its preasymptotic behavior
three dimensional view of this two-variable function is giv
in Fig. 5, for «50.248 ~the slowest relaxation in Fig. 1!.
Also plotted in the plane (C1 ,C2) are the constant-f con-
tours. These contours would be right angles in the limit
vanishing asymmetry.

To see how the functionf evolves towards its asymptoti
value@the ultrametric relation~26!#, the evolution of the con-
tours for different« is represented in Fig. 6. These curves a
very clearly evolving toward right angles, as expected fr

FIG. 3. Correlation function for the same values of the asy
metry as in Fig. 1. The time is rescaled byt(0.3) so that curves
superpose forC50.3. Away from this value, there is no collaps
for small «.

FIG. 4. Correlation function for the same values of the asy
metry as in Fig. 3, but here thelogarithm of time is rescaled by
ln@t(0.3)#. The collapse for small« is good.
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the analysis of the preceding section.
It is interesting to compare these curves with the on

obtained from Ref.@15# for a system (p-spin with p53)
with a single time scale, i.e., without ultrametricity. The r
sult is shown in Fig. 7, for correlations that evolve on
similar range of time scales to make the comparison relev
In this case, the asymptotic analysis reveals that there e
asymptotically a functionf defined as above, but it is no
given by the ultrametric relation~26!. The difference be-
tween the two systems is very clear from the comparison
Figs. 6 and 7: in the latter, the functionf rapidly saturates to
its asymptotic~nonultrametric! value.

To make the analysis of the mean-field dynamics co
plete, the usual plot@5# of the integrated response functio
x(t)[*0

t dt8R(t8) as a function of the correlation functio
C(t), parametrized by the timet, is done in Fig. 8. As ex-
pected from the above analytical results, the FDT holds
C(t).q and it is strongly violated for smaller values of th
correlation. It is clear that in the limit of zero asymmetry, t
analytic expression for the functionX(C) that generalizes
the FDT to nonequilibrium situations will be recovered. T
fact that the same limiting FDT violations happen in gen
driven and aging systems has been suggested in Ref.@14#,

-

-

FIG. 5. Functionf @Eq. ~21!#, for the value«50.248 in the
mean-field model. The curves shown in the (C1 ,C2) plane are pro-
jections of horizontal cuts through the surface forf
50.1,0.2, . . . ,0.9.

FIG. 6. Evolution of the projections forf 50.1, 0.25, 0.4 and 0.6
~see text! in the plane (C1 ,C2) for the values of the asymmetry a
in Fig. 1: «52.25, 0.8, 0.5, 0.35, and 0.248. At each levelf, the
upper curve is for the larger asymmetry, and decreasing the as
metry make the curves move towards right angles.
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and we have verified here that this~mean-field! result holds
also for systems with many time scales.

IV. SIMULATION OF THE 3D EDWARDS-ANDERSON
MODEL

We turn now to the numerical results obtained for a
spin glass model, the results of the preceding sections b
a guide to investigate its stationary driven dynamics. We
the same notations for quantities that play a similar role
the simulation and in the mean-field model, the distinct
between the two cases being clear from the context.

A. Model and details of the simulation

The model under study is defined through its Hamilton

H52(
^ i , j &

Ji j sisj , ~29!

FIG. 7. Evolution of the projections forf 50.05, 0.1, 0.2, 0.3,
and 0.45~see text! in the plane (C1 ,C2) for thep-spin model~here
p53) studied in Ref.@15#. At each levelf, the upper curve is for
the larger asymmetry. In this case, the Edwards-Anderson pa
eter isq.0.501. The asymmetry~four values are represented! is
chosen such that correlation functions cover a range of time sc
similar to that of Fig. 1. When the asymmetry is decreased,
function evolves rapidly towards its limiting~nonultrametric! shape.

FIG. 8. Parametric plot of the susceptibilityvs the correlation
functions for T50.25 and«50.8, 0.5, 0.35, and 0.248 for th
mean-field model. The dashed curve is the analytic result, Eq.~25!,
for the limit «→0.
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wheresi ( i 51, . . . ,N) areN5L3 Ising spins located on the
sites of 3D cubic lattice of linear sizeL, with periodic bound-
ary conditions. The sum̂i , j & runs over nearest neighbor
and theJ’s are chosen randomly from a bimodal distributio
Ji j 561. The model has been extensively studied@10#: it
exhibits a second order phase transition at the critical te
peratureTc51.1160.04 from a paramagnetic to a spin gla
phase@25#.

To drive the system, a couplingJ̃i j is added on each link
The J̃’s are chosen from a bimodal distributionJ̃i j 56«, and
are antisymmetrical:J̃i j 52 J̃ j i . The small parameter« con-
trols the strength of the driving force. The spins are ra
domly sequentially updated through a standard Metrop
algorithm, and one Monte Carlo step representsN attempts
to update a spin. Numerical results are presented for a lin
size L520 (N58000 spins!, where finite size effects are
negligible for the time scales investigated here@26#.

The temperature has been chosen such that the Edw
Anderson parameter is comparable to the one of the me
field case studied before. AtT50.6.0.54Tc , the Edwards-
Anderson parameter was roughly estimated in an o
equilibrium simulation@with «50) through its dynamical
definition q5 limt→`limtw→`C(t,tw);0.8 ~we had q

.0.787 in the mean-field study#. Similarly, five different
values of the asymmetry were studied:«50.5, 0.4, 0.3, 0.25,
and 0.2, so that the range of time scales is comparable to
previous mean-field results. Remarkably, initial conditio
are irrelevant, since a stationary state is reached after a
that depends on the intensity of the drive. As was alrea
noted in Ref.@27#, this is an unusual feature for glassy sy
tems, where cooling procedures are known to be cruc
Moreover, stationarity makes it possible to average the c
relation functions over different initial times, so that ve
few averages over the disorder have been necessary~typi-
cally 5!, provided the first steps of the simulation are d
carded. Stationarity has been carefully checked through
the simulation.

B. Looking for ultrametricity

The dynamical quantity of interest is the spin-spin au
correlation function, which in the TTI regime reads

C~ t ![
1

N (
i 51

N

^si~ t1t0!si~ t0!&. ~30!

The overline means that an average over disorder is
formed, while^•••& stands for an average over different in
tial times t0, all chosen in the TTI regime.

The autocorrelation functions for different values of t
asymmetry atT50.6 are represented in Fig. 9. As for th
mean-field case, two different regimes are present. The s
time relaxation towardsq;0.8 is very weakly affected by
the driving force, while the time to relax towards zero dr
matically increases when« is lowered.

The crucial point is to look for the possible presence
the ultrametric relaxation pattern described in the preced
sections. We have seen above that a simple test of the p
ence of ultrametricity is the rescaling of the time. The sa
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rescaling that was done in Fig. 3 for the mean-field cas
now performed for the 3D case in Fig. 10. Although n
perfect, this rescaling works remarkably well for the small
values ofC. It is important to note that even if ultrametricit
is absent, the values of correlation 1,C&q ~which do not
depend on the asymmetry! will not scale together with the
C,q portion of the curves. This may be a source of error
the value ofq is unknown. Thus, preasymptotic effects affe
the quality of the rescaling in the regionC;q, since it can
be seen from Fig. 9 that the plateau is not completely de
oped. All these points may explain why the rescaling is go
only for the smallest values ofC.

However, a very slow flattening of the curves around
value C50.3 cannot be completely excluded from this fi
ure. But it is very clear that if there is a separation of tim
scales, then itwill become evident only if a much larger tim
window is analyzed.

The second interesting quantity to study is the funct
f (C1 ,C2) introduced in Eq.~21!. Its evolution for different
values of the asymmetry is depicted in Fig. 11, with the sa
construction as for Figs. 6 and 7. The functionf indeed
evolves, but very slowly when compared to the mean-fi
case. The quantitative behavior off for the 3D model is more
reminiscent of thep53 case than of the mean-field sp
glass case. Once again, this figure does not allow us to

FIG. 9. Correlation functions for the 3D Edwards-Anders
model for different values of the asymmetry atT50.6.

FIG. 10. Rescaling of the correlation functions of the Fig. 9. T
rescaled time is such that all the curves meet at the valueC50.3.
This figure must be compared with Fig. 3.
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cide clearly between a limiting smooth—as it is for thep
53 case—or ultrametricf-function, because interestin
things may happen on time scales that are inaccessible in
simulation time.

In our opinion, the important point that clearly emerg
from the figures is that, on a given time window~we have
four decades here!, the relaxation does not appear to be typ
cal of an ultrametric system and a single-time-scale desc
tion is very accurate. This may explain why dynamic ultr
metricity has not been observed in aging experiments, wh
span some six decades;(100 Hz–10 h).

C. FDT

We have also investigated the way the FDT is violated
the driven 3D Edwards-Anderson model, since the me
field theory suggests that these violations are the same a
an aging system. To our knowledge, there are no numer
confirmations of this prediction for spin glasses in the lite
ture. For this purpose, correlation functions have to be co
pared to susceptibility curves. The correlation functions
taken from Fig. 9. The method of computing the suscepti
ity is now standard@28#. A stationary magnetic fieldhi is
applied at each site at timet0. It is random in space, and w
take it from a Gaussian distribution with mean 0 and va
ancehihj5h0

2d$ i j %. The staggered magnetization

m~ t ![
1

h0N (
i 51

N

hisi~ t ! ~31!

is recorded for allt.t0. In the linear response regime~we
work with h050.1, as in previous studies@10,28#!, the sus-
ceptibility is obtained fromm(t) asx(t).m(t)/h0. The re-
sults are averaged over several~from 50 to 300! realizations
of the field, and over different initial timest0. They are
presented in Fig. 12.

The results for the violations of the FDT are clearly ve
similar to the mean-field ones. These curves exhibit two d
ferent regimes: for short times (C*q), the FDT is well sat-
isfied, whereas for longer times (C&q), it is violated. The

FIG. 11. Test of the functionf for the 3D Edwards-Anderson
model for f 50.6, 0.4, 0.25, and 0.15. The values of the asymme
are the same as in Figs. 9 and 10, and are represented with the
symbols. This curve must be compared with Figs. 6 and 7.
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curves also clearly saturate to a smooth limiting curve in
small asymmetry limit. The shape of this limiting curve
compatible with the limiting nontrivial parametric curve
that have already been found in simulations of 3D s
glasses in the aging regime@28#. The fact that both situation
~aging and driven dynamics! exhibit the same kind of FDT
violations deepens, in our opinion, the physical meaning
the quantityX(C) ~the so-called fluctuation-dissipation ratio!
that can be extracted from this plot@9,14,29#.

V. CONCLUSIONS

We have studied in this paper the behavior of spin glas
in a ‘‘rheological’’ setting, in which the dynamics is station
ary and the control parameter is the strength of the driv
force. We have checked the asymptotic analysis@5–7# for
mean-field models through the numerical integration of
equations governing the dynamics. This has confirmed
presence of a full hierarchy of time scales in the relaxation
the correlation, Eq.~26!, and a ‘‘many-time-scale, many
temperature scenario’’@15#. This scenario can be seen as t
dynamic counterpart of static ultrametricity. Simple scali
time dependencies, such as assumed in Ref.@19# could be

FIG. 12. Parametric plot of the susceptibility vs the correlat
functions for the 3D model for different values of the asymmetry
T50.6. The curves saturate, in the small asymmetry limit, to
smooth limiting curve.
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justified for mean-field models only as an approximati
valid in some time window, but do not hold strictly in th
long time limit. Previous numerical studies of the aging d
namics of the Sherrington-Kirkpatrick model had pointed o
the lack of simplet/tw scaling@30#, but did not investigate
the presence of ultrametricity. Since there now exist pow
ful algorithms to solve dynamical two-time equations f
long times@31#, it would be interesting to have an analysis
the aging dynamics of a mean-field ultrametric model f
lowing the lines introduced in this paper.

For the 3D spin glass, our simulation suggests that
stationary driven dynamics is accurately interpreted withi
single time scale relaxation pattern. We cannot dec
whether our results imply an extremely slow appearance
ultrametricity~such that, even at experimental times, it is n
fully observable!, or its absence.

Whether transient or permanent, the single time scale
laxation obtained in our 3D simulation is in complete acc
dance with all the known numerical and experimental stud
of the aging regime of 3D spin glasses@8,10,32#. In all
known cases, two-time functions are indeed very well a
proximated byM (t,tw).M(t/tw), in contradiction to the
dynamical mean-field theory, as we emphasized through
the paper. It is interesting to note that the version of
‘‘droplet theory’’ @33# which predicts the scalingC(t,tw)
;C„ln(t)/ln(tw)… fails also in reproducing experiments an
simulations, since the logarithmic law is too slow.

Numerical results on 4D spin glasses also show that c
relation functions are rather well represented by at/tw scal-
ing in the aging regime@34#, as is found in 3D. It would be
extremely interesting to go back to the 4D simulations w
asymmetrical couplings@20#, or even to higher dimension
@35#, to study precisely the stationary regime and see if, a
our simulation, there is a single time scale. It would be
disappointing result if all the richness of the ultrametric co
struction in spin glasses were a pureD→` feature.

The situation is made even more puzzling by the fact t
this construction and the associated separation of time sc
are often invoked to explain the results of temperature
cling experiments@8,36#. This is perhaps related to the diffi
culty in reproducing these experimental results with the
Edwards-Anderson model with numerical simulations@37#.
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