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Universal amplitude ratios of the renormalization group: Two-dimensional tricritical Ising model
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The scaling form of the free energy near a critical point allows for the definition of various thermodynamical
amplitudes and the determination of their dependence on the microscopic nonuniversal scales. Universal
guantities can be obtained by considering special combinations of the amplitudes. Together with the critical
exponents they characterize the universality classes and may be useful quantities for their experimental iden-
tification. We compute the universal amplitude ratios for the tricritical Ising model in two dimensions by using
several theoretical methods from perturbed conformal field theory and scattering integrable quantum field
theory. The theoretical approaches are further supported and integrated by results coming from a numerical
determination of the energy eigenvalues and eigenvectors of off-critical systems in an infinite cylinder.
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[. INTRODUCTION binations of critical amplitudes. As will become clear in Sec.

Ill, these universal combinations are pure numbers which

One of the most powerful and fascinating concepts in thecan be extremely useful for the identification of the univer-
investigation of critical phenomena—which has successfullysality classes. In fact, the amplitude ratios are numbers that

passed the scrutiny of both experimental and theoretical testgpically present significant variations between different
during recent decades—goes under the namanofersality  classes of universality, whereas the critical exponents usually
[1]. According to this principle, two statistical models that assume small values that vary by only a small percent on
share the same symmetry of the order parameters and ti§®@anging the universality class. Hence the universal ratios
dimensionality of the space of their definition show identicalmay be ideal experimental marks of the critical scaling re-
critical behavior, although they may greatly differ in their 9ime[6,7].

microscopic realizations: near the phase transition, when the N recent years, due to the theoretical progress achieved in

correlation length is much larger than any other microscopid¢he study of two-dimensional models, some universal ratios

scale, they appear as two representatives of the same univé?2d other universal quantities have been computed for a

sality class. The first characteristic of a given universality 2'9€ Variety of bidimensional systems, such as self-avoiding
class consists of a set of critical exponents. Their values ar.
generally given in terms of algebraic expressions of th
anomalous dimensions of the relevant operators present

the critical point. 'T‘ two dimensions, by the powerful me.th'the two-dimensional tricritical Ising modélIM). Prelimi-
ods of conformal f'?'?‘ theoryCFT) [2-5] one can ascertain nary results relative to some off-critical phases of this class
the values of the critical exponents, the operator product exs njversality have been presented in our previous publica-
pansionsOPE'’9, and the multipoint correlators of the rela- {jon [18] and the aim of this paper is twofold, first of all, to
tive fields. complete the list of universal amplitude ratios of the TIM
However, a complete analysis of the class of universalitysresented if18] and perform an exhaustive analysis of all
should also include the description of the structure of thets possible phases, and secondly to illustrate in full detail the
renormalization group trajectories near the critical point. Theheoretical methods that have been employed in this determi-
most ambitious goal would be the determination of both thenation. In view of their successful application, these tech-
Scaling function that fixes the equation of state and the Off'niques may be useful in ana]yzing and Obtaining similar re-
critical correlators of the various order paramefersl-  syits for other statistical models, in such a way as to make
though the exact determination of the equation of state of g|oser contact between theoretical and experimental results
given universality class may often be a difficult task, thejn two-dimensional physics.
scaling property alone of the free energy is nevertheless suf- From a field theoretical point of view the tricritical Ising
ficient to extract numerous predictions about universal compmgodel may be regarded as a Landau-Ginzb(u@) ®°
theory near its tricritical poinf19]. The LG terminology
allows an effortless qualitative understanding of the phase
INear the critical point all quantities relative to different models Structure of the model. However the LG approach is often
of the same class of universality become identical provided an opto0 elementary for the understanding of some remarkable
portune rescaling of the order parameters, the external fields, arBymmetries present in the two-dimensiof@D) TIM. As a
the correlation length of the models is made. matter of fact, the bidimensional TIM is a unique example of

alks[8], the Ising mode[9—-14], or theg-state Potts model
15-17, to name a few. In this paper we will concentrate our
attention on the determination of the largest possible set of
fhiversal amplitude ratios relative to the universality class of
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critical phenomena: it is still sufficiently simple to be solved most general Hamiltonian with nearest neighbor pair interac-
but at the same time it presents an extremely rich and fasction,
nating structure of excitations which can attract the curiosity
of a theorist. Depending on the direction in phase space in
which the system is moved away from criticality, one can
observe, for instance, behavior ruled by the exceptional root
systemE- [20—22 or by supersymmetr{23—2§ (in its ex-
act or broken phase realizatipror by an asymmetrical pair - H3<izj> (sitit+stjti) — KGED tit;. 21
of kinks [27-29. In addition, the description of its low- ' ’
temperature phase is easily obtained from that of its highThe parameted represents an external magnetic figdd, an
temperature phase because of the self-duality of the modeddditional subleading magnetic sourcethe coupling be-
From the experimental point of view, a number of physicaltween two nearest occupied sitels,the chemical potential
systems exhibit tricritical Ising behavior, among them fluid coupled to the vacancies, arkl an additional subleading
mixtures or metamagne%sHence, there is an obvious inter- energy term between them. Another possible two-
est in computing a large set of data for this class of univerdimensional lattice realization of this class of universality is
sality and in testing the theoretical predictions versus theiprovided by the so-called diluté, models, discussed in
experimental determination. Our calculation of the universa[32].
ratios of the TIM will be performed by a combined use of By adopting a field theoretical point of view, a convenient
results coming from perturbed conformal field theory, fromway to analyze the universality behavior of the TIM consists
the integrable structure of some of the deformations of then considering a Landau-Ginzburg formulation based on a
critical point action, and also from some numerical ap-scalar field®(x) [19]. The main advantage of this approach
proaches. is an account of th&Z, symmetry properties of each order
The paper is organized as follows. In Sec. Il we briefly parameter, which provides an easy way of understanding the
describe the universality class of the TIM and the symmetnphase structure of the model, at least qualitatively. In this

properties of the theories resulting from deformations of thgormulation, the class of universality of the TIM is associ-
critical point action of each of the four relevant fields. Sec-agted with the Euclidean action

tion 11l is devoted to a discussion of the scaling behavior of
the singular part of the free energy and the definition of the o |1 5 5 3 4 6
universal ratios obtained by considering some particular _f d7X 5 (9, @)+ 01D + g+ gsP "+ gy @+ 7,
combinations of the thermodynamical amplitudes. In Sec. IV 2.2
we discuss the quantum field theory approach to the compu- :
tation of the universal ratios. A numerical method based orwith the tricritical point identified by the bare conditiogs
diagonalization of the off-critical Hamiltonian obtained by =9>=03=04=0. In a close comparison with the Blume-
truncating the Hilbert space of the conformal space is disCapel lattice formulation of the model, the statistical inter-
cussed in Sec. V. A thorough analysis of each relevant pemretation of the coupling constants is as follogs:plays the
turbation of the TIM is performed in Sec. VI. Finally, our role of an external magnetic field, g, measures the dis-
conclusions are presented in Sec. VII. Several appendixgyacement of the temperature from its critical valué (
relative to some technical aspects of our calculations are in=T¢), g3 may be regarded as a staggered magnetic field
cluded at the end of the paper. and finallyg, may be thought of as a chemical potential for
the vacancy density.
A dimensional analysis shows that the upper critical di-
Il. THE UNIVERSALITY CLASS OF THE TRICRITICAL mension of the above LG model 3=3, where the ftricriti-
ISING MODEL cal exponents are expected to take their classical values, ex-
cluding logarithmic corrections. The mean field solution of
In this section we will briefly outline the main properties the model easily shows that the LG actith?) has a tric-
of the universality class of the two-dimensional tricritical ritical point, i.e., a critical point where the line of a second
Ising model. The detailed discussion of its physical properorder phase transition meets the line of a first order phase
ties relative to each of its perturbations is contained in Segyransition. Consider, in fact, the case where all #yeodd

VI. _ _ o o . couplings are equally set to zero. The potential in this sub-
A possible lattice realization of the tricritical Ising model space is given by

is provided by the so-called Blume-Capel mo{igl]. This

involves two statistical variables at each lattice sig, the V() =g,D%+g,d%+ DE. (2.3
spin variable, which assumes valugsl, andt,, the va- ) o N
cancy variable, with values 0 or 1, which therefore specifies he line of a second order phase transition is identified by
if the site is empty or occupied. It is characterized by thethe conditions

N N N
H= _J<§:> SiSjtitj+A2 ti_HE Sit;
1,] =1 =1

N N

g,=0, g4>0, (2.4

2The interested reader may find ample review of this topic in Refwhereas the line of a first order phase transitiwhere three
[30]. degenerate vacua coeyis obtained by the conditions
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TABLE I. Kac table of the tricritical Ising model. TABLE lll. Operator content and LG fields.
3/2 7116 0 0=[3/80,3/80=d magnetization
3/5 3/80 1/10 €=[1/10,1/1Q0=d? energy
1/10 3/80 3/5 o'=[7/16,7/14=d3 submagnetization
0 7/16 3/2 t=[3/5,3/5|=d* vacancy density
e"=[3/2,3/2]=P° irrelevant
92>0, g4=—2\0,. 25

the leading magnetization operaior ¢z/g 39=P and the

Hence the poing;=g,=g3=9g,=0 is indeed a tricritical subleading magnetization operaidf= ¢4 71: 3. (2)
point. Four even fields consisting of the identity operator 1

In two dimensions—the case which will mostly concern = ¢, the leading energy density= qsl,loyl,lf:cbz:, the
us—there are strong fluctuations of the order parameters arglibleading energy density= ¢35 35=:®*:, which in meta-
therefore the exponents and the amplitudes extracted by iteagnets assumes the meaning of the density of the annealed
mean field solution cannot be trusted. However, in this casg@acancies, and the fiekd’ = ¢/, 3. The OPE’s of the even
one can take advantage of the powerful methods of conforfields form a subalgebra of the fusion rules.
mal field theory to obtain an exact solution of this model at In the TIM there is anotherZ, transformation—the
criticality. In fact, the bidimensional TIM is described by the Kramers-Wannier dualityp—under which the fields trans-
second representative of the unitary series of minimal modform as follows: (a) the order magnetization operators are
els of CFT[2—-4]: its central charge is equal to= {5 and the  mapped onto their corresponding disorder operators
Kac table of the exact conformal weights of the scaling fields

p=D"1oD=dgzgoz80 #' =D 'o'D=ds1676

(51-4k)*-1 (2.9

=g 1<I1=<3, 1<k=4, (2.6

(b) the even fields are mapped onto themselves,
is given in Table I. There are six primary scalar fiettls 5,
which close an algebra under the operator product expansion D 'sD=-¢, D 'tD=t, D !'D=-¢", (2.9

i.e., e ande” are odd under this transformation wher¢as

¢i(21,21)¢j(22122)~; Cijk|Za— 25| 72T Am A even.
- Interestingly enough, at criticality the TIM also provides a
X d(25,25). 2.7 concrete realization of a supersymmetric theory since it is the

first representative of the superconformal minimal models
The skeleton form of this OPE algebra and the relative strucF33—33: the even fields can be grouped into a superfield of
ture constants of the fusion rules of the TIM are in Table Il.the Neveu-Schwartz sector
The six primary fields can be identified with the normal or-
dered composite LG fieldd 9] (see Table Ill. With respect Mz,2,0,0)=e(2,2)+ 04(2,2) + 0(2,2) + 06t(2,2)
to their properties under th&, spin-reversal transformation (2.10
Q:d— — ® we have the following(1) The two odd fields of

(Where 6 and 6 are Grassman variablewhile the magnetic

TABLE Il. Fusion rules and structure constants of the TIM for fields give rise to two irreducible representations in the Ra-

scalar fields. mond sectof. The critical superconformal LG action is given
evenXx even by
3
exe=[1]+cy[t] - I'(4/5)I'°(2/5) 1
1= RN S mr3@m A=j d?xd?6| SDNDN+N® 2.1
txt=[1]+c,[t] c=c, | LABIEND) 2 219
EXt:C]_[E]‘i’C:g[S"] C3:3/7 i i i . .
evenx odd with the covariant derivatives defined as
EXO”:C4[O'] C4:1/2
Y o= "M+ =(3/2 d d — Jd —4
€ O', C4[0' ] C5[0'] Cs (3/ )Cl D= —— 6—, D= —— —. (212
tXo :(26[0'] 06=3/4 (90 07 (90 9z
tXo=cglo']+cq[ o] c;,=(1/4)c,
odd X odd
o' Xo'=[1]+cgle"] cg=7/8 3 ) ) o —
o' X o=Cyl €]+ ol t] 1 The disorder fieldg., u’ and the fermionic fieldg, & enter the
4 6 Co=Eg partition function of the model on a torus with twisted boundary

oXo=[1]+cs e]+co[t]+cye"] conditions; see, for instanc?7] where the relative fusion rules are
also presented.
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TABLE IV. Nature of QFT’s for each individual deformation of the TIM.

QFT
9 9 9, 9s A 9
nonintegrable integrable integrable integrable integrable integrable
E, E, (kinks) (massless flow (SUSY kinksg

(high temp (low temp

At the critical point, the TIM can also be realized in terms of constants gives rise to identical physical situations, i.e.,
a coset construction of a Wess-Zumino-WittdWzZWwW)  Z,[g,]=2Z;[—09,] andZ3[g5]=Z4[ —gs]. The operatorp,
model on the grougs/H given by E7)1®(E7)1/(E7), (for s odd under the, duality transformation and therefore the
a general discussion of the coset model see, for instancghysical situations that originate from a change of sign of
[4]). For the central charge=cg—cy We have in factc  this coupling constant will be related by a duality transfor-
=2X133(% —35)=15. Concerning the irreducible repre- mation. Finally, the operatap, is even under bot, sym-
sentations, for the WZW model based oB;{; we have metries and therefore the changing of the sign of the corre-

{111}, with conformal dimensiong0,3}, whereas for the Sponding coupling constant will produce two distinct

WZW model €;), we have{l,II; II5, I, IL}, with con-  Physical situations. .
9 7 57 21 At this stage it is also useful to anticipate the nature of

formal dimensiong0,15,5,35.15f- Therefore, the conformal . . . - .

fields of the TIM &e{{méorgse ??o?ri}the decomposition quantum field theorie$QFT’s) that originate from each in-
dividual deformation, postponing their detailed discussion to
Sec. VI. The QFT associated with the deformation of the

(N1 X (1= (D o+ () 1m@ (M) 2+ (1M field ¢, alone is not integrable: numerical indications of this
fact were discussed {27]. The QFT that originates from the
®(Ils)2, deformation ofe, is integrable and the pattern of its bound

states and the scattering amplitudes are related to the hidden
E- algebraic structure of the mode&l1,22. The deformation
(11X (Mg)1=(75) 1M ® (7)o + (56)Tim® (1) 2, of the critical action by means of the fielg; produces an
(2.13 integrable field theory made of kinks, which interpolate be-
tween two asymmetric vacy&8,29. Finally, the ¢, defor-
(M) X (Mg)1=(3)Tim X (1)2. mation made with a positive value of the relative coupling
. ) ] constant corresponds to an integrable massless RG flow be-
As will be discussed later, the above symmetries preseffyeen the TIM and the standard Ising mode4,25,
at th_e critical point of thg TIM are also useful for the inves- o0 thep, deformation with a negative value af;
t!gatlon of some off-crltlc_:al pha_ses of the model_. The_fourgives rise to an integrable massive QFT with kink excitations
fields 7, &, o', andt of increasing anomalous dimensions interpolating between three degenerate vafP@]. Both
are, from a renormalization groufRG) point of view, all these last QFT’s give explicit realizations of a supersymmet-

relevant operatorsi.e., their conformal weight satisfies . < .
ric system in its broken and unbroken phase, respectively. A
<1) and therefore they can be used to move the TIM awa . .
seful summary of the theories resulting from each deforma-

from criticality. To simplify the formulas below, it is conve- i be found in Table IV. | lusi luding th
nient to adopt the compact notatign (i=1,2,3,4) to denote lon can be found in 1able 1V. In conclusion, exciuding the
magnetic ¢, deformation, all the others give rise to inte-

all these fields collectively, so that;= o, ¢,=¢, p3=0’, s . ! o
and ¢,=t. In the vicinity of the critical point the partition grable QFT's. This fact will be quite important for our future

function of the model can be expressed by the path integrafonsiderations.

Ill. SCALING FORM OF THE FREE —-ENERGY

4
2[91192:93v94]:f D¢ exp— ACFT"';l gif @i(x)dx AND UNIVERSAL RATIOS

=g 1(91.92.93.94) (2.14 The scaling property of the relevant fields that span the
scaling region of the TIM near its critical point allows the
We wuse the notation Z4[g,]=2[9,,0,0,0, Z,[g5] derivation of a large set of universal quantities which are of
=Z7[0,,,0,0], etc., for the partition functions corresponding experimental interest. For their derivation we will consider
to the individual deformations of the conformal action. Anthe general case of the tricritical Ising model defined in a
immediate result for the off-critical phases can be drawnD-dimensional space, even though our final attention will be
from the symmetry properties of the fields. In fact, since  focused on the two-dimensional system. At this stage of the
the fieldsp, and ¢5 are odd under the spin-reverggl sym-  discussion we do not take into account the eventual logarith-
metry, a change of the sign of the corresponding couplingnic  corrections explicitty present in the three-
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dimensionalversion of this modeind the possible ultravio-
let renormalization effects. These, however, will be Z[gl,gz,gs,94]=f Depexp—
considered within the context of Secs. IV and VI.

The scaling property of the order parameters is encoded
into the asymptotic form of their two-point functiohs

4
ACFTJFiZl gif @i(x)dPx

—e 1(01.92.93.90) 3.7)

A, Assuming the validity of the hyperscaling hypothesis, in the
(@i(X) ¢;(0))= . |x|—0 (3.1) thermodynamical limit its singular pa¢per unit of volume
x| 44 will be proportional to theD power of the correlation length.

Let us denote the singular part of the free energy for unit
which therefore identifies the parametérsas the conformal  volume byf[g;, ... ,g4]. Depending on which scaling form

dimensions of the fields. The standard conformal normalizajs adopted for the correlation length, we have correspond-
tion of the fields is obtained by the choicg=1. From the ingly several (but equivalent ways of parametrizing this
power law behavior of Eq3.1) it follows that the coupling quantity:

constantgy; behave as

gi~AP~24 (3.2 f[91, ... Qal=Fi[91, - . . ,94]

where A is a mass scale. Therefore, on moving the system =(K;g;)P/(P~22) F
away from criticality by means of one of the relevant field
¢i, there will generally be a finite correlation length
which in the thermodynamical limit scales as

i9i
S 3.8
(K.g.)"’") )

The functions¥; are universal homogeneous scaling func-
tions of the ratiosK,-gj/(Kigi)“’ii. As will soon become
E~a(K,g;) YO-24) (3.3 clear, there is an obvious advantage in dealing with different
but equivalent expressions for the free energy: in fact, since
where a~A~! may be regarded as a microscopic lengthwe will be mostly concerned with physical situations that
scale. The termK; are metric, nonuniversal factors that de- originate from pure deformationé.e., those obtained by
pend on the unit chosen for measuring the external sourcdgeping only one coupling constant finally different from
gi, that is, on the particular realization selected for reprezero, the choice of which one has to be selected naturally
senting the universality class. In the presence of several ddellows from the particular deformation that is considered.
formations of the conformal action, the most general expres- Let us discuss now the definition of the thermodynamical
sion for the scaling form of the correlation length may bequantities related to the various derivatives of the free en-
written as ergy. We will adopt the notatiofr - - ); to denote expectation
values computed in the off-critical theory obtained by keep-

e on K;9; ing (at the end only the coupling constarg; different from
é=g=a(Kg) P72 —(K-g-)¢1i)' (34 zero. The first quantities to consider are the vacuum expec-
el tation valuegVEV's) of the fieldse;, which can be param-
where etrized as
d)]I:D_ZAI ( 5) iNn= gJ ]

are the so-calledrossover exponentshereasC; are univer-  ith

sal homogeneous scaling functions of the ratios

Kjgj/(Kigi)fﬁJ:i. There are, of course, sevethlit equivalent Bji~K; KZA I(D=24) (3.10
ways of writing these scaling forms, depending on which

coupling constant is selected as a prefactor. In the limitrhe above relations can be equivalently expressed as
whereg,—0 (I#i) butg;#0, Eq. (3.4 becomes

£=ag® o ~1(D-24)) gioNKi—l/(D—zAi)_ 3.6 i=Dyj((@)))) P24 24 (3.11)
with
Consider now the free energ?)[gl, ...,94]. This is a di-
mensionless quantity defined by Do~ 1 (312
ij KiKJ(D—zAi)/zAj- .

4On this issue the interested reader may consult, for instf®@g, The generalized susceptibilities of the model are defined by
and references therein.

SThis notation is not standard for a geneiedimensional system 02f-
but it has the advantage of an easy comparison with formulas that j <€DJ>| m (3.13
are valid in 2D systems. !
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They are obviously symmetrical in the two lower indices. By IV. QUANTUM FIELD THEORY APPROACH
extracting their dependence on the coupling constant

Essential quantities of the universal amplitude ratios
they can be expressed as

(3.16—(3.20 are the correlation length prefact@{), the

‘i_k:Fi_kg_(ZAﬁZAk—D)/(D—ZAi) (3.14 VEV amplitudesB;;, and the generalized susceptibilities

o e ik With the aim of determining these quantities, in this

with section we will discuss some useful results relative to the
two-dimensional quantum field theories associated with the

F}k~KJ-KkKi(ZAi+2A"_D)/(D_2A‘). (3.15  renormalization group flows originating from the relevant

deformations of the conformal action. These QFT's are, after
Some of the above quantities have, of course, a very familiaall, particular representatives of the universality class of the
meaning. For instancég,); is nothing but the mean value model and from now on we will focus on them alone for the
of the magnetization in the off-critical theory defined by the study of the off-critical dynamics. The advantages of adopt-
ith deformation whild}, is the associated magnetic suscep-ing this approach will soon become evident. _
tibility. Similarly, (¢,); is the mean value of the energy [N the following we assume the fields to be normalized

along theith deformation of the critical theory arid,, the ~ according to the conformal normalization, i.e.,

specific heat . lim X1 ¢i(x) ¢:(0)) =1, 4.
As easily seen from the above formulas, the various quan- X0

tities obtained by taking the derivatives of the free energy

contain metric factorgthe quantities<;) which make their and we denote byM ;" the QFT associated with the action

values not universal. However, it is always possible to con-

sider special combinations thereof in such a way that all

metric factors cancel out. Here we propose consideration of

the following universal ratios:

A:ACFTigif @i(x)d*x, g;>0. (4.2)

The coupling constarg; is a dimensional quantity that can

i ngrijk be related to the lowest mass gap=¢; ! of the theory
(R)k=g g, * (3.1 according to the formula
ji Pki
=~ 2—2A;
(RYj=T}Dy; B 4%, (3.17 g=am R
. : or, equivalently,
L=(T)¥Pe, (3.18
o m =g, 2, (4.9
(RA)}:F}jDi(i4AJ-+2Ai—2D)/(D—2Ai)Bi(jzAj—D)/Ai, (3.19 i=GiG;
_ O an. with ¢;=C, Y=28) "\When the QFT associated with the ac-
i _Fljj 58 ! 3.9 tion (4.2 is integrable, the pure numbé€r can be exactly
(QZ)Jk_ﬁ ? : (320 getermined by means of the thermodynamical Bethe ansatz
i\ S

[36,37. When the theory is not integrahl(this is the case for

These quantities are pure numbers, which therefore chara#e magnetic deformation of the T)Mthe constant; can
terize the universality class of the model. Their definitionsnevertheless be determined by a numerical method, based on
closely follow and generalize the ones relative to the familiathe so-called truncated conformal space approfg8y,

Ising model(see, for instancd6,12]). Other universal ratios which will be discussed in Sec. V. In conclusion, for all
may be defined as well and in fact some of them will beindiVidual deformations of the TIM we are able to com-
considered in Sec. VI devoted to the analysis of each defoPletely set the relationship that links the coupling constant to
mation of the critical point action. Since we will individually the mass gap of the theory and therefore we are able to
compute all the important quantities involve®;(, T'j,, switch freely between these two variables.

etc), there is really no problem in considering other univer- Another set of quantities that can be fixed by QFT are the
sal combinations, if one wishes to do so. It is worth emphaMatrix elements of the order parameters, the simplest ones
sizing that, from an experimental point of view, it should be P€ing the vacuum expectation values. In this case we have
simpler to measure universal amplitude ratios rather than ~ oA

critical exponents: in fact, to determine the former quantities (@)i=Bj m™1, (4.5

one needs to perform several measurements at a single, fixed

value of the coupling that drives the system away from criti-"-€-:

cality, whereas to determine the latter one needs to make A
measurements over several decades along the axes of the (¢))i=Bjig;
off-critical couplings. Moreover, although not all of them are -
independent, the universal ratios are a larger set of numbet/hen the theory is integrable, the const&gt can be fixed
than the critical exponents and therefore permit a more pregxactly, thanks to the results of a remarkable series of papers
cise determination of the class of universality. [39,40. When it is not integrable, the constaBif can nev-

-8 Bji:”gjicizAi_ (4.6)
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ertheless be estimated by means of a numerical approach, : _ my/T () 21k
first proposed in41], which will be reviewed in Sec. V. (04 @, k|()S>:S""'(7T_S/5|5I 4kl Val(3)

Hence in this case also, we are able to determine these quan- ' sin(s/5) 2

tities completely. Let us present the exact expressions of the X Q, o 51— 4K) (4.19)

VEV’s for the three integrable deformations of the TIM,
which are obtained by specializing the formulas of Ré@]. L .
In the expressions below, the fields are labeled by their poyvhere, for|Re7| <4, Q1 4(7) is given by the integral
sition (1,k) in the Kac table of the modé¢kee Eq.(2.6) and B . .
Table [ and the lowest mass gap of the different theories isg A7) =ex f ﬂ cosh 2 sinf{ t(n—1)]sinf{t(7+1)]
simply denoted bym. L ot 2 cosht sinh 4t sinh &

(1) For the g, energy deformation we have

2
24 - (77401) e ] @12
sin(ws/4|5l—4k))|  5mal($) e
(0s|®; |05y = i 213 1\ 2 : . . . . . .

sin( s/4) 2 \/§F(§)F(§) and is defined by its analytic continuation outside that do-
main. For the massive phase of this deformation we have

X Q1451 —4k), (4.7 three vacua labeled by=1,2,3.
As discussed in Sec. V, in addition to the above vacuum
where, for|[Ren|<4, Q; A ) is given by the integral expectation values, a generalization of the numerical ap-

proach of Ref[41] often leads to a reasonable estimation of
; ; ; the matrix elements of the order parameters between the
o — + i
le(n)zexp{f ﬂ sthts.lnr[t(n. 1)]5|r.1|"[t(77 L] vacuum states and some of the excited states, such as, for
' ot sinh 18 sinh1Q sinh 4 instance(0| ;| Ay); whereA, is a one-particle state of mass
% (cosh 18-+ cosh & — cosh 16+ cosh 4 + 1) M. These_ quantities will bg useful for optammg sensible
approximation of the large-distance behavior of several cor-

(2—1) _4t)} relators.
e 1

20 (4.9 Another useful piece of information about the off-critical
dynamics can be obtained by exploiting the properties of the
stress-energy tensdr,,(x). In the presence of the perturb-

and is defined by its analytic continuation outside that do-ng field ¢;, the trace of the stress-energy tensor is different
main. The indes labels the various vacua and takes differ- from zero and can be expressed as
ent values depending on the sign of the coupling consgfgint

for g,<0 the spin symmetryg— — o is spontaneously bro- O(x)=2mg;(2—2A)) ;. (4.13
ken and there are two vacua identified by 1,3; for g,
>0 there is a unique ground state associated At . The vacuum expectation value 6(x) is given by
(2) For the ¢ subleading magnetic deformation we have
RN (@) =wmi=wig "> (414
sin(ws/5|51 —4k|)|  4m#I'(3) '
(04| @y | 0g) = sin( ws/5) 2I3 1 5 ; = 2 e
22331 (HI (D) with w;=w;C; . As before, when the theory is integrable the
constantw; can be determined exactly; otherwise it can be
X Qz4(51 —4k), (4.9 computed numericall§ The trace of the stress-energy tensor

enters two useful sum rules which link conformal data of the
where, for|[Rey|<5, Q,4(7) is given by the integral ultraviolet fixed point to off-critical quantities. The first of
them—called thec-theorem sum rul¢42]—relates the cen-
=dt ( sinh & sin{t(7—1)] sinH t(7+1)] tral chargec o'f the ultraviolet theory to the s.econd moment
Qo 4(m)=ex f T of the two-point connected correlation function ©f
0

sinh & sinh & sinh &
X (cosh @+ cosht— cosh 11+ cosh &+ 1 3
Eczs_lg; cosht—cos cosh§+1) c= EJ 42| x| O (x)©(0)),. (4.15
_\7 e‘“) , (4.10 o
40 For all relevant deformations, it is easy to check that the

above integral is always convergent. The second sum rule—

and is defined by its analytic continuation outside that do@lled theA-theorem sum rulg43]—reads

main. For this deformation there are two vacua associated
with the values=2,4.

(3) For theg, vacancy density deformation in its massive 8Obviously this number can also be obtained in terms of the VEV
phase we have of the field ¢; and the expression @& given in Eq.(4.13.
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1 ) . Some of the above susceptibilities can be determined ex-
Aj==a o5 J dx(O(x)¢;(0))i", (416  actly, such as the componerity, , whose values are pro-
7T<€Dj>| . |
vided by theA-theorem sum rule:

i.e., it relates the conformal dimensiay) of the field ¢; to

its VEV and to the integral of its connected off-critical cor- i ___ Sk g
relator with®(x). This time the above integral is not always k™ 1A, K
convergent(a detailed analysis of its convergence may be

found in the original pape#3]). Notice, however, thatth& |, 5| other cases, when an exact formula is not available, our
theorem also involves the VEV of the field and itis easy  gyrateqgy to evaluate the generalized susceptibilities will rely
to see that the divergence/convergence of the integral is al, two different representations of the correlators. These rep-
ways accompanied by the divergence/convergence of th@sentations have the advantage of converging very fast in
VEV in such a way that the sum rule always maintains itsyq distinct regions: the first representation is based on con-

validity. The proof of this statement is simple: by taking the forma| perturbation theory and allows a very efficient esti-
derivative of the VEV(4.6) with respect tay; we have in fact  ation of the correlation function in its short-distance re-
gime, while the second representation is based on the form

i< )= i (o)), 4.17) factors and allows an efficient control of its large-distance

a9g; i gi(1—-A4A)) Pili ' behavior. Due to the rapidly convergent nature of the two

series in their respective domains, they are efficiently ap-

On the other hand, the above quantity can also be computggfoximated by their lowest terms, which therefore can be

by means of the fluctuation-dissipation theorem and is givegvaluated with relatively little analytical effort. These con-
by siderations obviously lead to the estimation of the integral

(4.19 according to the following steps.
(1) Express the integral in polar coordinates as

(4.22

J _ 2 i
a_gi<¢j>i__f d“x(i(x) ¢;(0))¢ . (4.18

~. + o .
Le=2 f ; ' 4.2
By using Eq.(4.13 and comparing the two expressions, the Rmem 0 drr{ei(N e 0)e 423

divergent/convergent nature of the integral is seen to be di-

rectly linked to the divergent/convergent nature of the con-pq split the radial integral into two pieces as
stantB;; entering the VEV of the fieldp; . These consider-

ations suggest that the quantity on the left hand side of o

Eq. (4.16 is in any case also obtained when the integral of |:f dr r<¢j(r)¢k(o)>ic

the two-point function(® (x) ¢;(0)).. diverges. In this case 0

one needs to perform a simultaneous analytic continuation of

both the integral and the corresponding VEV. - fRdr F{e(N e 0))L+ fﬁodr r{(e;(r)ek(0));
Basic quantities in the universal ratios are the generalized 0 R
R )
susceptibilitiesI’;, . By using Egs.(3.7) and (3.14), the —1,(R)+ 1 ,(R). (4.24

fluctuation-dissipation theorem provides the relation between

I'' and the integral of the connected correlator: . . .
Ik g (2) Use the best available short-distance representation of

the correlator to evaluatie (R) as well as the best available
}sz d?x(@;(X) @i (0))L. (4.19 :as(tlgn;ate of its large-distance representation to evaluate
2 .
) (3) Optimize the choice of the parametiin such a way
The dependence on the coupling consgnof these quan- as to obtain the best evaluation of the whole integral. In
tities can easily be extracted. In fact, the connected correlatquactice’ this means looking at that valueRfor which a
can be parametrized as plateau is obtained for the sum bf(R) and!,(R).
In order to proceed in the above program it is useful to
: i briefly recall the main features of the short-distance and
<<P1(X)<Pk(0)>c=—r2Aj+2Aijk(mr) (420 |ong-distance expansions of the two-point correlation func-
tions.

(r=|x|). Its dependence om is obtained with a change of

variable and by using the relatigqd.4) we finally havelA“}k
:r}kgi(AﬁAk‘l)’(l‘Ai) with A clear discussion of the perturbative ultraviolet renor-
malization of the fields and of the short-distance expansion
1 of the two-point functions can be found in Refd3,45.
i _C2Aj+2Ak*2f dTTMink( ). (4.2  Here we will briefly review the main results useful for our
77

e
e purposes.

A. Short-distance expansion
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First of all, there is a one-to-one correspondence betweeﬁp(x)] whereas the structure consta@$(g;x) are analytic
the fieldsat and away from criticality. However, renormal- 5 g (as expected by their local natiirén this way all the
ization effects induced by ultraviolet divergences can havgonanalytic behavior of the correlation function
the effect of expressing the off-critical fields in terms of a
combination of the critical ones. Let us denotedy(x) and D/
®;(x) the conformal and the off-critical fields, respectively. <‘Pi(x)‘PJ(O)>:2i Cl(g:X)(Ap(0)) (4.3D
Consider the off-critical action obtained by a perturbation of
a relevant(scalay conformal field @5<1) is completely encoded inside the nonperturbative VEV's

(Ap(0))=A g% /(1= 22) Concerning the structure constants
-A:ACFT_"gf dZXEIS(x)_ (4.25 C}’k(g;x), for dimensional reasons they admit the expansion

In a conformal perturbative evaluation of the correlators D(en) — r2(Ag—Ai—A)) < P(N) [y 2= 2A g\ N
. . . e X)=r<p 2 Pt r @ 4.
which involves one of the field®;(0) we have Ci(gx) J n§=:O BN ) (432

(- ®i(0)=(- - Di(0))cpr wherer =|x|, and they can be computed perturbativetyg.
Their first order contribution is given biyt5]

+gf A2X(- - D (O)D(X))cprt -+,
e<|x|<R

26 le): - f,d2W<NAp(°°)&’(W);i(l)aj(o»cw'

(4.33
wheree andR are ultraviolet and the infrared cutoffs. Let us o ) ) )
analyze first the ultraviolet behavior of the above integralWhere the prime indicates a suitable infrafeatge-distance

This is controlled by the OPE of the two conformal fields, regularization of the integral. It can be calculated by means
of different approachdsuch as, for instance, a minimal sub-

~ o~ ~ traction scheme based on the ORE5] or an analytic pro-
— K 2(A—Agp—A
d)(x)(I)i(O)—Ek: Colx|?C 207 20)A(0), (420 |ongation in the parameters of the integrand of E433),
i.e., the conformal weights As shown in[14], an efficient
and therefore the integral in E(4.26) is divergent if in the ~ way to extract the finite part of the integral is provided by the

above expansion there are fieligx) whose conformal di- Mellin transformation, discussed in Appendix A. This is the
mensions satisfy the condition approach that we have mostly used in our calculations.

In conclusion, by using the VEV of the fields and the first
n=A—Az—Aj +1=<0. (4.28 approximation of the structure constants of the OPE, we can
: obtain a reasonable approximation for the short-distance be-

If this is the case, the off-critical renormalized field that hashavior of the connected two-point functions entering the

a finite correlator at the lowest order gnis defined by definition of the susceptibilities in terms of the expression,
- Cho, . _ o (A0 .
O =0;—gm>, Y - e2%A, +0(g?). (4.29 <<Pi(x)(Pj(0)>E:2p nZO Mcﬂ(”)(gﬂ 281N
X K =
Hence, due to the ultraviolet divergences there may be a —(eind @ik (4.34

mixing of the initial conformal operators with a finite num- ) o , L , _
ber of fields of lower conformal dimensions. The indexk indicates which perturbation is considered. Since

The conformal perturbation series for the correlationth® short-distance representati@n3l) is an expansion in the
functions also suffers from infrared divergences. These diParameteri(/¢), a truncated form of the serigd.34) is ex-

vergences, however, cannot be absorbed into a redefinitidfcted to be sufficiently accurate for<é. However, the
of the local fields and, as a result, we have a nonanalyti€onvergence of the_tr_uncated series is often much better and
dependence on the coupling constgrThis nonanalytic be- the results are sufficiently accurate also for ¢, as con-
havior is essentially due to the nonadiabatic change of thfifmed in several examplesee, for instance{11,14,44—
vacuum state in passing from the conformal field theory ofA6))- Hence, the above truncated for#.34) can be confi-
the fixed point to the generic massive theory of the off-dently used for the evaluation of the integfa(R) in Eq.

critical system. To overcome this difficulty, one can adopt(4-24- Finally, notice that the short-distance expansion of
the strategy of considering thaf-critical OPE the correlators can be implemented independently of the in-

tegrable or nonintegrable nature of the off-critical theory.

<pi(x><pj(0)=2p CP(gix)AL(0), (4.30

_ "The above formula has to be opportunely corrected when there is
where theA,(x) belongs to a complete set of local fields of a resonance phenomenon among the fields of the conformal fami-
the theoryli.e., the perturbed version of the conformal fields lies.
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B. Large-distance expansion

+ed
) . ~ —EPEY% _— ~ a—myr coshé
An efficient way to control the behavior of the correlators <‘P'(X)‘D'(O)> 9u(r)=F; Fl]f,m 27-re '

in the opposite regimer(£)>1 is provided by their spectral
representation expansions. In this approach, one makes use
of the knowledge of the off-critical mass spectrum of the
theory to express the correlators$ as

—EPEY% 1
_Fl Fl ;Ko(mlr), (43&

B whereKy(x) is the modified Bessel function. Sometimes it

may occur that the one-particle FF’s of the fields are zero for

<¢’i(x)¢’j(0)>:n§0 In(r), (4.39 symmetry reasons and, in this case, the leading approxima-
tion of the connected correlator is given by the function
g,(r), expressed in terms of the two-particle form factors

where o ] ) S
Fall,az(al_ 0,). Since Eq.(4.36) is an exact expansion in
doe, dé, e "¢ its series truncated to the lowest terms is expected to
gn(r)zf on om provide an accurate approximation of the correlators in the
01> 05> >0, :
interval r>¢. However, the convergence property of the
X(0[¢i(0)|Aq,(01)- - -Aq (67)) truncated series is much bet{@& and as a matter of fact it
neatly approximates the correlator up to the regier¢, as
X(Aq,(01)- - Aq (04)9;(0)|0) has been checked in several examplsse, for instance,
. [10,11,14,45-4]j. Therefore the truncated spectral series is
assumed to estimate the integia(R) in Eq. (4.24 with
X exp( — rk21 mkcoshak) : (430 reasonable confidence: obviously, the more terms included in

the series(4.36 the better the evaluation of the integral
I,(R). The problem is then to determine how efficiently we
o ) o ) can assess the matrix elements of the order parameters of the
the excitations of massy,, with relativistic dispersion rela-  5qymntotic states. Let us discuss separately the cases when
tions given byE=mycoshd, p=msinhg, where ¢ is the  the off-critical theory corresponds to a nonintegrable QFT or
rapidity variable. The spectral representatidB6) is obvi- {5 gn integrable one
H H S/ -1_ . ’ .
ously an expansion in the parameeer' £, where¢ ™ t=m, For a nonintegrable QFTsuch as, for instance, the QFT
is the lowest mass gap. _ resulting from magnetic deformation of the T)Munfortu-
Basic quantities of the large-distance approach are thgately, it is difficult to go beyond the one-particle form fac-
form factors(FE 9), i.e., the matrix elements of the operators ;g5 of the lowest-particle state&|¢;(0)|Ay). In fact, due
¢i on the physical asymptotic states to creation and annihilation events in the scattering processes
of these theories, i.e., to the nonelastic nature o isatrix,
F# an( 01, ... ,Hn)=<0|(pi(0)|Aa1( 01), .. Aa (64)). the FF's satisfy the infinite coupled set of Watson’s equa-
(4.37 tions[48]

|Aa1(01)' . ~Aan(0n)> are the multiparticle states relative to

®
It is worth emphasizing that the above quantities are unafF'“( 01, ... .0n)
fected by renormalization effects since physical excitations = (0| (0)|A(6;) - - A())in
are employed in their definitions. For scalar operators, rela-

©

tivistic invariance requires that the FF's depend only on the do; déy, ,
rapidity differences,—¢,. Postponing a more detailed P2 'Z<O|<P(0)|A( 01)- -
analysis of the analytic properties of the FF's, let us first
discuss the behavior of the serigs36) for the purpose of XAOL)) oul ACOL) - - - A(OL)A(O1) - - - A(O) )in
evaluating the integrdl,(R) in Eq. (4.24).
First of all, it is convenient to order the multiparticle °o(de;  de), o )
states entering the suii#.36) according to the increasing :m§=:0 or 'ﬁFout( 01, \0m)
value of the total sum of their masse§!" “"==p_,m,
so that, forr> ¢, the functionsg,(r) behave as the decreas- XS0, ... ,00]61, .. 00) (4.39
) _ al ,,,,, an
ing sequence gn(r)~e "= - Apart from go  gpiained by inserting the unitary sum on the out states in the

=(0|#i(0)|0)(0]¢;(0)[0) relative to the VEV of the fields  yefinition of the original form factor. Consequently, higher-
(which, however, does not enter the connected correlator yaiicie FF's have a nontrivial analytic behavior—with

the first approximation of the correlator is given by the firsthanch cuts at all production thresholds—which in practice
term of the expansiofv.36), precludes their exact determination. Hence, for nonintegrable
theories the best we can do is to estimate the large-distance
expansion of the correlators only in terms of the lowest one-
8The expression4.36) has to be suitably modified in the presence particle states. Moreover, the one-particle FF’s of these theo-
of kink excitations or massless particles. ries (0] ¢;(0)|A,) cannot be determined by first principles
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and for their evaluation we have to rely on some numerical
determinations, as discussed in the next section. Although
this situation may appear disappointing from a theoretical
point of view, it is worth stressing that for all practical pur- ¢
poses one can reach a reasonable estimate of the integral
I,(R) in the nonintegrable case also. This can be checked,
for instance, by comparing the values of the integrals ob-
tained by approximating the correlators by the lowest form
factors with their exact values obtained by thetheorem,
when the latter applies.

For an integrable QFT, the situation is much better since, <
in principle, there is the possibility of determining exacily
form factors of the theory. For a detailed discussion of the
calculation of the form factors in an integrable QFT, we refer
the reader to the original literatufd0,45,49,50 Here we
simply recall the basic equations of the two-particle[EB]
since, based on the fast convergence property expected for

the spectral serigs8], they will be the only terms employed a c b
in the following for approximating the correlators in their u
large-distance expansiofis addition, of course, to the one- ab

particle oneg
Assume, for simplicity, that the spectrum of the integrable  FIG. 1. Diagram responsible for a single pole in the two-particle

QFT is made up of scalar particle. Let S,,(6) be the form factors.

elastic scattering matrix of the particlédg, and A, . In this

case, the two-particle form factéri,(6) is a meromorphic

function of the rapidity differenc@ satisfying the equations

the order of the polynomiag,(#) is given in terms of the
conformal dimensior\ . In fact

lim Fe(g)~eYel, 4.4
FE(0)= San( O)F $u(— 0), (4.40 S (449
Fo(im+0)=Fg(im—0). (4.4 with [10]
Let FT"(#) be a solution of Eqs(4.40 and (4.41), free of Ye=A,. (4.49

poles and zeros in the strip lée (0,7). By requiring

. AR Further equations on the polynomi@lZ,(#) can be obtained
asymptotic power limitation in moment#&?2,(4) must be q POy @Ly(6)

min : . . . when the fieldp(x) is proportional to the trace of the stress-
eq:JaI tﬁFab (fﬂ). tlrgis ahratl(_)nal Ifun_wctlon of COSﬂ)fWI!]th the energy tensor ,,(x). In fact, as a consequence of the con-
poles thereof fixed by the singularity structure of the scattergg . ation lawg, T#"=0, the FF's of®)(x) for two different

ing amplitudeS,,(6). A simple pole inF2,(6), like the one o ticlesa, and A, must contain a term proportional to the
in Fig. 1 induced by the simple pole &(6) with & posi-  \jandelstam variabls=(p,+p;,)? of this state[10,45, so

tive residue, gives rise to the equation that it can be factorized as
- i H m2+m2\ 1~ %ab
FE(0=iug) = —F¢, (4.42 Q8 0)=(cosh0+ 2"" é Pan(6). (4.46
- Uab mamb

where y5, is the on-shell three-particle coupling, also deter-ygres\/\'h?gh”;ggf case we have normalization conditions for

mined by theS matrix. A more detailed analysis is required ' aa’
in general when th& matrix presents higher-order polese EO (i) =(A(0.)]0(0)A(0.))=2m7m?2 4.4

the discussion if10] and Appendix D. The FF may also aa(i ) =(Aa(02)[O(0)[Ag(65))=27m;.  (4.47)
have kinematical poles, which, however, do not appear at thghe above discussion relative to the F&d their gener-
two-particle level if the operatap(x) is local with respectto  alization in the case of kink excitationsvill be useful in
the fields that create the particles. In conclusion, the twoSec. VI for determination of the generalized susceptibilities

particle FF can be expressed[d$] for the integrable deformations of the TIM.
o o Qa0 V. NUMERICAL METHODS: TRUNCATED CONFORMAL
Fan(0)=—=——>-F4, (0), (4.43
a Dab( ) @ SPACE APPROACH
where D,,(0) and Q£,(6#) are polynomials in cosk the The truncated conformal space approd€t@8SA) was in-

former is fixed by the singularity structure &,(6#) while  troduced by Yurov and ZamolodchikdB8] for numerical
the latter depends on the operaifg(x). An upper bound on evaluation of the nonperturbative effects relative to off-
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T T
5 first levels —

trum of the off-critical Hamiltonian on an infinite cylinder of 5
circumferenceR, acting on the Hilbert space of the confor- s
mal states. Once a truncation at a suitable number of states is
made, the problem reduces to performing a numerical diago- 2
nalization of a finite dimensional Hamiltonian.

critical models. It consists in studying the numerical spec- 4 K ; . ; :
For the off-critical Hamiltonian we have k

H=Hy+V, (5.1 ¢

whereH, is the Hamiltonian of the conformal fixed point on
the cylinder, andV=g; [ }dv ¢;(w), where ¢;(x) is one of . ]
the relevant perturbationsv= u+iv is the coordinate along

the cylinder and the tilde indicates quantities defined on the s .
cylinden. By using the conformal transformatiore

=e7RW  the conformal theory on the cylinder is mapped " ' : : : : : :
~ 2 4 8 8 10 12 14
onto a plane and therefoi¢, can be expressed in terms of MR
the usual conformal generatdrg,L, and the central charge FIG. 2. The first five energy levels of the TIM perturbed by the
c [51]: magnetic field as a function dfl R.
|:|O:2_7T Lo+fo— i) (5.2) several vacuum expectation values, some of the one-particle
R 12)° form factors, and also some of the generalized susceptibili-
ties. There are, however, certain limitations of the method,
~|2m]A one of them due to the truncation performed on the number
PiTIR| ¢ (53 N of conformal states employed in the algorithisee the

discussion in27]). In fact, all the quantities of interest are
The spectrum oA depends on the dimensionless parameteinfrared data, i.e., relative to the dynamics of the system on
giR?>~ 2% and the value of); can be fixed such that the mass the cylinder in the limitR—c, which is dominated by trun-
gap is equal to P.Let b be the inverse of the matrix cation effects. This means that in order to extract reliable
b= (ml|l} introduced to account for the nonorthogonality infrared data one has to look at the spectrum within an inter-
of the conformal basis. Denoting dy,,=b(I|H|n) the val of R sufficiently large but still unaffected by truncation
: m

matrix elements of the perturbed Hamiltonian, we have errors. This_int_erval will be called the “physical window.”
Another limitation of the TCSA occurs when the conformal

T dimensionA of the perturbing operator is such thst 3. In
Hmn:?{(ZAm_C/lz) Smn this case, in fact, the renormalization of the operator prevents
one from reaching a proper scaling behavior of the energy
, levels and the only quantities that can be extracted with rea-
bui(llein}|. (54  sonable confidence are the energy differences,(R)
=En(R) —Eo(R).
The matrix elementgl|¢;|n) can be computed in terms of
the structure constants of the OPE and the action of the con-
formal generatord.,, on the states. For the perturbation of
minimal models of CFT a numerical algorithm has been de- As shown in Ref[41], knowledge of the eigenvectors in
signed to compute the above matrix elements and to perforihe truncated conformal space approach allows a numerical
the diagonalization of the off-critical Hamiltonian by includ- €stimation of the vacuum expectation values of several order
ing the conformal states and their descendants up to the fiftRarameters. These quantities are defined by the limit
level of the Verma modulg52]. In the case of the TIM this e CA (1A
is equivalent to truncating the number of stadgo 228. Bji = lim (0[;[0)i]g;| Y (5.9
Once the Hamiltoniamd has been diagonalized for different R
values ofR, one can extract the spectrum as a functiofRof
in particular the low-energy eigenvaluésee, for instance, where|0); is the vacuum(on the cylindey relative to the

Fig. 2 and also their associated eigenvectors. In this way, ibff-critical theory along theith deformation. On the other
is possible to determine the masses of the lowest particlesand,

R | 2(1-4)
+ 27-rgi E

A. Vacuum expectation values by the TCSA

o 2 2Aj _ ~ 2 2Aj 0 mlo:In): 0
By using this normalization, we were able to determine, in par- <0|<Pj|0>i :(_77) <0|<Pj|0>i = (_77) w
ticular, the constanf,; entering the relation between the coupling R R l!/mbmnl//n

and the mass in the magnetig deformation[see Eq.(4.4)]. (5.6
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TABLE V. Numerical and exactwhen availablg VEV's B;, of the four relevant operators of the TIM
perturbed by the thermale) operator.

92 B, B2 B, B
>0 (num) 0 —1.46(6) 0 3.(4)
>0 (exac} 0 —1.4683 ... 0 3.707@. ..
<0 (num) +1.59(0) 1.46(6) +2.3(8) 3.(5)
<0 (exac) +1.5947 . .. 1.46839 +2.4520%. .. 3.707@. ..

where wom designs themth component of the ground state B. Numerical determination of the one-particle form factors
vector expressed in terms of the conformal basis. Due to the ag discussed in Sec. IV. once the form factors of an op-

truncation effects discussed above, the liit- in EQ.  grator are known, its correlation functions can be written as
(5.9 in practice means that one has to cqnsmetarge an infinite series over multiparticle statfiggs. (4.35 and
enough such that the VE\./ reaches a saturation plgt.eau. Th(i.?:@] and the restriction of these series to the first one-
saturation C?X‘. b_e numerically controlled by requiring thatparticle states already provides a reasonable approximation
(Ole;|0)i~R™, ie., of their long-distance behavior. These one-particle matrix el-
ements(0|¢;(0)|Ay) can be numerically determined along
1 d |n<0|<Pj|0>i the lines foIIowet_j for estimating the VEV’s o_f thg various
5A.  dmR (5.7 operators. That is, one has to replace the infinite volume
! vacuum stat€0| with its components relative to the eigen-
vector of the truncated Hamiltonian, as for the vector relative
By using this procedure, several VEV'’s for different defor- to the one-particle state, and then use the matrix elements of
mations of the TIM were determined [#1]. We have repro- the field ¢; in the truncated basis. The resulting quantity
duced and confirmed the results [@f1] for the two most finally needs to be multiplied bym,R because the normal-
relevant perturbations ande of the modelsee Table V. In  ization of the one-particle states on a finite volume differs
Table V, we have also included the exact VEV's extractedprecisely by this factor from the one on the infinite volume.
from Ref.[40] of the TIM perturbed by the thermal operator The quantity so determined, plotted versus the raéiusf
(for both high- and low-temperature phasésorder to test  the cylinder, presents in many cases a plateau in the region of
the feasibility of the numerical approach. As evident fromye physical window which therefore provides its numerical
this table, the lower the dimension of the operator, the bettegciimation. As an example of such a determination, see Fig.
the accuracy of the method. This is easy to understand sincg where the matrix elemer|¢,(0)|A,); is plotted as a

computation of th? .VEV on the cyllndgr IS equivalent 10 function ofRin the case of the leading magnetic deformation
computing it at a finite temperature, a situation analyzed in

[53]. The numerical determinations of the VEV's relative to of the TIM. A_plateau IS clearly rea(_:hed fBp-12. We have
the o3 and ¢, deformations turn out to be quite inaccurate performed this numerical calculation for all excited states

for the renormalization reasons discussed abave-(: and under the two-particle threshold relative to the lowest mass

A,>1) but their exact values can nevertheless be extracted@P for the first three deformations. The results are in Tables
frém zthe results of Ref{40] VI-IX, in units of the appropriate power of the coupling

constants. As for the numerical determination of the VEV’s,
in this case also the lower the dimension of the operator, the
" Er— more accurate the method. Moreover, the numerical errors
(©1920) [ Ah 136 1 are usually larger for those matrix elements involving states
that are closest to the threshold.
Let us conclude this section with a general remark about

14

125y 1 the one-particle form factors. We have already discussed the
el ] fact that for nonintegrable deformations the knowledge of
these matrix elements is crucial in obtaining at least a non-
vy ] trivial estimate of the correlators and their determination re-
11
o5k ] TABLE VI. Numerical estimation of the one-particle FF's in the
magnetic deformation in units (gf‘ =82
WL
%, p s 5 ™ ” " 16 ?1 #2 #3 P4
MR
(0]¢|1), —-0.52(0) 1.17) —4.(9) 7.(4)
FIG. 3. One-particle FFO|¢,(0)|A;); as a function oMR for (0]¢|2), —-0.2(1) 0.5(6) -3.(3) 5.(8)

the magnetic perturbation of the TIM.
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TABLE VII. Numerical estimation of the first four one-particle TABLE IX. Numerical estimation of some one-particle FF’s in
FF’s in the high-temperature phase in unit@éf/(lﬂz). Some of  the subleading magnetic perturbation in unit@@'f/(lﬂ3). Those
them vanish by virtue of th&, spin reversal symmetry. Numbers in relative to ¢; and ¢, are not accessible. Numbers in parentheses

parentheses represent the uncertainty. represent the uncertainty.
b1 P2 P3 P4 b1 $2
(0l @i[1)2+ 0.78(2) 0 -6.0(4) 0 (0,] @i 1)5 ~0.42(5) 0.9(4)
(0l¢il2)2+ 0 1.1(9) 0 —-11.0(1) (04] ¢i]2)3 0.87(2) 1.8(3)
(0 ¢il3)2+ 0.2(4) 0 —-4.0(3) 0
(Ol @il4)2+ 0 0.5(9) 0 -8.0(7)

The next step consists in computing the expectation value of
(¢j)i+k as in Eq.(5.6) by varyinga,;. As our typical sam-
quires a numerical approach. However, even in the mor®ling, we have considered 5-10 different valuesapfand
favorable case of integrable theories, it may occur that théhen we have extracted the numerical estimates of various
determination of the one-particle FF’s can only be obtainedusceptibilities by a linear fit of the data in the physical win-
by a numerical approach. Despite the existence of a manag€ow of theR axis where the VEV presents a plateau. The
able set of recursive equations that link the varipymrticle data relative to the two strongest relevant deformations are in
form factors in the integrable models, the solutions of thesd ables X—XIlI. Their values are reasonably close to the ones
recursive equations need an initial input that often cannot bebtained by the fluctuation-dissipation theorem or to the ex-
obtained even by employing the cluster property of the formAct values, when available from thetheorem sum rule. The
factors[43,54 (see alsd55]). Under this circumstance one Only exceptions are the susceptibilities relative to ¢gheop-

has necessarily to resort to other methods for obtaining therator, where there is a 10% mismatch. A nontrivial and
one-particle FF's and the TCSA may help in this respect. Arinternal check of our estimates is given by the symmetrical
explicit example of the situation discussed above is providedielationT'j,=T',; shown by the data. As for similar calcula-
for instance, by the form factors of the operatarsin the  tions discussed above, this method seems to be inappropriate
thermal deformation, as discussed in Appendix D. for the higher-dimension perturbations relative to the fields

¢z and ¢y.

C. Numerical computation of the susceptibilities
VI. FOUR RELEVANT PERTURBATIONS

The TCSA also allows a direct numerical estimation of OF THE TIM

the susceptibilities. Since they are defined as
In this section, we will discuss in some detail the field
5, ) theories relative to each individual relevant deformation of
-t =Tl (Aj+A—1)/(1-4)) he TIM. i h iated with th .
39409, ; ) the , i.e., those associated with the actions
9=

A~ 0
F}k:(?_gk“uj)i: ik9i

(5.9
Ait:ACFTigif d’xei(x), i=1,....4. (6.

one needs to numerically evaluate the derivatives of the
VEV’s with respect to the different couplings. Hence, aThe qualitative form of the effective potential relative to the
small perturbationg, [ Rdv () is initially added to the different off-critical deformations of the TIM is shown in
Hamiltonian (5.1), with the values of the coupling constant ) ) ) ) )
g« chosen in such a way as to alter the spectrum of the TABLE X. Estimated amplitudes in the magnetic deformation.
unperturbed theory only by a small percentage. To expres’§umbers In parentheses represent the uncertainty.
the final result in units ofg;| 4™ 2~ Y/(1=4) it is conve-

nient to write the coupling constagy, as Susceptibility Integration TCSA Sum rule
r 0.057) 0.0596) 0.06
ri, —0.13(6) —0.139(7) —0.1396
Je= akigi(lfAj)/(lfAﬂ . (5.9 I'ls 0.69(6) 0.68(7) 0.70
ri, -1.2(1) —1.1(4) —1.2(0)
1
TABLE VIIl. Numerical estimation of the first two one-particle ll:fz —2?(13(’;) _ 10':(27()7)
FF’s in the low-temperature phase in units|g§|*i /=22, Num- 1“%3 3'0(0) 2'0(8)
bers in parentheses represent the uncertainty. F§4 15'0(3) )
33 '
P1 ¢2 ¢3 Pa Fé‘l 3.76(9F
ri, —15.0(5f
(0| @i 1), 0.50(5) 1.1(9) 6.3(5) 11.0(1)
(0] @] 2),— 0 0.5(9) 0 8.0(7) #The amplitude in front of the logarithm.

bThe finite part of the susceptibility.
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TABLE XI. Estimated amplitudes in the high-temperature vie) Vo) V(o)
phase.
Susceptibility Integration TCSA Sum rule

rs 0.0939) 0.0937) o : / ¢ o

2t 0 0 0 O] ® o)

ng —0.8(9) -0.8(8) V(e) V(®)

r2; 0 0 0

rsy 0.158) 0.160) 0.1635. .. ‘

ra 0 0 0 |

Iz —-2.0(2) —-2.0(1) —2.465 ...

I3 16.0(5) I A" ’

rs; 0 0 0 ‘

ra; —17.0(57¢

&The finite part of the susceptibility.

Fig. 4. In addition to the spectrum of the off-critical excita-
tions, for each field theory we will present the main formulas e e

involved in our estimation of the universal amplitude ratios

of this model. Some aspects of the calculations of the corre- FIG. 4. Effective LG potentials associated with € theory:

lation functions and the VEV'’s are also discussed, refering tqa) at the tricritical point and perturbed t) the leading magnetic

the Appe_ndixes for_ all tec_hnical details. Here it is worth g g (9,#0), (¢) the subleading magnetic fielry>0, the leading
commenting on an interesting feature of t_he co_nformal Peranergy density withid) g,>0 or (e) g,<0, and the vacancy den-
turbation theory common to all deformations, i.e., the apjty with (f) g,>0 or (g) g,<O.

pearance of logarithmic terms both in some VEV’'s and in

the calculation of some susceptibilities. The origin of some.. : .

of these term can be traced back to the existence of sorrpened by the one-coupling actiaf.1), nevertheless the cal

peculiar resonance conditions involving the anomalous diculation of the susceptibilitiek;, requires consideration ini-
mensions of this model. The first of them is given by tially of the multicoupling action

A1:A3+A4_l, (62) "
A:Ai_"’gjf deGDj(X)"’gkf d?xei(x), (6.3
which is equivalent to saying that the scale dimensionality of

the couplingg; equals the product ofj; and g4, namely,

01~0304. Itis easy to see that this resonance condition ma)?nld tt'he I:_T'tgj =tghk=0 is taken onlﬁ.a}t the end of the (;Ial—
influence the calculation of some susceptibilities. In fact,SU/ation. Hence, the resonance conditan-gsg, may spol

even though each individual off-critical field theory is de- the _n_aive form of the ‘%b_o"e actidd.3) With. the presence of
additional terms. Explicit examples of this phenomenon are

commented on in the next sections. Another resonance con-

TABLE XII. Estimated amplitudes in the low-temperature ~:. . : L
dition that also influences some of the calculations is given

phase. The number with refers to the exact amplitude in front of
the logarithm. The number witli refers to the finite part of the y
susceptibility.

Ag=1+A,—A,, (6.4
Susceptibility Integration TCSA Sum rule
i 0.026(2) 0.026(7) where Ag=3 is the anomalous dimension of the irrelevant
rz, +0.06(3) +0.06(6) +0.06@ ... field &”.
r2; 0.4(4) 0.4(2)
2- + +
?%‘zi _gig(ié) _06?1(61()1) 0163, A. The magnetic ¢, deformation
r2, +1.1(2) +1.1(0) +1.116 . .. This is the most relevant deformation of the TIM and the
rz, 2.0(2) 2.0(1) 246 . .. only noninteg'rable one. Hence, most of the results relativ_e to
r2 12.(6) this deformation are obtained with the help of the numerical
r2, +4173B. . 2 approach. The numerical analysis of the spectrum, first per-
r2- —17.(5) formed in [27], shows that there are two different one-
4 particle states with mass ratin,/m;~1.61(see Fig. 2 By
&The exact amplitude in front of the logarithm. setting the value of the first mass to 1, its relationship with
®The finite part of the susceptibility. the coupling constarg, is numerically determined to be
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TABLE XIIl. Numerical VEV’s Bj; of the four relevant opera- TABLE XIV. Numerical values of the first correction of the
tors of the TIM perturbed by the magnetig4) operator. structure  constants G) ("= — [ d?z(@i(*) ¢;(1)¢1(2) ¢i(0))
where I<i,j<4, and O<k<4 (with the definition pp=I, | the
By B, Bj; B4y identity operator. The note “2 screening ops.” means that the cal-

culation would have required two screening operators in the Cou-

9:>0 (num) —1539(6) 1.35(6) —15(5) 1.9(2)  |omp gas integral. Numbers in parentheses represent the uncer-
tainty.
my=C,97"""=3.22 .. .g7""". (6.5 (cl)M=2 screening ops. @)P=-0.018538. ..
(ClYM~—-0.482(1) €39 {M~0.395(0)
The VEV’s of the different fields have been numerically (ClyV=-0.21489 . .. cHP=0
computed and their values are in Table XllII. By applying Eq. (C2)M=-0.11208 . .. (C2){V~0.517(2)

(4.28), it is easy to check that there is no UV mixing of the ciyW~ 001500 0V(L— _ 254815
operators for this deformation and therefore no need for their , -3 015(0) €1 '

23y(1) 4\(1)_ -

UV renormalization. In order to compute the various suscep- (Cé“)(ll) 0.260(1) 954)(11) 2 screening ops.
ibiliti 2 : (C291’=—-2.8167B. .. (C3){M=0.6838D . ..
tibilities, we have decomposefd“x(¢i(x)¢;(0)), into the (c4)=0.378705 COM= 092218
two integralsl 1(R) andl,(R), as discussed in Sec. IV. The Cg (11):0'25921) C‘S‘ b 0.6651 e
UV part of the correlator has been approximated by the ( 24)(11)* : ( 34)(11):— . ®...
short-range expansiai.34 using the values of@P){" re- (C§2)11 ~0.266(0) C§2)ll =-22154B. ..

(C20{"~—1.54(9) C3){V=050447 . ..

ported in Table XIV. They were computed as explained in *~2 w_ ! Py
Appendix B. For the IR part of the correlator, the noninte- (Cas1°=2 screening ops. Gan)i’=0
grable nature of this deformation forces us to truncate the
spectral expansion to the one-particle contributions only,

due to the anomalous dimensions of the fields involved and
2 some subtleties in the conformal perturbation expansion of
(<Pi(X)<Pj(0)>~2 FPF K o(my|x]). (6.6) g’}(g;x)_. In these cases, for _instance, the naive numerical
=1 integration of the corresponding correlators cannot be per-
) o _ formed because of their divergencesrat0. Let us first
The numerical estimation of the one-particle form faCtorSconsiderl“h. A natural way to regularize the integral
F,, expressed in appropriate units @f, can be found in Jd2x(@a(X)04(0))1, which near r—0 varies as

Table V. 27 fdrr =7, consists in introducing a UV cuto# so that its
As a concrete example of the above procedure, let ug), divergence is easily extracted:

consider the correlatofe,(x) ¢,(0))1. Its UV expansion
reads

1 o7 .
F‘M_ﬁ + (finite parp. (6.8
_—4A myr) 2
{@2(r) @2(0)) =r~"22 14 1By C, Once this divergence is subtracted, the finite part of the in-
tegral, being cutoff independent, may be regarded asthe
1\(1) myr 2 tual regularized susceptibility. The value of the magnetic de-
+(C2)1 B C_l formation is in Table X within 5—-10 % of the approximation
and this quantity can be used later on in the evaluation of the
s (g | Ml 1475 5 universal ratios. The same strategy has also been adopted for
+(C%)i Bz 7 +0((myr)®)
mr 4A2 (O{tpz(z)m(o)lo)l ol
—(521)2<C—> (6.7 ool
1
The above expression is expected to provide an accurate ap s -
proximation of the correlator up tm;r ~1. Indeed, in a plot oal

of the UV and IR approximations of this correlat@tig. 5),
a satisfactory overlap between the two curves is observed
aroundm;r~1: this makes us confident in the estimation of

the susceptibility extracted by integrating the above cor- e T

relator. The same situation occurs for the other susceptibili- °5 ; =

ties, and the final results are in good agreement with those o
extracted by the\-theorem sum rule or their direct numeri-  F|G. 5. The continuous line gives the UV approximation of the

cal estimation by the TCSA. All these data are reported incorrelator(p,(x) ¢5(0)); whereas the dashed line depicts the IR
Table X. The only exceptions consist in the calculation of theapproximation. An overlap of the two curves is observed around
susceptibilitied"3, andT'}, for which some care is required mr~1.
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the evaluation of the susceptibiliti&s,, relative to the other TABLE XV. Mass spectrum in the high-temperature phase.
deformations of the TIM since the divergence of the integral
is simply due to the conformal properties of the figlg(x) m;=M 1 odd
and does not depend on the particular deformation consid-M2=2M cos(57/18) 1.28557 even
ered. m;=2M cos(@/9) 1.87938 odd
The situation is different fol'3,. In this case, by using ~ Ms=2M cos(r/18) 1.96961 even
the operator product expansion, it is easy to see that theMs=4M cos(r/18)cosr/9) 2.53208 even
integral [ d®x(¢3(X) ¢4(0)); behaves in the UV region as Me=4M cos(2m/9)cos(r/9) 2.87938 odd
m;=4M cos(/18) cosr/9) 3.70166 even
Rdr
-, (6.9
a r

states(the ones relative to the masseg, m;, andmg) and

four Z, even(those relative to the masses, m,, ms, and

m;). In the low-temperature phase, the thi&eodd particle

states become kink excitations interpolating between the two

degenerate ground states whereas the #Hureven states

+G, play the role of breather states. This leads, in particular, to an
(6.10 interesting prediction for the universal ratio of the correlation

lengthsaboveand belowthe critical temperature. In fact, if

whereG is the finite part. Whe,, is different from 0,G is the cor_relatio_n length is define_d ac_cording to the Ieading_ ex-

not uniquely defined since it varies on changing the value oPonential falling off of the spin-spin connected correlation

%, Hence, unlike the previous case, the finite part of thefunction in the limit|x|> £,

integral cannot be used to define universal ratios although the

amplit_ud_e in front of_ the logarithmic term is an ungmb_iguous <O|¢1(x)<p1(0)|0)c+~exp( _ |L+|) 6.12

guantity in QFT which may enter universal combinations. It =

is worth pointing out that this situation is not peculiar to the

TIM but is already familiar in the context of studying the (where the indices: refer to the high- and low-temperature

specific heat dependence in the standard two-dimensionghases, respectivelyfrom theZ, symmetry property of the
Ising model(see, for instance]12]). Obviously the above o field, the self-duality of the model, and the spectral repre-

considerations apply for all the susceptibilitiés, relative to  sentation of the above correlator, we have

the other deformations of the TIM.

and therefore it presents a logarithmic divergence,

A

a

fGe— T B
T 22=24, -u"

, 3w
I";%4:7'311"1

J1
a9

£ M o™ _128557 6.1
B. The thermal ¢, deformation g_*_m_l_ COSE_ ' U 6.12

This is an integrable deformation of the TIR1,27. ) i _ i
When g,>0, the coupling to the thermal field moves the For this deformation the relationship between the me:_)/sgs gap

TIM into its high-temperature phase, where a unigie ™ and the coupling constarg, is given by m;=C0;
symmetric vacuum state is present. Wie<0, we reach Where[37]
the low-temperature phase of the model, where there is a

spontaneous breaking of tig spin symmetry and therefore B 2I'(%) 47T (2)T(4)3) "

two degenerate symmetric vacua. In the high-temperature Co= T(3I(8) T(1)30(2)

phase there are ordinary massive particle excitations whereas S R

in the low-temperature phase there are kink excitations and =3.74537283@ . . . . (6.13

bound states thereof. The two phases are related to each to

other by a duality transformation. The off-critical model pos-The VEV’s of all relevant operators, in both the high- and
sesses higher conserved charges whose spins sare low-temperature phases, have been computef4@ and
=1,5,7,9,11,13,1Tmodulo 18), i.e., the Coxeter exponents their values successfully compared with their numerical de-
of the exceptional algebr&;. The integrable structure of termination[41]: the expressions of the expectation values of
this deformation originates from the conformal decomposithe operatorsr ande are finite, whereas those of the opera-
tion (2.13 together with the pairing of the energy operatortorso’ ande’ arenaivelydivergentsee Eq(4.7)] and need
€(x) with the adjoint representation of the WZW model on therefore a regularizatiotsee Appendix € They are pre-
(E7)» [20]. The existence of an infinite number of conserva-sented in Table V, in relative units of the associate power of
tion laws implies elasticity and factorization of the scatteringthe coupling constant. Concerning the UV properties of the
amplitudes. These amplitudes were computefPih22 and fields, Eq.(4.28 predicts that there is no UV mixing of the
their concise expressions can be found in Table Il of Refoperators for this deformation and therefore no need to
[47]. The exact mass spectrum of the excitations can be exmplement their UV renormalization.

tracted from the pole structure of ti&matrices(see Table Let us now turn our attention to the computation of the
XV). With respect to theZ, spin symmetry of the model, in various susceptibilities by following the strategy explained in
the high-temperature phase there are tidgeodd particle  Sec. IV. The values of the coefficient@i’{)(zl) entering the
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TABLE XVI. Numerical values of the first correction of the structure constan@)’=

—J'd%2(@i(*) @;(1)¢2(2) ¢i(0)) where I<i,j<4, and O<k<4 (with the definitiongy=1, | the identity
operatoy.
(C9)H=0.2235D. ... (C2)M=0.2665 . . .
(CHM(mr)=0.15D0 . . . (Inmr)+b,(m)) (C%M=—2.007437
(C3)P=0.67766 . .. (C4)M=0.1813B. ..
(CRS=0 (€2)®=0
(CIM(mr)=2.35@L . . . X[In(mr)+by(m)] (C1)~0.230(2)
(C3)V=0.10987 . . . Cly=—3.7665B.. ..
(C3)M=1.84096 . .. (C)P~-3.79(9)
(C3)=1.02953 . .. ClYyW=—1.41246 . ..
(C§4)‘2i):0.54541 . (ng)‘zi):l.OOSBB .
(C5HP=0 (€YD~ —4.19(0)
(C2)5V=0 (C557(mr)~2.84(0)x [In(mn)+by(m)]
(C2)M~0.222(1) cl)M=0

UV expansion of the correlators are in Table XVI. As ato the structure constants in the thermal deformation. Three
concrete example of these calculations, let us discuss th&f these coefficients contain some logarithmic dependence,
susceptibility amplitudeT'2, relative to the correlator which, however, does not particularly influence the numeri-

{(@1(X) ¢1(0)),. Its UV expansion reads cal approximation of the short-distance values of the correla-
tors since these are higher-order corrections. The presence of
o _aA mr) ¥ mr| s these logarithms is due to a resonance phenomenon between
(@1(N)@1(0))o=r""1 1+ 5By C, +C7Ba2 C, the conformal families, i.e., it occurs when the conformal

dimensions of two operators differ for an integer number

+(C2)P mr g/5+(C2 ) mr 2 times 1-A, _wh_ereA_ is_ the dimension of the perturbing
wzc, w1222 o, operator. This situation is encountered here because
mr! 41
—(B12)? s +O((mr)3)}. (6.19 Ag—A,=(1-A,).

The IR part of the correlator is approximated by taking intoHence, we have for instancecfj)gl)(mr)=a1[|n(mr)
account initially the first four one-particle states of the spec- by(m)] with a coefficienta, that can be computed by using
tral expansion of the correlatpsee Eq(4.36): the methods explained in Appendix B. Since its algebraic
4 expression is rather cumbersome, we prefer to report here
_ PiE @] just its numerical valua;=—0.1510653.... While a; is
<(Pi(x)"aj(())>~|21 PR Ko(my|x)). .19 an unambigous quantity in QFT, the other tebg(m), on
the contrary, is a scale dependent quantity. Similar resonance
The numerical values of the one-particle form factors neede@ghenomena are also encountered in the subleading magnetic
are in Tables VII and VIII, relative to the high- and low- deformation of the TIM, which is the subject of the next
temperature phases, respectively. Although these matrix ele-
ments are already able to reproduce with reasonable accurac'*
the infrared part of the correlator, due to integrability of this (e 101
deformation some two-particle form factors are also avail- =T
able and therefore they can be used to improve the estima- oas |-
tion of the correlators. Their calculations, together with some
subtleties that occur in this case, are discussed in Appendix
D. The form factors of the operata(x), which plays the ons [
role of the trace of the stress-energy tensor for this deforma-
tion, were computed in Ref47].

The above strategy has been applied for the estimation of oos |-
all the correlators. An overlap between the UV and IR ap-
proximations of the correlators has usually been observed in s
the regionm;r~1, which may be regarded as a consistent

check of our approach. Such overlap is shown in Fig. 6 for F|G. 6. The UV approximation of the correlattp;(x) ©1(0)),

the correlator ¢1(x) ¢1(0)),. is given by the continuous line whereas its IR approximation is
In closing this subsection, some comments are in order fogiven by the dashed line. An overlap of the curves is observed

Table XVI, which collects the values of the first correctionsaroundmr~1.
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TABLE XVII. Exact VEV's of the four relevant operators in’ 1/5 mr) 6/

deformation(from [40]). (1(r)e1(0))3=r _4Al( 1+ 05823( C_) + C7B43( C_)
3 3
i Bis for [0)=[0y) Bis for |0)=04) oM (mr)6’5
+ JR—

1 0.6865 . . . ~1.797% . .. (C10)3"Bus Cs

2 —0.780%.. .. 2.0443 . .. mr 2

3 —17.94166 . .. —17.94166 . .. + (Cil)(sl)(r)Bss( _) 4.

4 2.6961 . ..2 ~7.058%...°2 Cs

4A

&The amplitude in front of the logarithm. _ (813)2(5_3) ) (6.17)

subsection, where they play a more important role since the,

contribute to the lower orders in the UV expansion. ¥here are two different sources of problems in this expan-

sion. First of all, the VEV ¢,)3 contains a logarithmic de-
pendence on the coupling and a UV regularization is needed.

C. The subleading magnetice deformation By using Eq.(6.10 and theA-theorem sum rule

This is an integrable perturbatid@8,29. It is generated (1-As)
by the less relevant magnetic field and obviously breaks the Baz=— A—F3“’ (6.18
Z, spin symmetry of the critical point since the field is a 4
Z, odd operator. The resulting massive theory presents so

MEcan easily be shown that
interesting features, as first outlined in Rig&7]. The theory y

presents two degenerate albeit asymmetrical vadanoted 3m(1—Ay) A A

by |0,) and|0,)). There are two massive kink excitations of Bss=— ——55— BigIn_+Gs —”

massm and one breather bound state thereof with the same 284 € €

mass. The exacs matrix of this theory was computed and 37 93 ~ (03

analyzed ir{29]. The relationship between the coupling con- = EBﬂ[ |ng—g+Gs /) (6.19

stantgs and the mass gap of the theory is providedrby

— 8/9 ., H
=Cags" with the constant given by([37] where e is some arbitrary UV cutoff and ~ £3. Secondly,

ici DN i logarithmic diver-
NGNS 2120\ ( 2 419 the coefficient Cy;)3~’ contains some logari .
3= \/— HIE)| mT7GETE) gences due to resonance problems already encountered in the
mI(§) T3(5)0(3) thermal perturbation and cannot be calculated by using the

Mellin transformation method in the usual manner. However,
=4.92779064 . . . . (6.16  the Mellin transformation method can be properly general-
ized to obtain the correct logarithmic term, as we show in the

following. (C1)§(r) is defined as usual by the regularized
The VEV's of the relevant operatoks,, ¢,, ¢3 Were ex-  jpiegral

actly computed in[40]. The expressions of the VEV’s

(04 04]0s), s=2,4, given by Eq(4.9) area priori divergent )

and need to be regularized. As shown in Appendix C and (C}l)gl)(r)z—f d2z{¢1(*) @1(r) 3(2) 91(0))

also discussed below, they present a logarithmic dependence (6.20
on the coupling constarg;. The complete set of VEV's, '

expressed in units of the appropriate power of the Coumm%otice that we have restored the dependence)orUsing

constant, are in Table XVII. Notice that, according to the . : 14(1)
formula (4.28, the only field that requires an ultraviolet notation of Appendlx A, C11)37(r) may be regarded as the
regularizedlimit s—0 of

renormalization is precisely the field,(x) that mixes(loga-

rithmically) with the field ¢1(x) under perturbation theory.
The 'app'lication of the&—theore.m. sum rule allows e>§act (~3(2—s;r)=f d%2|z| " @1(*) @1(r) @3(2) 91(0))

determination of the four susceptlbllltl€§j (as already dis-

cussed in Sec. VIA, the susceptibilify3, contains a loga-

rithmic dependence on the coupling constggt. Also, for :r_SJ f d*zcfulul??u

this deformation we have followed the general strategy ex-

plained in Sec. IV, i.e., we have first pursued a match be- —1/?°|u—27]%¢| 2|29~ 8|z— 1] %, (6.22)

tween the UV and IR expansions of the correlators and then

we performed their integration for extracting the susceptibili-where the coefficients,b,c,d,e are expressed in terms of

ties. Let us discuss the correlatop(r)¢1(0)); to exem-  the weights by the Coulomb gas formalism anid the Mel-

plify some new difficulties arising in the perturbative evalu- lin transformation parameter. After putting=1 in the pre-

ation. Its UV expansion is given by vious equation, we have
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TABLE XVIII. Estimated amplitudes in the subleading magne- been fixed by computing the correlal((ﬁ2| ¢1(r)¢1(0)|02>,
tization deformation for both vacué&he subscriptsa andb are  the sameA should also work for the other correlator
respectively for|0,) and[0,)) obtained from the integral of the (0,],(r)¢;(0)|0,), as is indeed the case.
correlators and some exact sum rule results. Numbers in parenthe- The above procedure has also been employed for the cor-
ses represent the uncertainty. relators( ¢,(r) ¢,(0))3 and (¢;(r) @,(0))5. For this defor-
mation, however, we were unable to reach any definite result

3a 3b

T T on those correlators involving the, operator because its
I'$=0.014(3) '$=0.063(4) one-particle FF’'s were completely inaccurate, thus prevent-
3= —-0.03(2) =0.13(7) ing a reliable evaluation of the infrared part of the correla-
32-0.076(5) 35=0.29(0) tors. The results for all the susceptibilities we were able to
F%: 0.0457D . F§§:0.11983 o compute for this deformation are in Table XVIII.
3=0.13882. .. r=-0.363%. .. , ,
F§§= 13.9545Q . F§'§= 13.9545Q . . D. The vacancy densitye, deformation
rja=-28758%...2 r$=752u4...2 The field theories originated by the perturbatiofx)

= ¢p4(x) with g,>0 andg,<0 are both integrablg26]. The
most elegant way to get an insight into these quantum field
(30/8) theories is to use the supersymmetric formulation of the TIM
= o 4\ \OmS)Cy [19,23,28. Since the field(x) is the top component of the
G2-sih)= S +O(D), (6.22 superfield(2.10), the off-critical dynamics may be described
by the action
i.e., there is a first order pole which does not allow us to

calculate C1){ in the usual manner. However, by multi- :j 2 2t LA 3
plying Eg. (6.22 by the expansiofisee Eq(C21)] A XA DNDNF N7+ aN]. (6.27

&The amplitude in front of the logarithm.

r=S=m(mr) S=[1-slnmr+0(s?)], (6.23 After eliminating t(x) by its algebraic equation of motion,
the interaction terms of the above Lagrangian are given by
wherem is an arbitrary mass scale, we obtain the expansion

ins Yipet (3 €2+9,)% (6.28
~ . (37/8)cy 37 Hence, forg,>0 the ground state energy is nonzero and
G(2=sin)=——5—+ g cnmr+O(1). supersymmetry is spontaneously broken: the scalar field ac-

(6.24 quires a mass whereas the fermionic field remains massless
and plays the role of a goldstino. This is nothing but the

Hence, C}])(sl)(r) may be taken as the regularized versionMajorana fermionic field of the familiar two-dimensional
of Eq. (6.20), i.e., the one obtained by discarding the simplelsing model, which is in fact the ending point of the massless
pole divergence renormalization group flow originating from thgy>0 de-
formation [23]. On the massless Majorana fermion of the
Ising model, supersymmetry is implemented nonlinearly.
The exact masslesS matrix was computed if24] and the
related massless form factors[26]. The crossover phenom-
where the constant term clearly depends on the scaBy  ena, where the exponents characterizing the leading singular-
looking at Eq.(6.21) and taking into account the dependenceity of an observable change from its tricritical to its critical
of a,b,c,d,e on the weights of the primary fields, it is easy value, were studied ifi25]. Along this flow, the conformal
to see that a shift of the parametedefined in Eq(C4), ¢  dimension of the magnetization field changes from its tric-
=pl/(p' —p)— &+ €, would have led to the same result, with ritical value 5 to the {5 value of the Ising fixed point, the
e playing the role ofs. The two terms in nr/C5)®° lead in  conformal dimension of the energy operator varies frgm
the correlator to to 3, and finally the conformal dimension of the vacancy
density operator changes frogy to 2, since this operator
becomes—at the end of the renormalization group flow—a
descendant of the identity operator. The subleading magne-
tization operator also becomes a descendant of the magneti-
whereA is a cutoff dependent quantity which can be deter-zation field of the Ising model at the end of the RG flow. For
mined by requiring matching between the infrared expansiothe massless nature of this theory we will not compute the
of the correlator and its UV part. The infrared part is ap-relative universal amplitude ratios.
proximated by the one-particle form factors of the magnetic Forg,<0 the ground state energy vanishes; therefore su-
and thermal operatorg§which are reported in Table IX  persymmetry is unbroken and both the scalar and the fermion
There is a nontrivial consistency check of the above procefields become massive. As argued[R6], to describe the
dure. Indeed, the correlation function can be computed in thdynamics of the system it is more convenient to adopt the
two different vacug0,) and|0,). Once the quantityA has  usual Landau-Ginzburg potential in terms of the order pa-

(ci)Pr)= %cl[ln(mr)Jrconsﬂ, (6.25

37 6/5
?01813( C_) [In(mr)+A(m)], (6.26)
3
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TABLE XIX. Exact VEV’s of the four relevant operators in  vacuum. There are two types of such two-kink form factors,

@4=t perturbation forg,<0 (from [40]). depending whether the vacutfhis |0o) or |0 ,):
Bia @i

. F ! 0 _0 = O i K + 6 K+ 0 0 y

i |O>:|O,l> |0>:‘00> |O>:|O+l> 0+1( 1 2) < Ol(PI| O,l( l) ,lO( Z)I 0> (6 3@

1 —1.97568® ... 0 1.97568 . ..

2 2.66838 ... —2.6683D. .. 2.6683D. .. ?i _

F ! 0 _0 == 0+ i K+ 0 K + 0 O+ y

3 1064018 ... @ 0 10.64018 . . . 2 :10( 1= 02) < ,1|<P|| +10( 01) Ko+ 1( 2)| 71)(6 39

4 0 0 0 '
&The amplitude in front of the logarithm. where ¢; designates the operator under consideration. The

form factors can be conveniently parametrized as

rametero(x). This potential presents threefold degenerate
vacua, labeled bj0_,), |0y), and|0, 1), where|0,) corre- FoLL(0)=F*(9), =24, (6.32
sponds to the disordered vacuum d6d ;) to the two or- B

dered vacua, symmetrically placed with respect to the origin ,

(see Fig. 4 The elementary excitations in this phase are FO.(0=F%(0), i=24, (6.33
massive kinks, which interpolate between the ordered vacua
and the disordered vacuum and are denotedKiy, or

¢1 _ ®1

K.10- The associated scattering theory was discussed in Fox1(0)==FZ(6), (639
[26,56].

Let us consider the amplitude ratios for this deformation. Film( 0)==* F‘il( 6), (6.35

The VEV's of {¢4), and(¢,), can be directly computed by

using Eq.(4.11), since the integral converges. The VEV of
¢35 contains a logarithm divergence and is calculated in Ap-
pendix C. This is the mirror situation to that encountered in

and their expressions are given [B6]

Sec. VIC for t'he VEV's(<p4_)3 gnd therefore it can be fixed F94(6)= — | mmPe= (12T +i0) cosh 6/2) Fo(0),
as in the previous subsection: = sinht (6—i )
(6.36
(93) 37TB<I94+ 9 (6.29
=— n— +const . .
$3/47 gn, "M M0 F2(0)=*i({0+1|¢5/0+1)
e (¥2)(m+i6)
Finally, by supersymmetry we expe@t,),=0, because the _<00|<Pz|00>)—4 Sinfe (9—im) Fo(6),
field ¢4(x) plays the role of the trace of the stress-energy
tensor for this deformation and indeed this is in agreement (6.37
with formula(4.11). The values of the VEV may be found in
Table XIX. < P et (Y2)(m+i6)
Concerning the UV properties of the theory, there are two  F%i(9)= =+ LSt Y. (0)Fy(6),

fields that need renormalization. The first is the subleading 2Y (im)  coshi6/2)
magnetizations’ (x), which mixes logarithmically with the (6.39
magnetization fieldr(x). The second is the vacancy density

field t(x), which mixes with the energy density(x). To ~ With

avoid the difficulties related to the mixing induced by renor-

malization, for this deformation it is convenient to rely only

on the form factor expansion for estimating the correlation Fo(0)=—isinh;

functions. In fact, all fields, except the subleading magneti-

zationo' (x), turn out to be uniquely identified by their sym- dx  sinh(3x/2)
metry properties. Moreover, the spectral series based on the XeXp[ f X sinh 2 coshx/2)
form factor are also able in this case to capture the ultraviolet

behavior of the correlators successfUlf6]. Hence, for this sir(i m— 0)(x/21)
deformation the integral$4.24 will be estimated only in sinhx ]

terms ofl,(0), i.e., I=1,(0). Thetwo-particle matrix ele-

ments of the kink states for the operatarg, ¢,, and ¢,

were calculated if56] by using a mapping of the TIM onto  10\ote that we use a different notation for the vacua compared to
the diluteg-state Potts model, with=2. All these operators the one used if40]. These notations enable us to specify more
are coupled to states with zero topological charge, i.e., t@learly the disorder vacuuh®,) (with zero magnetizationand the
those multikink states that begin and end at the samewo ordered vacug). ;) (with =1 magnetization
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TABLE XX. Estimated amplitudes in the vacancy density de-

PHYSICAL REVIEW B3 016103

TABLE XXII. Universal ratios @)}, for i,j,k=12"2".

formation for the three vacua. Numbers in parentheses represent tivumbers in parentheses represent the uncertainty.

uncertainty.

(T (i)
(I'i1)0=0.00(5) C41)=1=0.00(5)
(I'17)0=0 (%) .,=0.16(0)
(I'57)0=4.4(9)x 1073 (T4)).,=4.4(9)x 1073
(I'12)0=0 (I%,).,=70.185218 . ..
(T'4,)0=0.667079 . . . I4,).1=—0.667079 . . .
(I'33)0=0 (M%), =711.63764 ...
(I'24)0=0 (T4).,=0

#The amplitude in front of the logarithm.

B =dx sinh((p/2)—1)x
Y+(0)—exp|2 o 7W

SirP(2im— 0)(X/27T))

sinh 2x

Y_()=Y,(0+2im),

—1|2
y—zn.

Q2);,=1.88(4)
Q2)3+,-=1.32(0)
Q)% =0.44(2)

(Q2)3+,=1.26(0)
(Q2)3+,+=1.97(3)
(Q2)%1 =1.5(6)
(Q2)2, =1.7(0)

VII. CONCLUSIONS

In this paper we have exploited some powerful techniques
of quantum field theory in order to compute an extended set
of universal amplitude ratios for the scaling region of the
two-dimensional tricritical Ising model. Determination of the
thermodynamical amplitudes entering the universal ratios
was obtained by combining exact nonperturbative results
coming from CFT(UV theory) and from scattering theory
(IR theory. More specifically, we have used the ultraviolet
data provided by CFT for setting up an operator product
expansion(and computing the first order approximation to
the structure constantsand for finding eigenvalues and
eigenvectors of the off-critical Hamiltonian by a numerical
approach. In addition, we have used nonperturbative ap-
proaches related to the integrability of several deformations
of the model to obtain important infrared data, such as, for
instance, the exact vacuum expectation values of the order

With the knowledge of the first form factors, the spectralParameters, the exact spectra of the massive excitations, and
representations of the correlation functions involving thethe first form factors. A judicious use of the ultraviolet and

fields ¢4 (X), @2(X), ande4(x) are approximated by infrared properties of the various fields that span the scaling
region of the model has allowed us to significantly reduce
dé, dé, the analytic efforts necessary to compute the universal ratios.
Dy Some of these quantities can be found in Tables
XXI-XXV. ! As already pointed out in the text, this large
set of quantities may be quite useful for an experimental

(0ol ¢i(%)¢j(0)[0g)= 3,

01> 0, 27 27

XFoi (01— 6)F

0=t investigation of the critical properties of this class of univer-
><(62—01)e’|X|E2, (6.39 sality and we hope that the results presented in this paper
may stimulate such experimental activity. It would be
do, do, equally interesting to extend the theoretical approach dis-

(0+14]@i(x)@j(0)|0+1)= cussed here to other two-dimensional models in order to
reach a full control of the universality classes of low-

dimensional systems.

01>0227T 2

XF2( 01— 02)F Dy

X (6,— 6,)e B2, (6.40
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TABLE XXI. Amplitude ratiosRZ,= 2/ . The subscripts 20 SISSA for hospitality.
2=+ indicate the high- or low-temperature phase. Numbers in paren-
theses represent the uncertainty.

in the calculation of the universal ratios, we have used the exact

R?,=3.5(4) Ris=—2.0(6) values of the susceptibiliies when available from theheorem
R3,=1 R3,=—1 sum rule; otherwise we have used the arithmetic mean of their
R3,=1.3(0) R3,=1 determinations obtained by the fluctuation-dissipation theorem and

the numerical TCSA.
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TABLE XXIII. Universal ratios (RC)Jk, (RC)Jk , (RC) , and TABLE XXV. Universal ratio (RX)J for i,j=1,2,3. We also
(Rc)]k where 2- indicates the low-temperature phase am% have RX)’ —A;/(1—4;) according to the sum rules aan4
are used to label the two different vaci@g) and|0,) in the J3¢3 =0 becauseB44—0 Numbers in parentheses represent the uncer-

deformation. The other ratios are provided by the sum rEﬂg ( tainties.
=AjA /(1A )2 Numbers in parentheses represent the uncertalr-

ties. (R)3=1.1(9)x10°* (R)3=4.2(5)x10"*
-_ —2 -_ —1

(ROL-10GX10?  (RgL-48(5)<10 2 iy e s N
(Rc)%4:6-0(7)>< 1072 (Rc)§3:3-0(8)>< 107! (Ri)%a: 3.0(3)x 104 (Ri)éb:2.7(8)
(Rc)34 —7.0(6)x 102 (Rc)44 -2.0(5)x10°*
(Ry)? i L =1.7(0)x10°3 (R.)? 1 , =2.3(3)x10 2
(Ro)? 13 5 =1.7(9)x10? (Ro)3 3 = =3.0(4)x10? ~ ~da
(R)2, =7.492 ... x 1072 (RC)44 —2.0(0)x10° ! I(s)= fo 5 &l@). (A4)
(Rc)ﬁ‘ 4.2(3)x10°? (Ry)3® 1= =2.7(3)x107!
(R 12" =8.3(2)x10°* (Ry)35=5.2(0)x10°* In fact, when the Mellin transform has simple poles, it pro-
(Ry)32=1.7(5) (RC)§'§=9.6(8)>< 107t vides the asymptotic expansion in powersaobf the func-

tion I (a) according to the formula

APPENDIX A: MELLIN REGULARIZATION SCHEME e
I(a)=2, Rega I(s)]s=s, (A5)
The aim of this appendix is to discuss a regularization of :

the integrals(4.33. They can be written as where the sum runs over the poles. In our cases the above

sum is finite since the theory presents only a finite number of

Ci’}(l)= — f’dzwg(W,W), (A1) IbR divergent terms. The finite part dfa) is therefore given
y
with lo=Re$T1(s)]s—o=lim si(s). (A6)
s—0
g(w,w)=(AP()D (W) ¢i(1)¢;(0))cer- (A2) " Finally, we also need the following theorem on convolution:

_ _ . . . if the functionl(a) has the form of a convolutiofas in Eq.
A regularized version of the divergent integréds33 is pro-  (A3)], then its Mellin transform is given by
vided by the following function of the large-distance cutoff

R=1/a: T(s)=—0(s)G(2—5s), (A7)

where@(s) is the Mellin transform of®(t) and G(s) may
be considered as the Mellin transform of the angular integral
of g(Jw|,arg(w)) with respect to the radial coordinae|,

where the cutoff functior® (t) has a fast decreasing behav-

ior att— +o0 to make the integral convergent and is equal to G(2—s)= J d?w|w| ~Sg(w,w). (A8)
1 fort—0*. Of coursel(a) diverges fora—0" in a way

that depends on the particular choice @({t), but it con-
verges to a finite value foa— +o thanks to the fast de-
creasing behavior of the cutoff function. The finite part of the Ot)=et, (A9)
integral(A3) is independent of the parameteand furnishes

its natural regularization. It coincides with the analytic con-yhose Mellin transformation is the Gamma function
tinuation of the integra{Al) in those regions of the confor-

(a)=— f d2we (alw]) g(w,w), (A3)

In our calculation we have used f@r(t) the function

mal weights for which it converges. The finite part of the (S):F(S)_ (A10)
integral can be explicitly calculated by means of the Mellin
transform of the complex function(a) defined by For the calculation of6(2—s) we refer the reader to the

_ _ next Appendix.
TABLE XXIV. Universal ratios R; and Ra); for i,j

=1,2",2". Numbers in parentheses represent the uncertainties. APPENDIX B: CALCULATION OF THE (Cp(l))k
=7.55(7)x 10 ? In this appendix, we show how to compute the first cor-
R2+ 1.07(8)x 10t R =8.38(9)x 10 2 rection to the structure constants, i.e., the finite part of
(RA)H—O (Ra);-=3.91(8)x 102
Ra)3"=2.95(8)x 10 * Ra)i =8.26(0)x 10!
(Ra)i —2.95(8) (Ri —8.26(0) (= f (gp(2)D (W) ;(1) ¢i(0))d2w.  (B)
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The conformal four-point correlation functions entering theln the second case, one screening operator is needed and the
integral may be computed by means of modified Coulomhntegral takes the form
gas methodg5]. In this approach the central chargeis
parametrized by

Z(a,b,c,d,e)zjdzwf d?z|z|?3|1—2|?°
c=1-2402, a.=ap*xad+1, (B2)

X |w—z|2¢|w|?9]1—w|?e. (B7)
a,a_=—1.
The exponents,b,c,d,e are computed in the Coulomb gas

1 =@l apm®(X)- . . .
The vertex operators are defined By y(x)=:€ ©: formalism [5]. Notice that the exponend is in fact d’
where d(x) is a free scalar field and the chargesy, are  _g/2 wheres comes from the Mellin regularization scheme
defined by (see Appendix A It can be shown using transformations in
the complex plane thdb]
apm=3(1-Ma_+ 3 (1-mMa, . (B3)
The conformal dimension of the operaiéf,(x) is given by Z(a,b,c,d,e)=S(a+c)‘1f d?w|w|29|1—w|2e

Apm= — @nm@nm With

X[S(a+b+c)S(b)|l,(a,b,c;w)|?

apm=2a0— apm=3 (1+Ma_+ 3 (1+m)a,. (B4
+S(a)S(C)||2(a,b,C;W)|2],

The integrals encountered in our computation are of two

types. where
In the first case, no screening charge is needed; therefore
they can be computed in a straightforward way. For instance, I(—a—b—c—1)T(b+1)
this is the case of the integral of the four-point correlation 1,(a,b,c; )= F(—a_ o,Fi(—c,—a—-b
function {¢1(X1) @2(X2) @2(X3) @3(X4)). As an example, we (-a=c)
provide the calculation of@3,){") in the magnetic deforma- —c—1;—a—c;7),
tion of the TIM:
, o qeascT(@rDT(c+1)
(C3M) 1=~ f (03() @2(1) @1(2) ¢2(0)). l@b.cm=r o

Since 2wyt syt axn=2ay, NO screening charge is needed. XoFi(=ba+liat+c+2iy). (B8

Therefore, ) . . .
The generalized hypergeometric functions are defined by
(% :Nf d?z|z| =8|z 1] 715, (B5 .
(C2)1 2|~ *¥z—1] ) | 4 (@@
oFq(ar, - Apiby, ... bgi2)=2 —————F—
; o P k=0 K!(bp)k- - - (bg)k
whereN is a normalization factor that is fixed by the operator q

algebra and the structure consta¢gse Table I):
with (a),=T"(a+k)/T'(a).

INEEE There are several ways to compuiéa,b,c,d,e). We
1 ()I(5) ; .
N=CsCs=5 \/ T7 35" have used two equivalent methods in order to have a non-
2 NT()Ir¥@) trivial check. Let us explain them briefly for completeness.
] (1) The first method is the one considered 44]. Using
Using monodromy properties of the integral, we can witas
fdzz|z|2a|z—1|2b=—S(b)B(1+a,1+b) Z=21103+ 25505+ 212013,
XB(1+b,—1—a—h), with
with 1
J1£J z2%(1-2)®4(a,b,c,2)
I'(a)I'(B) : 0
B(a,B)= ————, X)=sin X,
(@.f I'(at+p) X =B(b+1,—~a—b-c—1)B(d+1e+1)
we find X 3F,(—c,—a—b—c—-1d+1;—a—c,2+d+e;l),
o 25 SHSAH THIND (89
22 )17 7 59 .
32 S¥2(2) I3 and

016103-24



UNIVERSAL AMPLITUDE RATIOS OF THE . .. PHYSICAL REVIEW E 63 016103

TABLE XXVI. Numerical values of the first correction of some structure consta@$)§{" with 1
<i,j=<4, and Gsk=4. Numbers in parentheses represent uncertainties.

(C1P(mn=0.718 . . . X[In(mr)+C,(m)] (C3)§M~—0.040(1)
(C%,){M=8.79920 c2){P=-0.6571
(C1){M=0.149171 C)P(mr)=2.87® ... x[In(mr+Cy(m)]
(C3)P=0 (CLP(mr)=—4.71B . . . X [In(mr)+Cs(m)]
1 J(a,b,c,d,e
JZEI 2%(1-2)% x(a,b,c,2) ( )
0 1 1
=f duf do U341 — )Py d(1—v)S(1—uv)®
=B(a+1c+1)B(2+a+c+d,e+1) 0 0
X gFy(—b,a+1,2+a+c+d;a+c =B(1+c,1+d)B(2+a+d+c,1+b) sF(—e2+c
+2,3+a+c+d+e;l). (B10) +d,1+d,3+a+b+c+d,2+c+d;1).

The J integrals appearing in EqB14) are not independent.

In these formulas they; are defined by Using a contour deformation it can be shown that they are

L P . related as
z;1=—3S(a+c) " “S *(c+d+e)S “(at+b+c+d+e) :
_ _ S(a
X S(b)S(a+b+c¢)S(d)[S(b—c—d)—S(b+c—d) S(a+b+c)Jl +S(a+b)J2 —m
+S(b+c+d)— +b+c+d)—S(b+c+d+
S(b+c+d)—S(2a+b+c+d)—S(b+c+d+2e) x[S(d)Jf+S(c+d)J§],
+S(2a+b+3c+d+2e)], (B11 (B16)
=1 —2g-1 -1 S d
Z,=1S(a+c)?S Y (c+d+e)S Ya+b+c+d+e) S(C+d+e)J2+S(d+e)J1=S(a+(b)+C)
X S(a)S(c)S(a+c+d)[S(a+b—d)+S(a—b+d)
+ +
—S(a+b+d)+S(a+b+2c+d)—S(a—b—d-2e) X[S(@)J; +S(a+e)dy ]
B1
—S(a+b+2c+d+2e)], (B12) (B17)
This has the advantage that some of dfiecan be computed
21,=2S(a+¢)"2S Yc+d+e)S Ya+b+c+d+e) in an easier way than others.
In most cases, we were able to compute these types of
X S(a)S(b)S(c)S(a+b+c)S(d)S(a+c+d). integral exactly in terms of a product of Gamma functions by
(B13) using some known relations of hypergeometric functions at

the argumeniz=1 [58]. Given their cumbersome expres-
) ) sions, the results are not reported here. When no closed
(2) The second method is the one considerediSH. It ,1s \were available, the integrals were determined numeri-
conS|sts'|n decomposing into its holomorphic and antiho- cally (using the two different representations abolag di-
lomorphic parts: rectly calculating the hypergeometric functiopB,(z) at z
=1. In this case, we used fast convergent expressions of the
I=s(b)s(e)[J; I; +J5 3, ]+s(b)s(e+c)d; I, hypergeometric functions in order to reach rather accurate
b results(with approximately 0.5% confidenge
+s(b+c)s(e)dp Jy (B14) We have performed the above set of calculations for mag-
netic, thermal, and submagnetic perturbations. The results
where are in Tables XIV, XVI, and XXVI. We did not pursue this
calculation for the vacancy density perturbation because of
JF=Jab,c,de), JIi=J(b,aced), th_e UV difficulties explained in the text and a_\lso because in
this case form factors were expected to provide a reasonable
approximation of the correlators in the whole range .of
J;=J(b,-2—-a—-b-c,c,e,—2—d—e—c), (B1H
APPENDIX C: REGULARIZATION OF THE VEV's

J;=J(-2—-a-b-cb,c,~2-d-e-c.e) The VEV’s of primary operatorsb,, in the minimal
models M, ,» perturbed by an integrable relevant operator
with the notation ¢; were conjectured if40]. They can be written as
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(04 ®, |0y = Bo.ky.is(&, 7)grikE=A0, (C1 leads to the divergence of the above integral. The complete
' S VEV under investigation can be expressed as
where s labels the different vacua. The prefactor

B(i.k.i.s(§,7) can be further decomposed as (0o’ |0)

_ 3

Bk, s(& 1) =0 k,i.s(§) Qi(€,m), (C2 _sinzvrs 78 o
whereb; i s(£) is a simple function for any perturbation T \2 772—5|g4|
¢; and any vacuuniOs) whereasQ;(£,7) can be expressed SIHZS
as
35/32
+
. =elién) . = (t
Q& m=eie7, 1i(&7) fo dtFi(ti€, 7). (C3 0446, 9

In Sec. IV we presented the explicit formulas for the three

integrable deformations of the TIM. The above integral ma . .
dive%ge for some values of the two parameters g yWheres=1,2,3 labels the three different vacua. Assuming a

regularization 0fQ,(4,6), notice that fos=2 the first term
in Eg. (C9) implies

= p=(é+1)—ék. (c4) ,
¢ p—p' ¢ ¢ (04 0’|05)=0. (C10
In fact, due to the asymptotic behavior Bf(t; £, %), To computel 4(4,6), let us break the integral as
(tr ~agént N 1 +o
Fi(t;&,m)~e aEMt t 4o, (CH |4(4,6)=f th4(t;4,6)+f dt F,(t;4,6). (C1D)
0 1

this occurs whena;(¢,7)<0. In this case, the integral

l.(¢,7) needs to be regularized in order to extract its physi-The first integral is always convergent since, in general,
cal value. Its regularization may be performed in a number of

equivalent ways, for instance, by means of an analytic pro- lim Fy 4t;&,7)=const, (C12
longation in¢ [from values for whichQ;(&,7) converge§ =0

possibly also using a sufficient number of times the reflectio . .
equations satisfied by the VEV’s. Here we present anothtle;{rhankS to a compensation between the two terms in&6).

simple method of controlling the divergences I6£, 7). Hence it is sufficient to make an analytic prolongation of the

specializing our discussion to the VEWD, 1), of the sub- second integral by subtracting its divergent part. This can be

leading magnetization operator of the TIM in the massivedone by expressing the second integral initially as

phase reached by perturbation of the vacancy operpiqr o o 4t L2t
=t=¢,, with g4,<0. This example presents all possible J th4(t;4,6)=J (F4(t;4,6)——+— dt
types of divergence of the above integrals. Let us consider 1 1 2t - 2t

initially the general expression of the functiénin the case +Y(—4)—Y(-2) (C13
of ¢4 3 perturbation40]: '

and then by making an analytic prolongation of the function

1 cosh 2 sinh(»— 1)t
Fadtié )= ;( 2

2 cosht sinh( ét)sinh( &+ 1)t Y(a)= f+oogeat Ree(a)=0 14
_ 772_1 e4t) (C6) '
26(6+1) to the domain Ref)<0. Notice that, although the analytic

extension of the functiofy(a) is not monodromic =0 is
in fact a branch-cut pointits exponentiak¥® is uniquely
e defined and this is precisely the expression that enters the
I4(4,6)=J’ dt F4(t;4,6), formula (C9) for the VEV. In the punctured complex plane
0 ae C—{0} we have

In our exampleé=4 andn=6; hence

(C7 ,
1/coshZsinhd 7 e
AR |2 a4 Y@ af(a) 1
Fa(t:46=1 (2 costisinh4  8° ) © at (€15
and the asymptotic behavior where y=0.57725 ... is theEuler-Mascheroni constant
and the holomorphic functiofi(a) is defined by the power
Fa(t;4,6)~e*, t—+ox, (C8  series
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f(a)=§ (—1)”61—n aeC (C16) 935/32(e—y+ﬁe7|n3+0(1) . (C22
&4 nin’ 95 e 128 g,

The last series is quickly convergent and allows good nuin conclusion, the example of the VEXCY), apart from a

merical estimations. divergence ¥ which can be discarded, presents a logarith-
The divergences that appear in the expression of the VEWnic part and a power law term:

proposed in Ref40] can be generally tamed as in EG.13)

above, i.e., by subtracting the leadit@nd subleadingex- g

ponential terms and then performing the analytic continua- <Os|‘7’|os>:B(Z,l),45935/321”§+C(2,1),45935/32-

tion of Y(a). However, sometimes the first term in the right- (C23

hand side r.h.s. of EC13), i.e., the integral accompanied

by the subtractions, is still logarithmically divergent. This is | js important to notice that in the previous expression the

in particular the case of our example @f3)s. When this  constantB,, ;) 4 is uniquely determined by this procedure

happens, the pure power law behavior in the coupling conang is not affected by a change of the reference coupling

stantg; of the VEV (C1) is modified. To face this situation, constantg,. Instead, the second constaBy, ) 45 May be

one may perform an extra regularization of the integral byfreely modified by rescaling the arbitrary value of the refer-

making a shift of the parametérthat characterizes the mini- gnce coupling constang,. In this sense, the constant

mal models, B(2.1).4s POSSesses a precise physical value in QFT and it

may enter the definitions of amplitude ratios as Bheref-
§—éte, €17 actor.

and then carefully taking the lim¢— 0. In our example this
results in shifting 44+ ¢, 6—6+¢€, and considering the APPENDIX D: FORM FACTORS IN THE THERMAL

expression SECTOR
e a g2 g In this appendix, we will discuss some features of the
f Fut;4+€6+€)— -+ ——— dt form factors in the thermal deformation of the TIM. In par-
1 2t 2t ot ticular, we will show that it is necessary to determitier
FY(=4)=Y(=2)+Y(e). (C19 instance by a numerical methothe one-particle form fac-

tors of ¢, independently in order to compute its higher-
particle form factors. We will discuss these matrix elements
in the high-temperature phase of the model with the mass
%pectrum and th&, quantum number of the particles given
In Table XV. Let

The limit e—0 of the first integral in Eq(C18) is obtained
by puttinge=0 and hence it can be calculated by performing
a numerical integration. Concerning the last term, once use
to evaluate the VEV, we have

o7 Fay .. a)(01, -+ ,00)=(0]0(0)|A, (61)- A, (6n)).
eY(E)z:—FO(l). (C19 (D1)

Let us consider now the dependence of the VEV on the cousiNc@ o(X) is a Z, odd operator, the nonvanishing matrix
pling constantg= —g, once the shiftC17) has been per- €lements will be those of, odd multiparticle states. Hence,
formed. We have the matrix elements that contribute to the summati.36

are, in increasing order of total energy of the corresponding
3532 (131128 (C20  statesFy, F3, Fip, Fe, Fug, Fu11, Fa3, Fys, .. .. Accord-

ing to the analysis of Refd.10,47], the two-particle form
since the conformal weights depend &nBy expanding this ~ factors can be conveniently written as
formula in powers ofe we have

35/32_,

g

Qa

b
Dab

35/32+(13/128 13/128) 3530 9 (a2 (0 =Fa5'(6) (D2)
gioez 13128k = (g ) (13128g Z(—

Jdo

where F]}" is the minimal solution of the set of Watson

equations that has neither poles nor zeros @rfg and D,

are polynomials in cost The latter requirement takes into
(c2) account the pole structure of this matrix eleméntepen-

dent of the field whereas the former depends on the field
where we have introduced an arbitrary value of the couplingunder consideration, in this casg(x). To determine the
constantgy for taking the logarithm of the adimensional above guantities we need initially the expression for the elas-
quantity g/go. Once this expression is multiplied by Eqg. tic two-particleS matrix of the mode[21,22, which can be
(C19), it gives rise to expressed as

13 g
_ ~35/3 2
g {1+ 128€|ngo+o(6 )
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g.(0)~el2 P (g)~el’ for g—o. (D10)

Sa(0)= 11 fa(0)r (D3)
w An upper bound on the maximal degree of the polynomial
where 25 can be fixed by the constraifitO]
tanhg (60+ima) <
(= (04 y=ao (O
tanh (6—ima) ) .
wherey is defined by
The different amplitudes can be found in Table Il of Ref.
[47] and are not reported here. The expongnisienote the lim Fa 4 (61, ... ,0,)~ el (D12
multiplicities of the corresponding poleHocated at 6 6] —o
=ima and §=im(1— «)] identified by the indicesr. Cor-
respondinglyFi}" is parametrized by Collecting all the above results, let us consider the two-

particle form factor7,(6):

. 0 5a,b
b ( 6>=( —i Sinh§> [T 9.0, (05 v
e FE0)=FE(0)5 5 (013
whereg,(6) is given by the integral representation !
=dt cosh(a—1/2)t] . . By using Egs(D11) and(D12), for the degreeS of Q;, we
g.(0)=expg 2 0T mSlnz(@t/ZW) haves<1. The residue equatiori4.42 at the simple order
(D6) poles corresponding to the bound states supply us with two

equations, namely,

with @=im— 6. The polynomialD ,,(6) are entirely deter- o . .
mined from the poles of th® matrix. According tq 10], they =i lim (0—iugp)FIu(0)= yapF< (D14
are given by f—iugy

Da()= I [P0 [P1_ (6], (D7) Wwitha=1, b=2, c=1,3, andyj, is given by
aeAgp
. : . —i i —iug =752 D1
io=n+1l, j,=n, if p,=2n+1, (D8) |0 ITC (67 1Ua)Sarl 6)=(Ya) (D19
—Map
i,=n, j,=n, if p,=2n,
These two equations are able to EX, unambiguously pro-
where A,, andp,, are defined in Eq(D3) and can be read vided F{ and F§ are known. However, there is no way to

from Table Il of Ref.[47]. The functions determine these one-particle form factors in the bootstrap
program. Notice, in fact, that the above equations are also

P(0)= cosma—coshf (DY) satisfied by the two-particle FF’s of the subleading magneti-

“ 2 co(mal2) zation o'(x). Therefore, one needs to extract the one-

particle FF's ofag(x) and ¢’(X) by means of some other
give a suitable parametrization of the pole of the FF9at independent method, such as, for instance, that provided by
=imwa. The asymptotic behavior of,(6) and P,(#) is the numerical truncated conformal space approach, discussed

given by in Sec. V.
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