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Universal amplitude ratios of the renormalization group: Two-dimensional tricritical Ising model
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The scaling form of the free energy near a critical point allows for the definition of various thermodynamical
amplitudes and the determination of their dependence on the microscopic nonuniversal scales. Universal
quantities can be obtained by considering special combinations of the amplitudes. Together with the critical
exponents they characterize the universality classes and may be useful quantities for their experimental iden-
tification. We compute the universal amplitude ratios for the tricritical Ising model in two dimensions by using
several theoretical methods from perturbed conformal field theory and scattering integrable quantum field
theory. The theoretical approaches are further supported and integrated by results coming from a numerical
determination of the energy eigenvalues and eigenvectors of off-critical systems in an infinite cylinder.
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I. INTRODUCTION

One of the most powerful and fascinating concepts in
investigation of critical phenomena—which has successf
passed the scrutiny of both experimental and theoretical t
during recent decades—goes under the name ofuniversality
@1#. According to this principle, two statistical models th
share the same symmetry of the order parameters and
dimensionality of the space of their definition show identic
critical behavior, although they may greatly differ in the
microscopic realizations: near the phase transition, when
correlation length is much larger than any other microsco
scale, they appear as two representatives of the same un
sality class. The first characteristic of a given universa
class consists of a set of critical exponents. Their values
generally given in terms of algebraic expressions of
anomalous dimensions of the relevant operators prese
the critical point. In two dimensions, by the powerful met
ods of conformal field theory~CFT! @2–5# one can ascertain
the values of the critical exponents, the operator product
pansions~OPE’s!, and the multipoint correlators of the rela
tive fields.

However, a complete analysis of the class of universa
should also include the description of the structure of
renormalization group trajectories near the critical point. T
most ambitious goal would be the determination of both
scaling function that fixes the equation of state and the
critical correlators of the various order parameters.1 Al-
though the exact determination of the equation of state
given universality class may often be a difficult task, t
scaling property alone of the free energy is nevertheless
ficient to extract numerous predictions about universal co

1Near the critical point all quantities relative to different mode
of the same class of universality become identical provided an
portune rescaling of the order parameters, the external fields,
the correlation length of the models is made.
1063-651X/2000/63~1!/016103~29!/$15.00 63 0161
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binations of critical amplitudes. As will become clear in Se
III, these universal combinations are pure numbers wh
can be extremely useful for the identification of the unive
sality classes. In fact, the amplitude ratios are numbers
typically present significant variations between differe
classes of universality, whereas the critical exponents usu
assume small values that vary by only a small percent
changing the universality class. Hence the universal ra
may be ideal experimental marks of the critical scaling
gime @6,7#.

In recent years, due to the theoretical progress achieve
the study of two-dimensional models, some universal ra
and other universal quantities have been computed fo
large variety of bidimensional systems, such as self-avoid
walks @8#, the Ising model@9–14#, or theq-state Potts mode
@15–17#, to name a few. In this paper we will concentrate o
attention on the determination of the largest possible se
universal amplitude ratios relative to the universality class
the two-dimensional tricritical Ising model~TIM !. Prelimi-
nary results relative to some off-critical phases of this cl
of universality have been presented in our previous publ
tion @18# and the aim of this paper is twofold, first of all, t
complete the list of universal amplitude ratios of the TI
presented in@18# and perform an exhaustive analysis of a
its possible phases, and secondly to illustrate in full detail
theoretical methods that have been employed in this dete
nation. In view of their successful application, these te
niques may be useful in analyzing and obtaining similar
sults for other statistical models, in such a way as to m
closer contact between theoretical and experimental res
in two-dimensional physics.

From a field theoretical point of view the tricritical Isin
model may be regarded as a Landau–Ginzburg~LG! F6

theory near its tricritical point@19#. The LG terminology
allows an effortless qualitative understanding of the ph
structure of the model. However the LG approach is of
too elementary for the understanding of some remarka
symmetries present in the two-dimensional~2D! TIM. As a
matter of fact, the bidimensional TIM is a unique example
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D. FIORAVANTI, G. MUSSARDO, AND P. SIMON PHYSICAL REVIEW E63 016103
critical phenomena: it is still sufficiently simple to be solve
but at the same time it presents an extremely rich and fa
nating structure of excitations which can attract the curios
of a theorist. Depending on the direction in phase spac
which the system is moved away from criticality, one c
observe, for instance, behavior ruled by the exceptional
systemE7 @20–22# or by supersymmetry@23–26# ~in its ex-
act or broken phase realization!, or by an asymmetrical pai
of kinks @27–29#. In addition, the description of its low
temperature phase is easily obtained from that of its hi
temperature phase because of the self-duality of the mo
From the experimental point of view, a number of physic
systems exhibit tricritical Ising behavior, among them flu
mixtures or metamagnets.2 Hence, there is an obvious inte
est in computing a large set of data for this class of univ
sality and in testing the theoretical predictions versus th
experimental determination. Our calculation of the univer
ratios of the TIM will be performed by a combined use
results coming from perturbed conformal field theory, fro
the integrable structure of some of the deformations of
critical point action, and also from some numerical a
proaches.

The paper is organized as follows. In Sec. II we brie
describe the universality class of the TIM and the symme
properties of the theories resulting from deformations of
critical point action of each of the four relevant fields. Se
tion III is devoted to a discussion of the scaling behavior
the singular part of the free energy and the definition of
universal ratios obtained by considering some particu
combinations of the thermodynamical amplitudes. In Sec.
we discuss the quantum field theory approach to the com
tation of the universal ratios. A numerical method based
diagonalization of the off-critical Hamiltonian obtained b
truncating the Hilbert space of the conformal space is d
cussed in Sec. V. A thorough analysis of each relevant
turbation of the TIM is performed in Sec. VI. Finally, ou
conclusions are presented in Sec. VII. Several append
relative to some technical aspects of our calculations are
cluded at the end of the paper.

II. THE UNIVERSALITY CLASS OF THE TRICRITICAL
ISING MODEL

In this section we will briefly outline the main propertie
of the universality class of the two-dimensional tricritic
Ising model. The detailed discussion of its physical prop
ties relative to each of its perturbations is contained in S
VI.

A possible lattice realization of the tricritical Ising mod
is provided by the so-called Blume-Capel model@31#. This
involves two statistical variables at each lattice site,sk , the
spin variable, which assumes values61, and tk , the va-
cancy variable, with values 0 or 1, which therefore speci
if the site is empty or occupied. It is characterized by t

2The interested reader may find ample review of this topic in R
@30#.
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most general Hamiltonian with nearest neighbor pair inter
tion,

H52J(
^ i , j &

N

sisj t i t j1D(
i 51

N

ti2H(
i 51

N

si t i

2H3(
^ i , j &

N

~si t i t j1sj t j t i !2K(
^ i , j &

N

ti t j . ~2.1!

The parameterH represents an external magnetic field,H3 an
additional subleading magnetic source,J the coupling be-
tween two nearest occupied sites,D the chemical potentia
coupled to the vacancies, andK an additional subleading
energy term between them. Another possible tw
dimensional lattice realization of this class of universality
provided by the so-called diluteAL models, discussed in
@32#.

By adopting a field theoretical point of view, a convenie
way to analyze the universality behavior of the TIM consi
in considering a Landau-Ginzburg formulation based on
scalar fieldF(x) @19#. The main advantage of this approac
is an account of theZ2 symmetry properties of each orde
parameter, which provides an easy way of understanding
phase structure of the model, at least qualitatively. In t
formulation, the class of universality of the TIM is assoc
ated with the Euclidean action

A5E dDxF1

2
~]mF!21g1F1g2F21g3F31g4F41F6G ,

~2.2!

with the tricritical point identified by the bare conditionsg1
5g25g35g450. In a close comparison with the Blume
Capel lattice formulation of the model, the statistical inte
pretation of the coupling constants is as follows:g1 plays the
role of an external magnetic fieldh, g2 measures the dis
placement of the temperature from its critical valueT
2Tc), g3 may be regarded as a staggered magnetic fieldh8,
and finallyg4 may be thought of as a chemical potential f
the vacancy density.

A dimensional analysis shows that the upper critical
mension of the above LG model isD53, where the tricriti-
cal exponents are expected to take their classical values
cluding logarithmic corrections. The mean field solution
the model easily shows that the LG action~2.2! has a tric-
ritical point, i.e., a critical point where the line of a secon
order phase transition meets the line of a first order ph
transition. Consider, in fact, the case where all theZ2 odd
couplings are equally set to zero. The potential in this s
space is given by

V~F!5g2F21g4F41F6. ~2.3!

The line of a second order phase transition is identified
the conditions

g250, g4.0, ~2.4!

whereas the line of a first order phase transition~where three
degenerate vacua coexist! is obtained by the conditions

f.
3-2
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g2.0, g4522Ag2. ~2.5!

Hence the pointg15g25g35g450 is indeed a tricritical
point.

In two dimensions—the case which will mostly conce
us—there are strong fluctuations of the order parameters
therefore the exponents and the amplitudes extracted b
mean field solution cannot be trusted. However, in this c
one can take advantage of the powerful methods of con
mal field theory to obtain an exact solution of this model
criticality. In fact, the bidimensional TIM is described by th
second representative of the unitary series of minimal m
els of CFT@2–4#: its central charge is equal toc5 7

10 and the
Kac table of the exact conformal weights of the scaling fie

D l ,k5
~5l 24k!221

80
, 1< l<3, 1<k<4, ~2.6!

is given in Table I. There are six primary scalar fieldsfD,D̄ ,
which close an algebra under the operator product expan

f i~z1 ,z̄1!f j~z2 ,z̄2!;(
k

ci jk uz12z2u22(D i1D j 2Dk)

3fk~z2 ,z̄2!. ~2.7!

The skeleton form of this OPE algebra and the relative str
ture constants of the fusion rules of the TIM are in Table
The six primary fields can be identified with the normal o
dered composite LG fields@19# ~see Table III!. With respect
to their properties under theZ2 spin-reversal transformatio
Q:F→2F we have the following.~1! The two odd fields of

TABLE I. Kac table of the tricritical Ising model.

3/2 7/16 0
3/5 3/80 1/10
1/10 3/80 3/5
0 7/16 3/2

TABLE II. Fusion rules and structure constants of the TIM f
scalar fields.

even3 even

e3e5@1#1c1@ t# c15(2/3)AG(4/5)G3(2/5)

G(1/5)G3(3/5)t3t5@1#1c2@ t# c25c1

e3t5c1@e#1c3@«9# c353/7
even3 odd

e3s85c4@s# c451/2
e3s5c4@s8#1c5@s# c55(3/2)c1

t3s85c6@s# c653/4
t3s5c6@s8#1c7@s# c75(1/4)c1

odd 3 odd
s83s85@1#1c8@«9# c857/8
s83s5c4@e#1c6@ t#

c95
1
56

s3s5@1#1c5@e#1c7@ t#1c9@«9#
01610
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the leading magnetization operators5f3/80,3/80[F and the
subleading magnetization operators85f7/16,7/16[:F3:. ~2!
Four even fields consisting of the identity operator
5f0,0, the leading energy density«5f1/10,1/10[:F2:, the
subleading energy densityt5f3/5,3/5[:F4:, which in meta-
magnets assumes the meaning of the density of the anne
vacancies, and the field«95f3/2,3/2. The OPE’s of the even
fields form a subalgebra of the fusion rules.

In the TIM there is anotherZ2 transformation—the
Kramers-Wannier dualityD—under which the fields trans
form as follows: ~a! the order magnetization operators a
mapped onto their corresponding disorder operators

m5D21sD5f̃3/80,3/80, m85D21s8D5f̃7/16,7/16;
~2.8!

~b! the even fields are mapped onto themselves,

D21«D52«, D21tD5t, D21«9D52«9, ~2.9!

i.e., « and«9 are odd under this transformation whereast is
even.

Interestingly enough, at criticality the TIM also provides
concrete realization of a supersymmetric theory since it is
first representative of the superconformal minimal mod
@33–35#: the even fields can be grouped into a superfield
the Neveu-Schwartz sector

N~z,z̄,u,ū !5«~z,z̄!1 ūc~z,z̄!1uc̄~z,z̄!1uūt~z,z̄!
~2.10!

~whereu and ū are Grassman variables! while the magnetic
fields give rise to two irreducible representations in the R
mond sector.3 The critical superconformal LG action is give
by

A5E d2xd2uF1

2
DND̄N1N 3G ~2.11!

with the covariant derivatives defined as

D5
]

]u
2u

]

]z
, D̄5

]

]ū
2 ū

]

] z̄
. ~2.12!

3The disorder fieldsm, m8 and the fermionic fieldsc, c̄ enter the
partition function of the model on a torus with twisted bounda
conditions; see, for instance,@27# where the relative fusion rules ar
also presented.

TABLE III. Operator content and LG fields.

s5@3/80,3/80#5F magnetization
e5@1/10,1/10#5F2 energy
s85@7/16,7/16#5F3 submagnetization
t5@3/5,3/5#5F4 vacancy density
«95@3/2,3/2#5F6 irrelevant
3-3
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TABLE IV. Nature of QFT’s for each individual deformation of the TIM.

QFT
g1 g2

1 g2
2 g3 g4

1 g4
2

nonintegrable integrable integrable integrable integrable integrab
E7 E7 ~kinks! ~massless flow! ~SUSY kinks!

~high temp! ~low temp!
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At the critical point, the TIM can also be realized in terms
a coset construction of a Wess-Zumino-Witten~WZW!
model on the groupG/H given by (E7)1^ (E7)1 /(E7)2 ~for
a general discussion of the coset model see, for insta
@4#!. For the central chargec5cG2cH we have in factc

523133( 1
19 2 1

20 )5 7
10 . Concerning the irreducible repre

sentations, for the WZW model based on (E7)1 we have

$I ,P6%1 with conformal dimensions$0,3
4 %, whereas for the

WZW model (E7)2 we have$I ,P1 ,P5 ,P6 ,P2%2 with con-

formal dimensions$0, 9
10 , 7

5 , 57
80 , 21

16 %. Therefore, the conforma
fields of the TIM emerge from the decomposition

~ I !13~ I !15~ I !TIM ^ ~ I !21~ 1
10 !TIM ^ ~P1!21~ 3

5 !TIM

^ ~P5!2 ,

~ I !13~P6!15~ 7
16 !TIM ^ ~P7!21~ 3

80 !TIM ^ ~P6!2 ,
~2.13!

~P6!13~P6!15~ 3
2 !TIM3~ I !2 .

As will be discussed later, the above symmetries pres
at the critical point of the TIM are also useful for the inve
tigation of some off-critical phases of the model. The fo
fields s, «, s8, and t of increasing anomalous dimension
are, from a renormalization group~RG! point of view, all
relevant operators~i.e., their conformal weight satisfiesD
,1) and therefore they can be used to move the TIM aw
from criticality. To simplify the formulas below, it is conve
nient to adopt the compact notationw i ( i 51,2,3,4) to denote
all these fields collectively, so thatw15s, w25«, w35s8,
and w45t. In the vicinity of the critical point the partition
function of the model can be expressed by the path inte

Z@g1 ,g2 ,g3 ,g4#5E Df exp2FACFT1(
i 51

4

giE w i~x!d2xG
[e2 f̂ (g1 ,g2 ,g3 ,g4). ~2.14!

We use the notation Z1@g1#5Z@g1,0,0,0#, Z2@g2#
5Z@0,g2,0,0#, etc., for the partition functions correspondin
to the individual deformations of the conformal action. A
immediate result for the off-critical phases can be dra
from the symmetry properties of the fieldsw i . In fact, since
the fieldsw1 andw3 are odd under the spin-reversalZ2 sym-
metry, a change of the sign of the corresponding coup
01610
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constants gives rise to identical physical situations, i
Z1@g1#5Z1@2g1# andZ3@g3#5Z3@2g3#. The operatorf2

is odd under theZ2 duality transformation and therefore th
physical situations that originate from a change of sign
this coupling constant will be related by a duality transfo
mation. Finally, the operatorf4 is even under bothZ2 sym-
metries and therefore the changing of the sign of the co
sponding coupling constant will produce two distin
physical situations.

At this stage it is also useful to anticipate the nature
quantum field theories~QFT’s! that originate from each in-
dividual deformation, postponing their detailed discussion
Sec. VI. The QFT associated with the deformation of t
field w1 alone is not integrable: numerical indications of th
fact were discussed in@27#. The QFT that originates from the
deformation ofw2 is integrable and the pattern of its boun
states and the scattering amplitudes are related to the hi
E7 algebraic structure of the model@21,22#. The deformation
of the critical action by means of the fieldw3 produces an
integrable field theory made of kinks, which interpolate b
tween two asymmetric vacua@28,29#. Finally, thew4 defor-
mation made with a positive value of the relative coupli
constant corresponds to an integrable massless RG flow
tween the TIM and the standard Ising model@24,25#,
whereas thew4 deformation with a negative value ofg4

gives rise to an integrable massive QFT with kink excitatio
interpolating between three degenerate vacua@26#. Both
these last QFT’s give explicit realizations of a supersymm
ric system in its broken and unbroken phase, respectively
useful summary of the theories resulting from each deform
tion can be found in Table IV. In conclusion, excluding th
magneticw1 deformation, all the others give rise to inte
grable QFT’s. This fact will be quite important for our futur
considerations.

III. SCALING FORM OF THE FREE –ENERGY
AND UNIVERSAL RATIOS

The scaling property of the relevant fields that span
scaling region of the TIM near its critical point allows th
derivation of a large set of universal quantities which are
experimental interest. For their derivation we will consid
the general case of the tricritical Ising model defined in
D-dimensional space, even though our final attention will
focused on the two-dimensional system. At this stage of
discussion we do not take into account the eventual logar
mic corrections explicitly present in the three
3-4
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dimensionalversion of this model4 and the possible ultravio
let renormalization effects. These, however, will
considered within the context of Secs. IV and VI.

The scaling property of the order parameters is enco
into the asymptotic form of their two-point functions5

^w i~x!w i~0!&.
A i

uxu4D i
, uxu→0, ~3.1!

which therefore identifies the parametersD i as the conformal
dimensions of the fields. The standard conformal normal
tion of the fields is obtained by the choiceAi51. From the
power law behavior of Eq.~3.1! it follows that the coupling
constantsgi behave as

gi;LD22D i, ~3.2!

whereL is a mass scale. Therefore, on moving the sys
away from criticality by means of one of the relevant fie
w i , there will generally be a finite correlation lengthj,
which in the thermodynamical limit scales as

j;a~Kigi !
21/(D22D i ), ~3.3!

where a;L21 may be regarded as a microscopic leng
scale. The termsKi are metric, nonuniversal factors that d
pend on the unit chosen for measuring the external sou
gi , that is, on the particular realization selected for rep
senting the universality class. In the presence of several
formations of the conformal action, the most general expr
sion for the scaling form of the correlation length may
written as

j5j i[a ~Kigi !
21/(D22D i )LiS K jgj

~Kigi !
f j i

D , ~3.4!

where

f j i [
D22D j

D22D i
~3.5!

are the so-calledcrossover exponentswhereasLi are univer-
sal homogeneous scaling functions of the rat
K jgj /(Kigi)

f j i . There are, of course, several~but equivalent!
ways of writing these scaling forms, depending on wh
coupling constant is selected as a prefactor. In the li
wheregl→0 (lÞ i ) but giÞ0, Eq. ~3.4! becomes

j i5aj i
0gi

21/(D22D i ) , j i
0;Ki

21/(D22D i ) . ~3.6!

Consider now the free energyf̂ @g1 , . . . ,g4#. This is a di-
mensionless quantity defined by

4On this issue the interested reader may consult, for instance,@30#,
and references therein.

5This notation is not standard for a genericD-dimensional system
but it has the advantage of an easy comparison with formulas
are valid in 2D systems.
01610
d

-

m

es
-
e-
s-

s

it

Z@g1 ,g2 ,g3 ,g4#5E Dfexp2FACFT1(
i 51

4

giE w i~x!dDxG
[e2 f̂ (g1 ,g2 ,g3 ,g4). ~3.7!

Assuming the validity of the hyperscaling hypothesis, in t
thermodynamical limit its singular part~per unit of volume!
will be proportional to theD power of the correlation length
Let us denote the singular part of the free energy for u
volume byf @g1 , . . . ,g4#. Depending on which scaling form
is adopted for the correlation length, we have correspo
ingly several ~but equivalent! ways of parametrizing this
quantity:

f @g1 , . . . ,g4#5 f i@g1 , . . . ,g4#

[~Kigi !
D/(D22D i )FiS K jgj

~Kigi !
f j i

D . ~3.8!

The functionsFi are universal homogeneous scaling fun
tions of the ratiosK jgj /(Kigi)

f j i . As will soon become
clear, there is an obvious advantage in dealing with differ
but equivalent expressions for the free energy: in fact, si
we will be mostly concerned with physical situations th
originate from pure deformations~i.e., those obtained by
keeping only one coupling constant finally different fro
zero!, the choice of which one has to be selected natura
follows from the particular deformation that is considered

Let us discuss now the definition of the thermodynami
quantities related to the various derivatives of the free
ergy. We will adopt the notation̂•••& i to denote expectation
values computed in the off-critical theory obtained by kee
ing ~at the end! only the coupling constantgi different from
zero. The first quantities to consider are the vacuum exp
tation values~VEV’s! of the fieldsw j , which can be param-
etrized as

^w j& i52
] f i

]gj
U

gl50

[Bji gi
2D j /(D22D i ) , ~3.9!

with

Bji ;K jKi
2D j /(D22D i ) . ~3.10!

The above relations can be equivalently expressed as

gi5Di j ~^w j& i !
~D22D i !/2D j ~3.11!

with

Di j ;
1

KiK j
(D22D i )/2D j

. ~3.12!

The generalized susceptibilities of the model are defined

Ĝ jk
i 5

]

]gk
^w j& i52

]2f i

]gk]gj
U

gl50

. ~3.13!at
3-5
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They are obviously symmetrical in the two lower indices. B
extracting their dependence on the coupling constantgi ,
they can be expressed as

Ĝ jk
i 5G jk

i gi
(2D j 12Dk2D)/(D22D i ) ~3.14!

with

G jk
i ;K jKkKi

(2D j 12Dk2D)/(D22D i ) . ~3.15!

Some of the above quantities have, of course, a very fam
meaning. For instance,^w1& i is nothing but the mean valu
of the magnetization in the off-critical theory defined by t
i th deformation whileĜ11

i is the associated magnetic susce
tibility. Similarly, ^w2& i is the mean value of the energ
along thei th deformation of the critical theory andĜ22

i the
specific heat.

As easily seen from the above formulas, the various qu
tities obtained by taking the derivatives of the free ene
contain metric factors~the quantitiesKi) which make their
values not universal. However, it is always possible to c
sider special combinations thereof in such a way that
metric factors cancel out. Here we propose consideratio
the following universal ratios:

~Rc! jk
i 5

G i i
i G jk

i

Bji Bki
, ~3.16!

~Rx! j
i 5G j j

i D j j Bji
(D24D j )/2D j , ~3.17!

Rj
i 5~G i i

i !1/Dj i
0 , ~3.18!

~RA! j
i 5G j j

i Dii
(4D j 12D i22D)/(D22D i )Bi j

(2D j 2D)/D i , ~3.19!

~Q2! jk
i 5

G j j
i

G j j
k S jk

0

j j
0D D24D j

. ~3.20!

These quantities are pure numbers, which therefore cha
terize the universality class of the model. Their definitio
closely follow and generalize the ones relative to the fami
Ising model~see, for instance,@6,12#!. Other universal ratios
may be defined as well and in fact some of them will
considered in Sec. VI devoted to the analysis of each de
mation of the critical point action. Since we will individuall
compute all the important quantities involved (Bi j , G jk

i ,
etc.!, there is really no problem in considering other unive
sal combinations, if one wishes to do so. It is worth emp
sizing that, from an experimental point of view, it should
simpler to measure universal amplitude ratios rather t
critical exponents: in fact, to determine the former quantit
one needs to perform several measurements at a single,
value of the coupling that drives the system away from cr
cality, whereas to determine the latter one needs to m
measurements over several decades along the axes o
off-critical couplings. Moreover, although not all of them a
independent, the universal ratios are a larger set of num
than the critical exponents and therefore permit a more
cise determination of the class of universality.
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IV. QUANTUM FIELD THEORY APPROACH

Essential quantities of the universal amplitude rat
~3.16!–~3.20! are the correlation length prefactorj i

0 , the
VEV amplitudes Bji , and the generalized susceptibilitie
G jk

i . With the aim of determining these quantities, in th
section we will discuss some useful results relative to
two-dimensional quantum field theories associated with
renormalization group flows originating from the releva
deformations of the conformal action. These QFT’s are, a
all, particular representatives of the universality class of
model and from now on we will focus on them alone for t
study of the off-critical dynamics. The advantages of ado
ing this approach will soon become evident.

In the following we assume the fields to be normaliz
according to the conformal normalization, i.e.,

lim
x→0

uxu4D i^w i~x!w i~0!&51, ~4.1!

and we denote byM i
6 the QFT associated with the action

A5ACFT6giE w i~x!d2x, gi.0. ~4.2!

The coupling constantgi is a dimensional quantity that ca
be related to the lowest mass gapmi5j i

21 of the theory
according to the formula

gi5 C̃imi
222D i , ~4.3!

or, equivalently,

mi5Cigi
1/(222D i ) , ~4.4!

with Ci5 C̃i
21/(222D i ) . When the QFT associated with the a

tion ~4.2! is integrable, the pure numberCi can be exactly
determined by means of the thermodynamical Bethe an
@36,37#. When the theory is not integrable~this is the case for
the magnetic deformation of the TIM!, the constantCi can
nevertheless be determined by a numerical method, base
the so-called truncated conformal space approach@38#,
which will be discussed in Sec. V. In conclusion, for a
individual deformations of the TIM we are able to com
pletely set the relationship that links the coupling constan
the mass gap of the theory and therefore we are able
switch freely between these two variables.

Another set of quantities that can be fixed by QFT are
matrix elements of the order parameters, the simplest o
being the vacuum expectation values. In this case we ha

^w j& i5B̃j i mi
2D j , ~4.5!

i.e.,

^w j& i5Bji gi
D j /(12D i ) , Bji 5B̃j i C i

2D j . ~4.6!

When the theory is integrable, the constantB̃j i can be fixed
exactly, thanks to the results of a remarkable series of pa
@39,40#. When it is not integrable, the constantB̃j i can nev-
3-6
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ertheless be estimated by means of a numerical appro
first proposed in@41#, which will be reviewed in Sec. V.
Hence in this case also, we are able to determine these q
tities completely. Let us present the exact expressions of
VEV’s for the three integrable deformations of the TIM
which are obtained by specializing the formulas of Ref.@40#.
In the expressions below, the fields are labeled by their
sition (l ,k) in the Kac table of the model@see Eq.~2.6! and
Table I# and the lowest mass gap of the different theories
simply denoted bym.

~1! For thew2 energy deformation we have

^0suF l ,ku0s&5
sin~ps/4u5l 24ku!

sin~ps/4! F 5mpG~ 5
9 !

22/3A3G~ 1
3 !G~ 2

9 !
G 2D l ,k

3Q1,2~5l 24k!, ~4.7!

where, foruRehu,4, Q1,2(h) is given by the integral

Q1,2~h!5expH E
0

`dt

t S sinh 6t sinh@ t~h21!#sinh@ t~h11!#

sinh 15t sinh10t sinh 4t

3~cosh 18t1cosh 8t2cosh 16t1cosh 4t11!

2
~h221!

40
e24tD J , ~4.8!

and is defined by its analytic continuation outside that
main. The indexs labels the various vacua and takes diffe
ent values depending on the sign of the coupling constantg2:
for g2,0 the spin symmetrys→2s is spontaneously bro
ken and there are two vacua identified bys51,3; for g2
.0 there is a unique ground state associated withs52.

~2! For thew3 subleading magnetic deformation we ha

^0suF l ,ku0s&5
sin~ps/5u5l 24ku!

sin~ps/5! F 4mpG~ 8
9 !

22/3A3G~ 1
3 !G~ 5

9 !
G 2D l ,k

3Q2,1~5l 24k!, ~4.9!

where, foruRehu,5, Q2,1(h) is given by the integral

Q2,1~h!5expH E
0

`dt

t S sinh 3t sinh@ t~h21!# sinh@ t~h11!#

sinh 9t sinh 5t sinh 8t

3~cosh 9t1cosht2cosh 11t1cosh 5t11!

2
~h221!

40
e24tD J , ~4.10!

and is defined by its analytic continuation outside that
main. For this deformation there are two vacua associa
with the valuess52,4.

~3! For thew4 vacancy density deformation in its massi
phase we have
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^0suF l ,ku0s&5
sin~ps/5u5l 24ku!

sin~ps/5!
FmApG~ 7

2 !

2
G2D l ,k

3Q1,3~5l 24k!, ~4.11!

where, foruRehu,4, Q1,3(h) is given by the integral

Q1,3~h!5expH E
0

`dt

t S cosh 2t sinh@ t~h21!#sinh@ t~h11!#

2 cosht sinh 4t sinh 5t

2
~h221!

40
e24tD J , ~4.12!

and is defined by its analytic continuation outside that d
main. For the massive phase of this deformation we h
three vacua labeled bys51,2,3.

As discussed in Sec. V, in addition to the above vacu
expectation values, a generalization of the numerical
proach of Ref.@41# often leads to a reasonable estimation
the matrix elements of the order parameters between
vacuum states and some of the excited states, such as
instance,̂ 0uw j uAk& i whereAk is a one-particle state of mas
Mk . These quantities will be useful for obtaining sensib
approximation of the large-distance behavior of several c
relators.

Another useful piece of information about the off-critic
dynamics can be obtained by exploiting the properties of
stress-energy tensorTmn(x). In the presence of the perturb
ing field w i , the trace of the stress-energy tensor is differ
from zero and can be expressed as

Q~x!52pgi~222D i !w i . ~4.13!

The vacuum expectation value ofQ(x) is given by

^Q&5w̃imi
25wigi

1/(12D i ) ~4.14!

with wi5w̃iC i
2 . As before, when the theory is integrable th

constantw̃i can be determined exactly; otherwise it can
computed numerically.6 The trace of the stress-energy tens
enters two useful sum rules which link conformal data of t
ultraviolet fixed point to off-critical quantities. The first o
them—called thec-theorem sum rule@42#—relates the cen-
tral chargec of the ultraviolet theory to the second mome
of the two-point connected correlation function ofQ,

c5
3

4pE d2xuxu2^Q~x!Q~0!&c . ~4.15!

For all relevant deformations, it is easy to check that
above integral is always convergent. The second sum ru
called theD-theorem sum rule@43#—reads

6Obviously this number can also be obtained in terms of the V
of the fieldw i and the expression ofQ given in Eq.~4.13!.
3-7
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D j52
1

4p^w j& i
E d2x^Q~x!w j~0!& i

c , ~4.16!

i.e., it relates the conformal dimensionD j of the fieldw j to
its VEV and to the integral of its connected off-critical co
relator withQ(x). This time the above integral is not alway
convergent~a detailed analysis of its convergence may
found in the original paper@43#!. Notice, however, that theD
theorem also involves the VEV of the fieldw j and it is easy
to see that the divergence/convergence of the integral is
ways accompanied by the divergence/convergence of
VEV in such a way that the sum rule always maintains
validity. The proof of this statement is simple: by taking t
derivative of the VEV~4.6! with respect togi we have in fact

]

]gi
^w j& i5

D j

gi~12D i !
^w j& i . ~4.17!

On the other hand, the above quantity can also be comp
by means of the fluctuation-dissipation theorem and is gi
by

]

]gi
^w j& i52E d2x^w i~x!w j~0!&c

i . ~4.18!

By using Eq.~4.13! and comparing the two expressions, t
divergent/convergent nature of the integral is seen to be
rectly linked to the divergent/convergent nature of the c
stantBji entering the VEV of the fieldw j . These consider-
ations suggest that the quantityD j on the left hand side o
Eq. ~4.16! is in any case also obtained when the integral
the two-point function̂ Q(x)w j (0)&c

i diverges. In this case
one needs to perform a simultaneous analytic continuatio
both the integral and the corresponding VEV.

Basic quantities in the universal ratios are the generali
susceptibilitiesG jk

i . By using Eqs.~3.7! and ~3.14!, the
fluctuation-dissipation theorem provides the relation betw
Ĝ jk

i and the integral of the connected correlator:

Ĝ jk
i 5E d2x^w j~x!wk~0!&c

i . ~4.19!

The dependence on the coupling constantgi of these quan-
tities can easily be extracted. In fact, the connected correl
can be parametrized as

^w j~x!wk~0!&c
i 5

1

r 2D j 12Dk
Qjk

i ~mr! ~4.20!

(r 5uxu). Its dependence onm is obtained with a change o
variable and by using the relation~4.4! we finally haveĜ jk

i

5G jk
i gi

(D j 1Dk21)/(12D i ) with

G jk
i 5C i

2D j 12Dk22E dt
1

t2D j 12Dk
Qjk~t!. ~4.21!
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Some of the above susceptibilities can be determined
actly, such as the componentsG ik

i , whose values are pro
vided by theD-theorem sum rule:

G ik
i 52

Dk

12Dk
Bki . ~4.22!

In all other cases, when an exact formula is not available,
strategy to evaluate the generalized susceptibilities will r
on two different representations of the correlators. These
resentations have the advantage of converging very fas
two distinct regions: the first representation is based on c
formal perturbation theory and allows a very efficient es
mation of the correlation function in its short-distance r
gime, while the second representation is based on the f
factors and allows an efficient control of its large-distan
behavior. Due to the rapidly convergent nature of the t
series in their respective domains, they are efficiently
proximated by their lowest terms, which therefore can
evaluated with relatively little analytical effort. These co
siderations obviously lead to the estimation of the integ
~4.19! according to the following steps.

~1! Express the integral in polar coordinates as

Ĝ jk
i 52pE

0

1`

dr r ^w j~r !wk~0!&c
i ~4.23!

and split the radial integral into two pieces as

I 5E
0

1`

dr r ^w j~r !wk~0!&c
i

5E
0

R

dr r ^w j~r !wk~0!&c
i 1E

R

1`

dr r ^w j~r !wk~0!&c
i

[I 1~R!1I 2~R!. ~4.24!

~2! Use the best available short-distance representatio
the correlator to evaluateI 1(R) as well as the best availabl
estimate of its large-distance representation to evalu
I 2(R).

~3! Optimize the choice of the parameterR in such a way
as to obtain the best evaluation of the whole integral.
practice, this means looking at that value ofR for which a
plateau is obtained for the sum ofI 1(R) and I 2(R).

In order to proceed in the above program it is useful
briefly recall the main features of the short-distance a
long-distance expansions of the two-point correlation fu
tions.

A. Short-distance expansion

A clear discussion of the perturbative ultraviolet reno
malization of the fields and of the short-distance expans
of the two-point functions can be found in Refs.@43,45#.
Here we will briefly review the main results useful for ou
purposes.
3-8
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First of all, there is a one-to-one correspondence betw
the fieldsat and away from criticality. However, renormal-
ization effects induced by ultraviolet divergences can h
the effect of expressing the off-critical fields in terms of
combination of the critical ones. Let us denote byF̃ i(x) and
F i(x) the conformal and the off-critical fields, respective
Consider the off-critical action obtained by a perturbation
a relevant~scalar! conformal field (DF̃,1)

A5ACFT1gE d2xF̃~x!. ~4.25!

In a conformal perturbative evaluation of the correlato
which involves one of the fieldsF i(0) we have

^•••F i~0!&5^•••F̃ i~0!&CFT

1gE
e,uxu,R

d2x^•••F̃ i~0!F̃~x!&CFT1•••,

~4.26!

wheree andR are ultraviolet and the infrared cutoffs. Let u
analyze first the ultraviolet behavior of the above integr
This is controlled by the OPE of the two conformal fields

F̃~x!F̃ i~0!5(
k

CF̃w̃
k uxu2(Dk2DF2DF i

)Ãk~0!, ~4.27!

and therefore the integral in Eq.~4.26! is divergent if in the
above expansion there are fieldsÃk(x) whose conformal di-
mensions satisfy the condition

gk[Dk2DF̃2DF̃ i
11<0. ~4.28!

If this is the case, the off-critical renormalized field that h
a finite correlator at the lowest order ing is defined by

F i5F̃ i2gp(
k

CFF i

k

gk
e2gkÃk1O~g2!. ~4.29!

Hence, due to the ultraviolet divergences there may b
mixing of the initial conformal operators with a finite num
ber of fields of lower conformal dimensions.

The conformal perturbation series for the correlati
functions also suffers from infrared divergences. These
vergences, however, cannot be absorbed into a redefin
of the local fields and, as a result, we have a nonanal
dependence on the coupling constantg. This nonanalytic be-
havior is essentially due to the nonadiabatic change of
vacuum state in passing from the conformal field theory
the fixed point to the generic massive theory of the o
critical system. To overcome this difficulty, one can ado
the strategy of considering theoff-critical OPE

w i~x!w j~0!5(
p

Ci j
p ~g;x!Ap~0!, ~4.30!

where theAp(x) belongs to a complete set of local fields
the theory@i.e., the perturbed version of the conformal fiel
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Ãp(x)# whereas the structure constantsCi j
p (g;x) are analytic

in g ~as expected by their local nature!. In this way all the
nonanalytic behavior of the correlation function

^w i~x!w j~0!&5(
i

Ci j
p ~g;x!^Ap~0!& ~4.31!

is completely encoded inside the nonperturbative VEV
^Ap(0)&5A pgDp /(12DF). Concerning the structure constan
Cjk

p (g;x), for dimensional reasons they admit the expans

Ci j
p ~g;x!5r 2(Dp2D i2D j ) (

n50

`

Ci , j
p(n)~gr222DF!n ~4.32!

wherer 5uxu, and they can be computed perturbatively7 in g.
Their first order contribution is given by@45#

Ci , j
p(1)52E 8

d2w^Ãp~`!F̃~w!w̃ i~1!w̃ j~0!&CFT ,

~4.33!

where the prime indicates a suitable infrared~large-distance!
regularization of the integral. It can be calculated by mea
of different approaches@such as, for instance, a minimal su
traction scheme based on the OPE@45# or an analytic pro-
longation in the parameters of the integrand of Eq.~4.33!,
i.e., the conformal weights#. As shown in@14#, an efficient
way to extract the finite part of the integral is provided by t
Mellin transformation, discussed in Appendix A. This is th
approach that we have mostly used in our calculations.

In conclusion, by using the VEV of the fields and the fir
approximation of the structure constants of the OPE, we
obtain a reasonable approximation for the short-distance
havior of the connected two-point functions entering t
definition of the susceptibilities in terms of the expression

^w i~x!w j~0!&k
c5(

p
(
n50

`
^Ap~0!&k

r 2(Dp2D i2D j )
Ci j

p(n)~gr222Dk!n

2^w i&k^w j&k . ~4.34!

The indexk indicates which perturbation is considered. Sin
the short-distance representation~4.31! is an expansion in the
parameter (r /j), a truncated form of the series~4.34! is ex-
pected to be sufficiently accurate forr !j. However, the
convergence of the truncated series is often much better
the results are sufficiently accurate also forr;j, as con-
firmed in several examples~see, for instance,@11,14,44–
46#!. Hence, the above truncated form~4.34! can be confi-
dently used for the evaluation of the integralI 1(R) in Eq.
~4.24!. Finally, notice that the short-distance expansion
the correlators can be implemented independently of the
tegrable or nonintegrable nature of the off-critical theory.

7The above formula has to be opportunely corrected when the
a resonance phenomenon among the fields of the conformal f
lies.
3-9
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B. Large-distance expansion

An efficient way to control the behavior of the correlato
in the opposite regime (r /j)@1 is provided by their spectra
representation expansions. In this approach, one makes
of the knowledge of the off-critical mass spectrum of t
theory to express the correlators as8

^w i~x!w j~0!&5 (
n50

`

gn~r !, ~4.35!

where

gn~r !5E
u1.u2.•••.un

du1

2p
•••

dun

2p

3^0uw i~0!uAa1
~u1!•••Aan

~un!&

3^Aa1
~u1!•••Aan

~un!uw j~0!u0&

3expS 2r (
k51

n

mkcoshukD . ~4.36!

uAa1
(u1)•••Aan

(un)& are the multiparticle states relative

the excitations of massmk , with relativistic dispersion rela-
tions given byE5mkcoshu, p5mksinhu, where u is the
rapidity variable. The spectral representation~4.36! is obvi-
ously an expansion in the parametere2r /j, wherej215m1
is the lowest mass gap.

Basic quantities of the large-distance approach are
form factors~FF’s!, i.e., the matrix elements of the operato
w i on the physical asymptotic states

Fa1 , . . . ,an

w i ~u1 , . . . ,un!5^0uw i~0!uAa1
~u1!, . . . ,Aan

~un!&.

~4.37!

It is worth emphasizing that the above quantities are un
fected by renormalization effects since physical excitatio
are employed in their definitions. For scalar operators, r
tivistic invariance requires that the FF’s depend only on
rapidity differencesu i2u j . Postponing a more detaile
analysis of the analytic properties of the FF’s, let us fi
discuss the behavior of the series~4.36! for the purpose of
evaluating the integralI 2(R) in Eq. ~4.24!.

First of all, it is convenient to order the multiparticl
states entering the sum~4.36! according to the increasin
value of the total sum of their massesEn

a1 , . . . ,an5(k51
n mk

so that, forr @j, the functionsgn(r ) behave as the decrea

ing sequence gn(r );e2rE
n

a1 , . . . ,an
. Apart from g0

5^0uw i(0)u0&^0uw j (0)u0& relative to the VEV of the fields
~which, however, does not enter the connected correla!,
the first approximation of the correlator is given by the fi
term of the expansion~4.36!,

8The expression~4.36! has to be suitably modified in the presen
of kink excitations or massless particles.
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^w i~x!w j~0!&.g1~r !5F1
w iF1

w jE
2`

1` du

2p
e2m1r coshu

5F1
w iF1

w j
1

p
K0~m1r !, ~4.38!

whereK0(x) is the modified Bessel function. Sometimes
may occur that the one-particle FF’s of the fields are zero
symmetry reasons and, in this case, the leading approx
tion of the connected correlator is given by the functi
g2(r ), expressed in terms of the two-particle form facto
Fa1 ,a2

w i (u12u2). Since Eq.~4.36! is an exact expansion in

e2r /j, its series truncated to the lowest terms is expected
provide an accurate approximation of the correlators in
interval r @j. However, the convergence property of th
truncated series is much better@8# and as a matter of fact i
neatly approximates the correlator up to the regionr;j, as
has been checked in several examples~see, for instance
@10,11,14,45–47#!. Therefore the truncated spectral series
assumed to estimate the integralI 2(R) in Eq. ~4.24! with
reasonable confidence: obviously, the more terms include
the series~4.36! the better the evaluation of the integr
I 2(R). The problem is then to determine how efficiently w
can assess the matrix elements of the order parameters o
asymptotic states. Let us discuss separately the cases
the off-critical theory corresponds to a nonintegrable QFT
to an integrable one.

For a nonintegrable QFT~such as, for instance, the QF
resulting from magnetic deformation of the TIM!, unfortu-
nately, it is difficult to go beyond the one-particle form fa
tors of the lowest-particle states,^0uw i(0)uAk&. In fact, due
to creation and annihilation events in the scattering proce
of these theories, i.e., to the nonelastic nature of itsSmatrix,
the FF’s satisfy the infinite coupled set of Watson’s equ
tions @48#

F in
w~u1 , . . . ,un!

5^0uw~0!uA~u1!•••A~un!& in

5 (
m50

` E du18

2p
•••

dum8

2p
^0uw~0!uA~u18!•••

3A~um8 !&out̂ A~u18!•••A~um8 !uA~u1!•••A~un!& in

5 (
m50

` E du18

2p
•••

dum8

2p
Fout

w ~u18 , . . . ,um8 !

3Sn→m~u1 , . . . ,unuu18 , . . . ,um8 ! ~4.39!

obtained by inserting the unitary sum on the out states in
definition of the original form factor. Consequently, highe
particle FF’s have a nontrivial analytic behavior—wi
branch cuts at all production thresholds—which in pract
precludes their exact determination. Hence, for nonintegra
theories the best we can do is to estimate the large-dista
expansion of the correlators only in terms of the lowest o
particle states. Moreover, the one-particle FF’s of these th
ries ^0uw i(0)uAk& cannot be determined by first principle
3-10
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and for their evaluation we have to rely on some numer
determinations, as discussed in the next section. Altho
this situation may appear disappointing from a theoret
point of view, it is worth stressing that for all practical pu
poses one can reach a reasonable estimate of the int
I 2(R) in the nonintegrable case also. This can be check
for instance, by comparing the values of the integrals
tained by approximating the correlators by the lowest fo
factors with their exact values obtained by theD theorem,
when the latter applies.

For an integrable QFT, the situation is much better sin
in principle, there is the possibility of determining exactlyall
form factors of the theory. For a detailed discussion of
calculation of the form factors in an integrable QFT, we re
the reader to the original literature@10,45,49,50#. Here we
simply recall the basic equations of the two-particle FF@10#
since, based on the fast convergence property expecte
the spectral series@8#, they will be the only terms employe
in the following for approximating the correlators in the
large-distance expansions~in addition, of course, to the one
particle ones!.

Assume, for simplicity, that the spectrum of the integra
QFT is made up of scalar particlesAi . Let Sab(u) be the
elastic scattering matrix of the particlesAa and Ab . In this
case, the two-particle form factorFab

w (u) is a meromorphic
function of the rapidity differenceu satisfying the equations

Fab
w ~u!5Sab~u!Fab

w ~2u!, ~4.40!

Fab
w ~ ip1u!5Fab

w ~ ip2u!. ~4.41!

Let Fab
min(u) be a solution of Eqs.~4.40! and ~4.41!, free of

poles and zeros in the strip ImuP(0,p). By requiring
asymptotic power limitation in momenta,Fab

w (u) must be
equal toFab

min(u) times a rational function of coshu, with the
poles thereof fixed by the singularity structure of the scat
ing amplitudeSab(u). A simple pole inFab

w (u), like the one
in Fig. 1 induced by the simple pole ofSab(u) with a posi-
tive residue, gives rise to the equation

Fab
w ~u. iuab

c !.
igab

c

u2 iuab
c

Fc
w , ~4.42!

wheregab
c is the on-shell three-particle coupling, also det

mined by theS matrix. A more detailed analysis is require
in general when theSmatrix presents higher-order poles~see
the discussion in@10# and Appendix D!. The FF may also
have kinematical poles, which, however, do not appear at
two-particle level if the operatorw(x) is local with respect to
the fields that create the particles. In conclusion, the tw
particle FF can be expressed as@10#

Fab
w ~u!5

Q ab
w ~u!

Dab~u!
Fab

min~u!, ~4.43!

where Dab(u) and Q ab
w (u) are polynomials in coshu: the

former is fixed by the singularity structure ofSab(u) while
the latter depends on the operatorw(x). An upper bound on
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the order of the polynomialQab
w (u) is given in terms of the

conformal dimensionDw . In fact

lim
uuu→`

Fw~u!;eywuuu, ~4.44!

with @10#

yw<Dw . ~4.45!

Further equations on the polynomialQ ab
w (u) can be obtained

when the fieldw(x) is proportional to the trace of the stres
energy tensorTmn(x). In fact, as a consequence of the co
servation law]mTmn50, the FF’s ofQ(x) for two different
particlesAa andAb must contain a term proportional to th
Mandelstam variables5(pa1pb)2 of this state@10,45#, so
that it can be factorized as

Q ab
Q ~u!5S coshu1

ma
21mb

2

2mamb
D 12dab

Pab~u!. ~4.46!

Moreover, in this case we have normalization conditions
Faa

Q , which read

Faa
Q ~ ip!5^Aa~ua!uQ~0!uAa~ua!&52pma

2 . ~4.47!

The above discussion relative to the FF’s~and their gener-
alization in the case of kink excitations! will be useful in
Sec. VI for determination of the generalized susceptibilit
for the integrable deformations of the TIM.

V. NUMERICAL METHODS: TRUNCATED CONFORMAL
SPACE APPROACH

The truncated conformal space approach~TCSA! was in-
troduced by Yurov and Zamolodchikov@38# for numerical
evaluation of the nonperturbative effects relative to o

FIG. 1. Diagram responsible for a single pole in the two-parti
form factors.
3-11
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critical models. It consists in studying the numerical sp
trum of the off-critical Hamiltonian on an infinite cylinder o
circumferenceR, acting on the Hilbert space of the confo
mal states. Once a truncation at a suitable number of stat
made, the problem reduces to performing a numerical dia
nalization of a finite dimensional Hamiltonian.

For the off-critical Hamiltonian we have

Ĥ5Ĥ01V̂, ~5.1!

whereĤ0 is the Hamiltonian of the conformal fixed point o
the cylinder, andV̂5gi*0

Rdvŵ i(w), wherew i(x) is one of
the relevant perturbations (w5u1 iv is the coordinate along
the cylinder and the tilde indicates quantities defined on
cylinder!. By using the conformal transformationz
5e(2p/R)w, the conformal theory on the cylinder is mapp
onto a plane and thereforeĤ0 can be expressed in terms
the usual conformal generatorsL0 ,L̄0 and the central charg
c @51#:

Ĥ05
2p

R S L01L̄02
c

12D , ~5.2!

ŵ i5U2p

R U2D i

w i . ~5.3!

The spectrum ofĤ depends on the dimensionless parame
giR

222D i and the value ofgi can be fixed such that the ma
gap is equal to 1.9 Let bml

21 be the inverse of the matrix
bml5^mu l & introduced to account for the nonorthogonal
of the conformal basis. Denoting byHmn[bml

21^ l uHun& the
matrix elements of the perturbed Hamiltonian, we have

Hmn5
2p

R F ~2Dm2c/12!dmn

12pgi S R

2p D 2(12D i )

bml
21^ l uw i un&G . ~5.4!

The matrix elementŝl uw i un& can be computed in terms o
the structure constants of the OPE and the action of the
formal generatorsLn on the states. For the perturbation
minimal models of CFT a numerical algorithm has been
signed to compute the above matrix elements and to perf
the diagonalization of the off-critical Hamiltonian by includ
ing the conformal states and their descendants up to the
level of the Verma module@52#. In the case of the TIM this
is equivalent to truncating the number of statesN to 228.
Once the HamiltonianH has been diagonalized for differen
values ofR, one can extract the spectrum as a function ofR,
in particular the low-energy eigenvalues~see, for instance
Fig. 2! and also their associated eigenvectors. In this way
is possible to determine the masses of the lowest partic

9By using this normalization, we were able to determine, in p
ticular, the constantC1 entering the relation between the couplin
and the mass in the magneticw1 deformation@see Eq.~4.4!#.
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several vacuum expectation values, some of the one-par
form factors, and also some of the generalized suscepti
ties. There are, however, certain limitations of the meth
one of them due to the truncation performed on the num
N of conformal states employed in the algorithm~see the
discussion in@27#!. In fact, all the quantities of interest ar
infrared data, i.e., relative to the dynamics of the system
the cylinder in the limitR→`, which is dominated by trun-
cation effects. This means that in order to extract relia
infrared data one has to look at the spectrum within an in
val of R sufficiently large but still unaffected by truncatio
errors. This interval will be called the ‘‘physical window.’
Another limitation of the TCSA occurs when the conform
dimensionD of the perturbing operator is such thatD> 1

2 . In
this case, in fact, the renormalization of the operator preve
one from reaching a proper scaling behavior of the ene
levels and the only quantities that can be extracted with r
sonable confidence are the energy differencesDEn(R)
5En(R)2E0(R).

A. Vacuum expectation values by the TCSA

As shown in Ref.@41#, knowledge of the eigenvectors i
the truncated conformal space approach allows a nume
estimation of the vacuum expectation values of several o
parameters. These quantities are defined by the limit

Bji 5 lim
R→`

^0̃uŵ j u0̃& i ugi u2D j /(12D i ), ~5.5!

where u0̃& i is the vacuum~on the cylinder! relative to the
off-critical theory along thei th deformation. On the othe
hand,

^0̃uŵ j u0̃& i5S 2p

R D 2D j

^0̃uw j u0̃& i5S 2p

R D 2D j cm
0 ^muw j un& icn

0

cm
0 bmncn

0
,

~5.6!

-

FIG. 2. The first five energy levels of the TIM perturbed by t
magnetic field as a function ofMR.
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TABLE V. Numerical and exact~when available! VEV’s Bi2 of the four relevant operators of the TIM
perturbed by the thermal (w2) operator.

g2 B12 B22 B32 B42

.0 ~num.! 0 21.46(6) 0 3.(4)

.0 ~exact! 0 21.46839 . . . 0 3.70708 . . .
,0 ~num.! 61.59(0) 1.46(6) 62.3(8) 3.(5)
,0 ~exact! 61.59427 . . . 1.46839 62.45205 . . . 3.70708 . . .
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where cm
0 designs themth component of the ground sta

vector expressed in terms of the conformal basis. Due to
truncation effects discussed above, the limitR→` in Eq.
~5.5! in practice means that one has to considerR large
enough such that the VEV reaches a saturation plateau.
saturation can be numerically controlled by requiring th
^0uw j u0& i;R2D j , i.e.,

1

2D j

d ln^0uw j u0& i

d ln R
51. ~5.7!

By using this procedure, several VEV’s for different defo
mations of the TIM were determined in@41#. We have repro-
duced and confirmed the results of@41# for the two most
relevant perturbationss ande of the model~see Table V!. In
Table V, we have also included the exact VEV’s extrac
from Ref. @40# of the TIM perturbed by the thermal operat
~for both high- and low-temperature phases! in order to test
the feasibility of the numerical approach. As evident fro
this table, the lower the dimension of the operator, the be
the accuracy of the method. This is easy to understand s
computation of the VEV on the cylinder is equivalent
computing it at a finite temperature, a situation analyzed
@53#. The numerical determinations of the VEV’s relative
the w3 and w4 deformations turn out to be quite inaccura
for the renormalization reasons discussed above (D3; 1

2 and
D4. 1

2 ) but their exact values can nevertheless be extra
from the results of Ref.@40#.

FIG. 3. One-particle FF̂0uw2(0)uA1&1 as a function ofMR for
the magnetic perturbation of the TIM.
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B. Numerical determination of the one-particle form factors

As discussed in Sec. IV, once the form factors of an o
erator are known, its correlation functions can be written
an infinite series over multiparticle states@Eqs. ~4.35! and
~4.36!# and the restriction of these series to the first on
particle states already provides a reasonable approxima
of their long-distance behavior. These one-particle matrix
ements^0uw i(0)uAk& can be numerically determined alon
the lines followed for estimating the VEV’s of the variou
operators. That is, one has to replace the infinite volu
vacuum statê0u with its components relative to the eigen
vector of the truncated Hamiltonian, as for the vector relat
to the one-particle state, and then use the matrix elemen
the field w i in the truncated basis. The resulting quant
finally needs to be multiplied byAmkR because the normal
ization of the one-particle states on a finite volume diffe
precisely by this factor from the one on the infinite volum
The quantity so determined, plotted versus the radiusR of
the cylinder, presents in many cases a plateau in the regio
the physical window which therefore provides its numeric
estimation. As an example of such a determination, see
3, where the matrix element^0uw1(0)uA1&1 is plotted as a
function ofR in the case of the leading magnetic deformati
of the TIM. A plateau is clearly reached forR'12. We have
performed this numerical calculation for all excited sta
under the two-particle threshold relative to the lowest m
gap for the first three deformations. The results are in Tab
VI–IX, in units of the appropriate power of the couplin
constants. As for the numerical determination of the VEV
in this case also the lower the dimension of the operator,
more accurate the method. Moreover, the numerical er
are usually larger for those matrix elements involving sta
that are closest to the threshold.

Let us conclude this section with a general remark ab
the one-particle form factors. We have already discussed
fact that for nonintegrable deformations the knowledge
these matrix elements is crucial in obtaining at least a n
trivial estimate of the correlators and their determination

TABLE VI. Numerical estimation of the one-particle FF’s in th
magnetic deformation in units ofg1

D i /(12D1) .

w1 w2 w3 w4

^0uwu1&1 20.52(0) 1.1(7) 24.(9) 7.(4)
^0uwu2&1 20.2(1) 0.5(6) 23.(3) 5.(8)
3-13
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quires a numerical approach. However, even in the m
favorable case of integrable theories, it may occur that
determination of the one-particle FF’s can only be obtain
by a numerical approach. Despite the existence of a man
able set of recursive equations that link the variousn-particle
form factors in the integrable models, the solutions of th
recursive equations need an initial input that often canno
obtained even by employing the cluster property of the fo
factors@43,54# ~see also@55#!. Under this circumstance on
has necessarily to resort to other methods for obtaining
one-particle FF’s and the TCSA may help in this respect.
explicit example of the situation discussed above is provid
for instance, by the form factors of the operatorsw1 in the
thermal deformation, as discussed in Appendix D.

C. Numerical computation of the susceptibilities

The TCSA also allows a direct numerical estimation
the susceptibilities. Since they are defined as

Ĝ jk
i 5

]

]gk
^w j& i52

]2f i

]gk]gj
U

gl50

5G jk
i gi

(D j 1Dk21)/(12D i ) ,

~5.8!

one needs to numerically evaluate the derivatives of
VEV’s with respect to the different couplings. Hence,
small perturbationgk*0

Rdvŵk(w) is initially added to the
Hamiltonian~5.1!, with the values of the coupling consta
gk chosen in such a way as to alter the spectrum of
unperturbed theory only by a small percentage. To exp
the final result in units ofugi u(D j 1Dk21)/(12D i ), it is conve-
nient to write the coupling constantgk as

gk5akigi
(12D j )/(12D i ) . ~5.9!

TABLE VII. Numerical estimation of the first four one-particl
FF’s in the high-temperature phase in units ofg2

D i /(12D2) . Some of
them vanish by virtue of theZ2 spin reversal symmetry. Numbers i
parentheses represent the uncertainty.

w1 w2 w3 w4

^0uw i u1&21 0.78(2) 0 26.0(4) 0
^0uw i u2&21 0 1.1(9) 0 211.0(1)
^0uw i u3&21 0.2(4) 0 24.0(3) 0
^0uw i u4&21 0 0.5(9) 0 28.0(7)

TABLE VIII. Numerical estimation of the first two one-particl
FF’s in the low-temperature phase in units ofug2uD i /(12D2). Num-
bers in parentheses represent the uncertainty.

w1 w2 w3 w4

^0uw i u1&22 0.50(5) 1.1(9) 6.3(5) 11.0(1)
^0uw i u2&22 0 0.5(9) 0 8.0(7)
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The next step consists in computing the expectation valu

^ŵ j& i 1k as in Eq.~5.6! by varyingaki . As our typical sam-
pling, we have considered 5–10 different values ofaki and
then we have extracted the numerical estimates of var
susceptibilities by a linear fit of the data in the physical w
dow of theR axis where the VEV presents a plateau. T
data relative to the two strongest relevant deformations ar
Tables X–XII. Their values are reasonably close to the o
obtained by the fluctuation-dissipation theorem or to the
act values, when available from theD-theorem sum rule. The
only exceptions are the susceptibilities relative to thew4 op-
erator, where there is a 10% mismatch. A nontrivial a
internal check of our estimates is given by the symmetri
relationG jk

i 5Gk j
i shown by the data. As for similar calcula

tions discussed above, this method seems to be inapprop
for the higher-dimension perturbations relative to the fie
w3 andw4.

VI. FOUR RELEVANT PERTURBATIONS
OF THE TIM

In this section, we will discuss in some detail the fie
theories relative to each individual relevant deformation
the TIM, i.e., those associated with the actions

A i
65ACFT6giE d2xw i~x!, i 51, . . . ,4. ~6.1!

The qualitative form of the effective potential relative to th
different off-critical deformations of the TIM is shown in

TABLE IX. Numerical estimation of some one-particle FF’s
the subleading magnetic perturbation in units ofg3

D i /(12D3) . Those
relative tow3 and w4 are not accessible. Numbers in parenthe
represent the uncertainty.

w1 w2

^02uw i u1&3 20.42(5) 0.9(4)
^04uw i u2&3 0.87(2) 1.8(3)

TABLE X. Estimated amplitudes in the magnetic deformatio
Numbers in parentheses represent the uncertainty.

Susceptibility Integration TCSA Sum rule

G11
1 0.05~7! 0.059~6! 0.06

G12
1 20.13(6) 20.139(7) 20.1396

G13
1 0.69(6) 0.68(7) 0.70

G14
1 21.2(1) 21.1(4) 21.2(0)

G22
1 0.31(7) 0.32(7)

G23
1 21.7(3) 21.6(7)

G24
1 3.0(0) 2.0(8)

G33
1 15.0(3)

G34
1 3.76(9)a

G44
1 215.0(5)b

aThe amplitude in front of the logarithm.
bThe finite part of the susceptibility.
3-14



a-
la
os
rr

t
th
e
p
in

m
om
d

o

a
ct
e-

-
-

l-

are
con-
en

nt

he
e to
cal
er-

e-

ith

re

re
f

-

UNIVERSAL AMPLITUDE RATIOS OF THE . . . PHYSICAL REVIEW E 63 016103
Fig. 4. In addition to the spectrum of the off-critical excit
tions, for each field theory we will present the main formu
involved in our estimation of the universal amplitude rati
of this model. Some aspects of the calculations of the co
lation functions and the VEV’s are also discussed, refering
the Appendixes for all technical details. Here it is wor
commenting on an interesting feature of the conformal p
turbation theory common to all deformations, i.e., the a
pearance of logarithmic terms both in some VEV’s and
the calculation of some susceptibilities. The origin of so
of these term can be traced back to the existence of s
peculiar resonance conditions involving the anomalous
mensions of this model. The first of them is given by

D15D31D421, ~6.2!

which is equivalent to saying that the scale dimensionality
the couplingg1 equals the product ofg3 and g4, namely,
g1;g3g4. It is easy to see that this resonance condition m
influence the calculation of some susceptibilities. In fa
even though each individual off-critical field theory is d

TABLE XI. Estimated amplitudes in the high-temperatu
phase.

Susceptibility Integration TCSA Sum rule

G11
21 0.093~9! 0.093~7!

G12
21 0 0 0

G13
21 20.8(9) 20.8(8)

G14
21 0 0 0

G22
21 0.15~8! 0.16~0! 0.16315 . . .

G23
21 0 0 0

G24
21 22.0(2) 22.0(1) 22.466 . . .

G33
21 16.0(5)

G34
21 0 0 0

G44
21 217.0(5)a

aThe finite part of the susceptibility.

TABLE XII. Estimated amplitudes in the low-temperatu
phase. The number with† refers to the exact amplitude in front o
the logarithm. The number with* refers to the finite part of the
susceptibility.

Susceptibility Integration TCSA Sum rule

G11
22 0.026(2) 0.026(7)

G12
22 60.06(3) 60.06(6) 60.0662 . . .

G13
22 0.4(4) 0.4(2)

G14
22 60.8(8) 60.8(1)

G22
22 0.15(8) 0.16(1) 0.16315 . . .

G23
22 61.1(2) 61.1(0) 61.1145 . . .

G24
22 2.0(2) 2.0(1) 2.466 . . .

G33
22 12.(6)

G34
22 64.17378 . . . a

G44
22 217.(5)b

aThe exact amplitude in front of the logarithm.
bThe finite part of the susceptibility.
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fined by the one-coupling action~6.1!, nevertheless the cal
culation of the susceptibilitiesĜ jk

i requires consideration ini
tially of the multicoupling action

A5A i
61gjE d2xw j~x!1gkE d2xwk~x!, ~6.3!

and the limitgj5gk50 is taken only at the end of the ca
culation. Hence, the resonance conditiong1;g3g4 may spoil
the naive form of the above action~6.3! with the presence of
additional terms. Explicit examples of this phenomenon
commented on in the next sections. Another resonance
dition that also influences some of the calculations is giv
by

D6511D42D2 , ~6.4!

whereD65 3
2 is the anomalous dimension of the irreleva

field «9.

A. The magnetic w1 deformation

This is the most relevant deformation of the TIM and t
only nonintegrable one. Hence, most of the results relativ
this deformation are obtained with the help of the numeri
approach. The numerical analysis of the spectrum, first p
formed in @27#, shows that there are two different on
particle states with mass ratiom2 /m1;1.61 ~see Fig. 2!. By
setting the value of the first mass to 1, its relationship w
the coupling constantg1 is numerically determined to be

FIG. 4. Effective LG potentials associated with theF6 theory:
~a! at the tricritical point and perturbed by~b! the leading magnetic
field (g1Þ0), ~c! the subleading magnetic fieldg3.0, the leading
energy density with~d! g2.0 or ~e! g2,0, and the vacancy den
sity with ~f! g4.0 or ~g! g4,0.
3-15
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m15C1g1
40/77'3.242 . . .g1

40/77. ~6.5!

The VEV’s of the different fields have been numerica
computed and their values are in Table XIII. By applying E
~4.28!, it is easy to check that there is no UV mixing of th
operators for this deformation and therefore no need for t
UV renormalization. In order to compute the various susc
tibilities, we have decomposed*d2x^w i(x)w j (0)&1 into the
two integralsI 1(R) and I 2(R), as discussed in Sec. IV. Th
UV part of the correlator has been approximated by
short-range expansion~4.34! using the values of (Ci j

p )1
(1) re-

ported in Table XIV. They were computed as explained
Appendix B. For the IR part of the correlator, the nonin
grable nature of this deformation forces us to truncate
spectral expansion to the one-particle contributions only,

^w i~x!w j~0!&'(
l 51

2

Fl
w iF l

w jK0~ml uxu!. ~6.6!

The numerical estimation of the one-particle form facto
Fl , expressed in appropriate units ofg1, can be found in
Table VI.

As a concrete example of the above procedure, let
consider the correlator̂w2(x)w2(0)&1. Its UV expansion
reads

^w2~r !w2~0!&5r 24D2F11c1B41S m1r

C1
D 2

1~C22
1 !1

(1)B11S m1r

C1
D 2

1~C22
3 !1

(1)B31S m1r

C1
D 14/5

1O„~m1r !3
…

2~B21!
2S mr

C1
D 4D2G . ~6.7!

The above expression is expected to provide an accurate
proximation of the correlator up tom1r;1. Indeed, in a plot
of the UV and IR approximations of this correlator~Fig. 5!,
a satisfactory overlap between the two curves is obser
aroundm1r;1: this makes us confident in the estimation
the susceptibility extracted by integrating the above c
relator. The same situation occurs for the other suscepti
ties, and the final results are in good agreement with th
extracted by theD-theorem sum rule or their direct numer
cal estimation by the TCSA. All these data are reported
Table X. The only exceptions consist in the calculation of
susceptibilitiesG34

1 andG44
1 for which some care is require

TABLE XIII. Numerical VEV’s Bi j of the four relevant opera
tors of the TIM perturbed by the magnetic (w1) operator.

B11 B21 B31 B41

g1.0 ~num.! 21.539(6) 1.35(6) 21.5(5) 1.9(2)
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due to the anomalous dimensions of the fields involved
some subtleties in the conformal perturbation expansion
Ci j

p (g;x). In these cases, for instance, the naive numer
integration of the corresponding correlators cannot be p
formed because of their divergences atr→0. Let us first
consider G44

1 . A natural way to regularize the integra
*d2x^w4(x)w4(0)&1, which near r→0 varies as
2p*drr 27/5, consists in introducing a UV cutoffa so that its
UV divergence is easily extracted:

G44
1 5

5p

a2/5
1~finite part!. ~6.8!

Once this divergence is subtracted, the finite part of the
tegral, being cutoff independent, may be regarded as theac-
tual regularized susceptibility. The value of the magnetic d
formation is in Table X within 5–10 % of the approximatio
and this quantity can be used later on in the evaluation of
universal ratios. The same strategy has also been adopte

TABLE XIV. Numerical values of the first correction of the
structure constants (Ci j

k )1
(1)52*8d2z^wk(`)w j (1)w1(z)w i(0)&

where 1< i , j <4, and 0<k<4 ~with the definitionw0[I , I the
identity operator!. The note ‘‘2 screening ops.’’ means that the ca
culation would have required two screening operators in the C
lomb gas integral. Numbers in parentheses represent the un
tainty.

(C11
1 )1

(1)52 screening ops. (C11
3 )1

(1)520.018583 . . .
(C13

1 )1
(1)'20.482(1) (C13

3 )1
(1)'0.395(0)

(C33
1 )1

(1)520.214849 . . . (C33
3 )1

(1)50
(C12

0 )1
(1)520.112093 . . . (C12

2 )1
(1)'0.517(2)

(C12
4 )1

(1)'20.015(0) (C14
0 )1

(1)522.548155 . . .
(C14

2 )1
(1)'0.260(1) (C14

4 )1
(1)52 screening ops.

(C23
0 )1

(1)522.816773 . . . (C23
2 )1

(1)50.683830 . . .
(C23

4 )1
(1)50.3787045 . . . (C34

0 )1
(1)520.922183 . . .

(C34
2 )1

(1)50.259270 . . . (C34
4 )1

(1)520.665160 . . .
(C22

1 )1
(1)'0.266(0) (C22

3 )1
(1)522.215418 . . .

(C24
1 )1

(1)'21.54(9) (C24
3 )1

(1)50.504471 . . .
(C44

1 )1
(1)52 screening ops. (C44

3 )1
(1)50

FIG. 5. The continuous line gives the UV approximation of t
correlator^w2(x)w2(0)&1 whereas the dashed line depicts the
approximation. An overlap of the two curves is observed arou
mr;1.
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the evaluation of the susceptibilitiesG44
i relative to the other

deformations of the TIM since the divergence of the integ
is simply due to the conformal properties of the fieldw4(x)
and does not depend on the particular deformation con
ered.

The situation is different forG34
1 . In this case, by using

the operator product expansion, it is easy to see that
integral*d2x^w3(x)w4(0)&1 behaves in the UV region as

E
a

Rdr

r
, ~6.9!

and therefore it presents a logarithmic divergence,

G34
1 5

3p

2
B11lnS L

a D1G52
3p

2~222D1!
B11lnS g1

g1
0D 1G,

~6.10!

whereG is the finite part. WhenB11 is different from 0,G is
not uniquely defined since it varies on changing the value
g1

0. Hence, unlike the previous case, the finite part of
integral cannot be used to define universal ratios although
amplitude in front of the logarithmic term is an unambiguo
quantity in QFT which may enter universal combinations
is worth pointing out that this situation is not peculiar to t
TIM but is already familiar in the context of studying th
specific heat dependence in the standard two-dimensi
Ising model ~see, for instance,@12#!. Obviously the above
considerations apply for all the susceptibilitiesG34

i relative to
the other deformations of the TIM.

B. The thermal w2 deformation

This is an integrable deformation of the TIM@21,22#.
When g2.0, the coupling to the thermal field moves th
TIM into its high-temperature phase, where a uniqueZ2
symmetric vacuum state is present. Wheng2,0, we reach
the low-temperature phase of the model, where there
spontaneous breaking of theZ2 spin symmetry and therefor
two degenerate symmetric vacua. In the high-tempera
phase there are ordinary massive particle excitations whe
in the low-temperature phase there are kink excitations
bound states thereof. The two phases are related to ea
other by a duality transformation. The off-critical model po
sesses higher conserved charges whose spins as
51,5,7,9,11,13,17~modulo 18), i.e., the Coxeter exponen
of the exceptional algebraE7. The integrable structure o
this deformation originates from the conformal decompo
tion ~2.13! together with the pairing of the energy operat
e(x) with the adjoint representation of the WZW model o
(E7)2 @20#. The existence of an infinite number of conserv
tion laws implies elasticity and factorization of the scatteri
amplitudes. These amplitudes were computed in@21,22# and
their concise expressions can be found in Table II of R
@47#. The exact mass spectrum of the excitations can be
tracted from the pole structure of theS matrices~see Table
XV !. With respect to theZ2 spin symmetry of the model, in
the high-temperature phase there are threeZ2 odd particle
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states~the ones relative to the massesm1 , m3, andm6) and
four Z2 even~those relative to the massesm2 , m4 , m5, and
m7). In the low-temperature phase, the threeZ2 odd particle
states become kink excitations interpolating between the
degenerate ground states whereas the fourZ2 even states
play the role of breather states. This leads, in particular, to
interesting prediction for the universal ratio of the correlati
lengthsaboveand below the critical temperature. In fact, i
the correlation length is defined according to the leading
ponential falling off of the spin-spin connected correlati
function in the limit uxu@j6,

^0uw1~x!w1~0!u0&c
6;expS 2

uxu

j6D ~6.11!

~where the indices6 refer to the high- and low-temperatur
phases, respectively!, from theZ2 symmetry property of the
s field, the self-duality of the model, and the spectral rep
sentation of the above correlator, we have

j1

j2
5

m2

m1
52 cos

5p

18
51.285 57 . . . . ~6.12!

For this deformation the relationship between the mass
m1 and the coupling constantg2 is given by m15C2g2

5/9

where@37#

C25S 2G~ 2
9 !

G~ 2
3 !G~ 5

9 !
D S 4p2G~ 2

5 !G~ 4
5 !3

G~ 1
5 !3G~ 3

5 !
D 5/18

53.745 372 8362 . . . . ~6.13!

The VEV’s of all relevant operators, in both the high- an
low-temperature phases, have been computed in@40# and
their values successfully compared with their numerical
termination@41#: the expressions of the expectation values
the operatorss ande are finite, whereas those of the oper
torss8 ande8 arenaivelydivergent@see Eq.~4.7!# and need
therefore a regularization~see Appendix C!. They are pre-
sented in Table V, in relative units of the associate powe
the coupling constant. Concerning the UV properties of
fields, Eq.~4.28! predicts that there is no UV mixing of th
operators for this deformation and therefore no need
implement their UV renormalization.

Let us now turn our attention to the computation of t
various susceptibilities by following the strategy explained
Sec. IV. The values of the coefficients (Ci j

p )2
(1) entering the

TABLE XV. Mass spectrum in the high-temperature phase.

m15M 1 odd
m252M cos(5p/18) 1.28557 even
m352M cos(p/9) 1.87938 odd
m452M cos(p/18) 1.96961 even
m554M cos(p/18)cos(p/9) 2.53208 even
m654M cos(2p/9)cos(p/9) 2.87938 odd
m754M cos(p/18)cos(p/9) 3.70166 even
3-17
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TABLE XVI. Numerical values of the first correction of the structure constants (Ci j
k )2

(1)5
2*8d2z^wk(`)w j (1)w2(z)w i(0)& where 1< i , j <4, and 0<k<4 ~with the definitionw0[I , I the identity
operator!.

(C11
0 )2

(1)50.223579 . . . (C11
2 )2

(1)50.266530 . . .
(C11

4 )2
(1)(mr)'0.1510 . . . (ln(mr)1b1(m)) (C13

0 )2
(1)522.007437

(C13
2 )2

(1)50.677665 . . . (C13
4 )2

(1)50.181313 . . .
(C33

0 )2
(1)50 (C33

2 )2
(1)50

(C33
4 )2

(1)(mr)52.3561 . . .3@ ln(mr)1b2(m)# (C12
1 )2

(1)'0.230(2)
(C12

3 )2
(1)50.109817 . . . (C23

1 )2
(1)523.766576 . . .

(C23
3 )2

(1)51.840967 . . . (C14
1 )2

(1)'23.79(9)
(C14

3 )2
(1)51.029533 . . . (C34

1 )2
(1)521.412466 . . .

(C34
4 )2

(1)50.545471 . . . (C22
2 )2

(1)51.008826 . . .
(C22

4 )2
(1)50 (C24

0 )2
(1)'24.19(0)

(C24
2 )2

(1)50 (C24
4 )2

(1)(mr)'2.84(0)3@ ln(mr)1b3(m)#
(C44

2 )2
(1)'0.222(1) (C44

4 )2
(1)50
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UV expansion of the correlators are in Table XVI. As
concrete example of these calculations, let us discuss
susceptibility amplitude G11

2 relative to the correlator
^w1(x)w1(0)&2. Its UV expansion reads

^w1~r !w1~0!&25r 24D1F11c5B22S mr

C2
D 1/5

1c7B42S mr

C2
D 6/5

1~C11
0 !2

(1)S mr

C2
D 9/5

1~C11
2 !1

(1)B22S mr

C2
D 2

2~B12!
2S mr

C2
D 4D1

1O„~mr!3
…G . ~6.14!

The IR part of the correlator is approximated by taking in
account initially the first four one-particle states of the sp
tral expansion of the correlator@see Eq.~4.36!#:

^w i~x!w j~0!&'(
l 51

4

Fl
w iF l

w jK0~ml uxu!. ~6.15!

The numerical values of the one-particle form factors nee
are in Tables VII and VIII, relative to the high- and low
temperature phases, respectively. Although these matrix
ments are already able to reproduce with reasonable accu
the infrared part of the correlator, due to integrability of th
deformation some two-particle form factors are also av
able and therefore they can be used to improve the est
tion of the correlators. Their calculations, together with so
subtleties that occur in this case, are discussed in Appe
D. The form factors of the operatore(x), which plays the
role of the trace of the stress-energy tensor for this defor
tion, were computed in Ref.@47#.

The above strategy has been applied for the estimatio
all the correlators. An overlap between the UV and IR a
proximations of the correlators has usually been observe
the regionm1r;1, which may be regarded as a consiste
check of our approach. Such overlap is shown in Fig. 6
the correlator̂ w1(x)w1(0)&2.

In closing this subsection, some comments are in order
Table XVI, which collects the values of the first correctio
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to the structure constants in the thermal deformation. Th
of these coefficients contain some logarithmic dependen
which, however, does not particularly influence the nume
cal approximation of the short-distance values of the corre
tors since these are higher-order corrections. The presen
these logarithms is due to a resonance phenomenon bet
the conformal families, i.e., it occurs when the conform
dimensions of two operators differ for an integer numb
times 12D, where D is the dimension of the perturbin
operator. This situation is encountered here because

D62D45~12D2!.

Hence, we have for instance (C11
4 )2

(1)(mr)5a1@ ln(mr)
1b1(m)# with a coefficienta1 that can be computed by usin
the methods explained in Appendix B. Since its algebr
expression is rather cumbersome, we prefer to report h
just its numerical valuea1520.151 065 3. . . . While a1 is
an unambigous quantity in QFT, the other termb1(m), on
the contrary, is a scale dependent quantity. Similar resona
phenomena are also encountered in the subleading mag
deformation of the TIM, which is the subject of the ne

FIG. 6. The UV approximation of the correlator^w1(x)w1(0)&2

is given by the continuous line whereas its IR approximation
given by the dashed line. An overlap of the curves is obser
aroundmr;1.
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subsection, where they play a more important role since t
contribute to the lower orders in the UV expansion.

C. The subleading magneticw3 deformation

This is an integrable perturbation@28,29#. It is generated
by the less relevant magnetic field and obviously breaks
Z2 spin symmetry of the critical point since the fieldw3 is a
Z2 odd operator. The resulting massive theory presents s
interesting features, as first outlined in Ref.@27#. The theory
presents two degenerate albeit asymmetrical vacua~denoted
by u02& andu04&). There are two massive kink excitations
massm and one breather bound state thereof with the sa
mass. The exactS matrix of this theory was computed an
analyzed in@29#. The relationship between the coupling co
stantg3 and the mass gap of the theory is provided bym
5C3g3

8/9 with the constantC3 given by @37#

C35
A3 G~ 1

3 !G~ 5
9 !

p G~ 8
9 !

Fp2G2~ 11
16 !G~ 1

4 !

G2~ 5
16 !G~ 3

4 !
G 4/9

54.927 790 64 . . . . ~6.16!

The VEV’s of the relevant operatorsw1 , w2 , w3 were ex-
actly computed in@40#. The expressions of the VEV’s
^0suw4u0s&, s52,4, given by Eq.~4.9! area priori divergent
and need to be regularized. As shown in Appendix C a
also discussed below, they present a logarithmic depend
on the coupling constantg3. The complete set of VEV’s
expressed in units of the appropriate power of the coup
constant, are in Table XVII. Notice that, according to t
formula ~4.28!, the only field that requires an ultraviole
renormalization is precisely the fieldw4(x) that mixes~loga-
rithmically! with the fieldw1(x) under perturbation theory.

The application of theD-theorem sum rule allows exac
determination of the four susceptibilitiesG3 j

3 ~as already dis-
cussed in Sec. VI A, the susceptibilityG34

3 contains a loga-
rithmic dependence on the coupling constantg3). Also, for
this deformation we have followed the general strategy
plained in Sec. IV, i.e., we have first pursued a match
tween the UV and IR expansions of the correlators and t
we performed their integration for extracting the susceptib
ties. Let us discuss the correlator^w1(r )w1(0)&3 to exem-
plify some new difficulties arising in the perturbative eval
ation. Its UV expansion is given by

TABLE XVII. Exact VEV’s of the four relevant operators ins8
deformation~from @40#!.

i Bi3 for u0&5u02& Bi3 for u0&5u04&

1 0.68656 . . . 21.79745 . . .
2 20.78093 . . . 2.04451 . . .
3 217.941605 . . . 217.941605 . . .
4 2.69611 . . . a 27.05856 . . . a

aThe amplitude in front of the logarithm.
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^w1~r !w1~0!&35r 24D1S 11c5B23S mr

C3
D 1/5

1c7B43S mr

C3
D 6/5

1~C11
1 !3

(1)B13S mr

C3
D 6/5

1~C11
3 !3

(1)~r !B33S mr

C3
D 2

1•••

2~B13!
2S mr

C3
D 4D1D . ~6.17!

There are two different sources of problems in this exp
sion. First of all, the VEV̂ w4&3 contains a logarithmic de
pendence on the coupling and a UV regularization is need
By using Eq.~6.10! and theD-theorem sum rule

B4352
~12D3!

D4
G34

3 , ~6.18!

it can easily be shown that

B4352
3p~12D3!

2D4
B13F ln

L

e
1G3S L

e D G
5

3p

4D4
B13F ln

g3

g3
0 1G̃3S g3

g3
0D D , ~6.19!

wheree is some arbitrary UV cutoff andL;j3
0. Secondly,

the coefficient (C11
1 )3

(1) contains some logarithmic diver
gences due to resonance problems already encountered
thermal perturbation and cannot be calculated by using
Mellin transformation method in the usual manner. Howev
the Mellin transformation method can be properly gener
ized to obtain the correct logarithmic term, as we show in
following. (C11

1 )3
(1)(r ) is defined as usual by the regularize

integral

~C11
1 !3

(1)~r !52E 8
d2z^w1~`!w1~r !w3~z!w1~0!&

~6.20!

~notice that we have restored the dependence onr ). Using
notation of Appendix A, (C11

1 )3
(1)(r ) may be regarded as th

regularizedlimit s→0 of

G̃~22s;r !5E d2zuzu2s^w1~`!w1~r !w3~z!w1~0!&

5r 2sE E d2zd2uuuu2auu

21u2buu2zu2cuzu2d2suz21u2e, ~6.21!

where the coefficientsa,b,c,d,e are expressed in terms o
the weights by the Coulomb gas formalism ands is the Mel-
lin transformation parameter. After puttingr 51 in the pre-
vious equation, we have
3-19
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G̃~22s;1!52
~3p/8!c1

s
1O~1!, ~6.22!

i.e., there is a first order pole which does not allow us
calculate (C11

1 )3
(1) in the usual manner. However, by mult

plying Eq. ~6.22! by the expansion@see Eq.~C21!#

r 2s5ms~mr!2s5@12s ln mr1O~s2!#, ~6.23!

wherem is an arbitrary mass scale, we obtain the expans
in s

G̃~22s;r !52
~3p/8!c1

s
1

3p

8
c1ln mr1O~1!.

~6.24!

Hence, (C11
1 )3

(1)(r ) may be taken as the regularized versi
of Eq. ~6.20!, i.e., the one obtained by discarding the simp
pole divergence

~C11
1 !3

(1)~r !5
3p

8
c1@ ln~mr!1const#, ~6.25!

where the constant term clearly depends on the scalem. By
looking at Eq.~6.21! and taking into account the dependen
of a,b,c,d,e on the weights of the primary fields, it is eas
to see that a shift of the parameterj defined in Eq.~C4!, j
5p/(p82p)→j1e, would have led to the same result, wi
e playing the role ofs. The two terms in (mr/C3)6/5 lead in
the correlator to

3p

8
c1B13S mr

C3
D 6/5

@ ln~mr!1A~m!#, ~6.26!

whereA is a cutoff dependent quantity which can be det
mined by requiring matching between the infrared expans
of the correlator and its UV part. The infrared part is a
proximated by the one-particle form factors of the magne
and thermal operators~which are reported in Table IX!.
There is a nontrivial consistency check of the above pro
dure. Indeed, the correlation function can be computed in
two different vacuau02& and u04&. Once the quantityA has

TABLE XVIII. Estimated amplitudes in the subleading magn
tization deformation for both vacua~the subscriptsa and b are
respectively foru02& and u04&) obtained from the integral of the
correlators and some exact sum rule results. Numbers in pare
ses represent the uncertainty.

G i j
3a G i j

3b

G11
3a50.014(3) G11

3b50.063(4)
G12

3a520.03(2) G11
3b50.13(7)

G22
3a50.076(5) G22

3b50.29(0)
G13

3a520.045770 . . . G13
3b50.11983 . . .

G23
3a50.138832 . . . G23

3b520.36346 . . .
G33

3a513.954582 . . . G33
3b513.954582 . . .

G34
3a522.875855 . . . a G34

3b57.52914 . . . a

aThe amplitude in front of the logarithm.
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been fixed by computing the correlator^02uw1(r )w1(0)u02&,
the sameA should also work for the other correlato
^04uw1(r )w1(0)u04&, as is indeed the case.

The above procedure has also been employed for the
relators^w2(r )w2(0)&3 and ^w1(r )w2(0)&3. For this defor-
mation, however, we were unable to reach any definite re
on those correlators involving thew4 operator because it
one-particle FF’s were completely inaccurate, thus preve
ing a reliable evaluation of the infrared part of the corre
tors. The results for all the susceptibilities we were able
compute for this deformation are in Table XVIII.

D. The vacancy densityw4 deformation

The field theories originated by the perturbationt(x)
5w4(x) with g4.0 andg4,0 are both integrable@26#. The
most elegant way to get an insight into these quantum fi
theories is to use the supersymmetric formulation of the T
@19,23,26#. Since the fieldt(x) is the top component of the
superfield~2.10!, the off-critical dynamics may be describe
by the action

A5E d2xd2u@ 1
2 DND̄N1N 31g4N#. ~6.27!

After eliminating t(x) by its algebraic equation of motion
the interaction terms of the above Lagrangian are given

c̄ce1 1
2 ~ 1

2 e21g4!2. ~6.28!

Hence, forg4.0 the ground state energy is nonzero a
supersymmetry is spontaneously broken: the scalar field
quires a mass whereas the fermionic field remains mass
and plays the role of a goldstino. This is nothing but t
Majorana fermionic field of the familiar two-dimensiona
Ising model, which is in fact the ending point of the massle
renormalization group flow originating from theg4.0 de-
formation @23#. On the massless Majorana fermion of th
Ising model, supersymmetry is implemented nonlinea
The exact masslessS matrix was computed in@24# and the
related massless form factors in@25#. The crossover phenom
ena, where the exponents characterizing the leading sing
ity of an observable change from its tricritical to its critic
value, were studied in@25#. Along this flow, the conformal
dimension of the magnetization field changes from its tr
ritical value 3

80 to the 1
16 value of the Ising fixed point, the

conformal dimension of the energy operator varies from1
10

to 1
2 , and finally the conformal dimension of the vacan

density operator changes from610 to 2, since this operato
becomes—at the end of the renormalization group flow—
descendant of the identity operator. The subleading mag
tization operator also becomes a descendant of the mag
zation field of the Ising model at the end of the RG flow. F
the massless nature of this theory we will not compute
relative universal amplitude ratios.

For g4,0 the ground state energy vanishes; therefore
persymmetry is unbroken and both the scalar and the ferm
fields become massive. As argued in@26#, to describe the
dynamics of the system it is more convenient to adopt
usual Landau-Ginzburg potential in terms of the order

e-
3-20
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rameters(x). This potential presents threefold degener
vacua, labeled byu021&, u00&, andu011&, whereu00& corre-
sponds to the disordered vacuum andu061& to the two or-
dered vacua, symmetrically placed with respect to the or
~see Fig. 4!. The elementary excitations in this phase a
massive kinks, which interpolate between the ordered va
and the disordered vacuum and are denoted byK061 or
K610. The associated scattering theory was discusse
@26,56#.

Let us consider the amplitude ratios for this deformatio
The VEV’s of ^w1&4 and^w2&4 can be directly computed b
using Eq.~4.11!, since the integral converges. The VEV
w3 contains a logarithm divergence and is calculated in A
pendix C. This is the mirror situation to that encountered
Sec. VI C for the VEV’s^w4&3 and therefore it can be fixe
as in the previous subsection:

^w3&45
3p

4D3
B14S ln

g4

g4
0 1constD . ~6.29!

Finally, by supersymmetry we expect^w4&450, because the
field w4(x) plays the role of the trace of the stress-ene
tensor for this deformation and indeed this is in agreem
with formula ~4.11!. The values of the VEV may be found i
Table XIX.

Concerning the UV properties of the theory, there are t
fields that need renormalization. The first is the sublead
magnetizations8(x), which mixes logarithmically with the
magnetization fields(x). The second is the vacancy dens
field t(x), which mixes with the energy densitye(x). To
avoid the difficulties related to the mixing induced by reno
malization, for this deformation it is convenient to rely on
on the form factor expansion for estimating the correlat
functions. In fact, all fields, except the subleading magn
zations8(x), turn out to be uniquely identified by their sym
metry properties. Moreover, the spectral series based on
form factor are also able in this case to capture the ultravi
behavior of the correlators successfully@56#. Hence, for this
deformation the integrals~4.24! will be estimated only in
terms of I 2(0), i.e., I .I 2(0). The two-particle matrix ele-
ments of the kink states for the operatorsw1 , w2, and w4
were calculated in@56# by using a mapping of the TIM onto
the diluteq-state Potts model, withq52. All these operators
are coupled to states with zero topological charge, i.e.
those multikink states that begin and end at the sa

TABLE XIX. Exact VEV’s of the four relevant operators in
w4[t perturbation forg4,0 ~from @40#!.

Bi4

i u0&5u021& u0&5u00& u0&5u011&

1 21.975669 . . . 0 1.975669 . . .
2 2.668319 . . . 22.668319 . . . 2.668319 . . .
3 210.640138 . . . a 0 10.640138 . . . a

4 0 0 0

aThe amplitude in front of the logarithm.
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vacuum. There are two types of such two-kink form facto
depending whether the vacuum10 is u00& or u061&:

F061
w i ~u12u2![^00zw i uK061~u1!K610~u2!z00&,

~6.30!

F
610
w i ~u12u2![^061zw i uK610~u1!K061~u2!z061&,

~6.31!

where w i designates the operator under consideration. T
form factors can be conveniently parametrized as

F061
w i ~u!5F

2

w i~u!, i 52,4, ~6.32!

F
610
w i ~u!5F

1

w i~u!, i 52,4, ~6.33!

F061
w1 ~u!56F

2

w1~u!, ~6.34!

F
610
w1 ~u!56F

1

w1~u!, ~6.35!

and their expressions are given by@56#

F
6

w4~u!52 ipm2e6(g/2)(p1 iu)
cosh~u/2!

sinh1
4 ~u2 ip!

F0~u!,

~6.36!

F
6

w2~u!56 i ~^061uw2u061&

2^00uw2u00&!
e6(g/2)(p1 iu)

4 sinh1
4 ~u2 ip!

F0~u!,

~6.37!

F
6

w1~u!57
^011uw1u011&

2Y1~ ip!

e6(g/2)(p1 iu)

cosh~u/2!
Y6~u!F0~u!,

~6.38!

with

F0~u!52 i sinh
u

2

3expH E
0

`

2
dx

x

sinh~3x/2!

sinh 2x cosh~x/2!

3
sin2~ ip2u!~x/2p!

sinhx J ,

10Note that we use a different notation for the vacua compare
the one used in@40#. These notations enable us to specify mo
clearly the disorder vacuumu00& ~with zero magnetization! and the
two ordered vacuau061& ~with 61 magnetization!.
3-21
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Y1~u!5expH 2E
0

`dx

x

sinh~~p/2!21!x

sinh~px/2!

3
sin2~2ip2u!~x/2p!

sinh 2x J ,

Y2~u!5Y1~u12ip!,

g5
1

2p
ln 2.

With the knowledge of the first form factors, the spect
representations of the correlation functions involving t
fields w1(x), w2(x), andw4(x) are approximated by

^00uw i~x!w j~0!u00&. (
k56

E
u1.u2

du1

2p

du2

2p

3F061
w i ~u12u2!F061

w j

3~u22u1!e2uxuE2, ~6.39!

^061uw i~x!w j~0!u061&.E
u1.u2

du1

2p

du2

2p

3F
610
w i ~u12u2!F610

w j

3~u22u1!e2uxuE2, ~6.40!

wherei , j 51,2,4 andE25m(coshu11coshu2) is the energy
of the two-kink asymptotic state. By integrating the abo
expressions, one can obtain the associated amplitudes.
convergence of the above spectral series has been suc
fully checked against theD-theorem sum rule~when this
applies! @56#. Our results for the amplitudes are in Table X

TABLE XX. Estimated amplitudes in the vacancy density d
formation for the three vacua. Numbers in parentheses represen
uncertainty.

(G i j
42)0 (G i j

42)61

(G11
42)050.00(5) (G11

42)6150.00(5)
(G12

42)050 (G12
42)6150.16(0)

(G22
42)054.4(9)31023 (G22

42)6154.4(9)31023

(G14
42)050 (G14

42)61570.1852198 . . .
(G24

42)050.6670799 . . . G24
42)61520.6670799 . . .

(G34
42)050 (G34

42)615711.637651 . . . a

(G44
42)050 (G44

42)6150

aThe amplitude in front of the logarithm.

TABLE XXI. Amplitude ratiosRjk
2 5G jk

21/G jk
22 . The subscripts

26 indicate the high- or low-temperature phase. Numbers in pa
theses represent the uncertainty.

R11
2 53.5(4) R13

2 522.0(6)
R22

2 51 R24
2 521

R33
2 51.3(0) R44

2 51
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VII. CONCLUSIONS

In this paper we have exploited some powerful techniq
of quantum field theory in order to compute an extended
of universal amplitude ratios for the scaling region of t
two-dimensional tricritical Ising model. Determination of th
thermodynamical amplitudes entering the universal ra
was obtained by combining exact nonperturbative res
coming from CFT~UV theory! and from scattering theory
~IR theory!. More specifically, we have used the ultraviol
data provided by CFT for setting up an operator prod
expansion~and computing the first order approximation
the structure constants!, and for finding eigenvalues an
eigenvectors of the off-critical Hamiltonian by a numeric
approach. In addition, we have used nonperturbative
proaches related to the integrability of several deformati
of the model to obtain important infrared data, such as,
instance, the exact vacuum expectation values of the o
parameters, the exact spectra of the massive excitations
the first form factors. A judicious use of the ultraviolet an
infrared properties of the various fields that span the sca
region of the model has allowed us to significantly redu
the analytic efforts necessary to compute the universal ra
Some of these quantities can be found in Tab
XXI–XXV. 11 As already pointed out in the text, this larg
set of quantities may be quite useful for an experimen
investigation of the critical properties of this class of unive
sality and we hope that the results presented in this pa
may stimulate such experimental activity. It would b
equally interesting to extend the theoretical approach
cussed here to other two-dimensional models in order
reach a full control of the universality classes of low
dimensional systems.
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TABLE XXII. Universal ratios (Q2) jk
i for i , j ,k51,21,22.

Numbers in parentheses represent the uncertainty.

(Q2)211
1

51.26(0) (Q2)221
1

51.88(4)

(Q2)2121
1

51.97(3) (Q2)2122
1

51.32(0)
(Q2)11

2151.5(6) (Q2)11
2250.44(2)

(Q2)122
21

51.7(0)
3-22
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APPENDIX A: MELLIN REGULARIZATION SCHEME

The aim of this appendix is to discuss a regularization
the integrals~4.33!. They can be written as

Ci j
p(1)52E 8

d2wg~w,w̄!, ~A1!

with

g~w,w̄![^Ãp~`!F̃~w!w̃ i~1!w̃ j~0!&CFT . ~A2!

A regularized version of the divergent integrals~4.33! is pro-
vided by the following function of the large-distance cuto
R[1/a:

I ~a!52E d2wQ~auwu! g~w,w̄!, ~A3!

where the cutoff functionQ(t) has a fast decreasing beha
ior at t→1` to make the integral convergent and is equa
1 for t→01. Of courseI (a) diverges fora→01 in a way
that depends on the particular choice ofQ(t), but it con-
verges to a finite value fora→1` thanks to the fast de
creasing behavior of the cutoff function. The finite part of t
integral~A3! is independent of the parametera and furnishes
its natural regularization. It coincides with the analytic co
tinuation of the integral~A1! in those regions of the confor
mal weights for which it converges. The finite part of th
integral can be explicitly calculated by means of the Mel
transform of the complex functionI (a) defined by

TABLE XXIII. Universal ratios (Rc) jk
1 , (Rc) jk

22 , (Rc) jk
3a , and

(Rc) jk
3b , where 22 indicates the low-temperature phase and 3a,3b

are used to label the two different vacuau02& and u04& in the g3w3

deformation. The other ratios are provided by the sum rule (Rc) j i
j

5D jD i /(12D j )
2. Numbers in parentheses represent the uncert

ties.

(Rc)22
1 51.0(5)31022 (Rc)23

1 54.8(5)31022

(Rc)24
1 56.0(7)31022 (Rc)33

1 53.0(8)31021

(Rc)34
1 527.0(6)31022 (Rc)44

1 522.0(5)31021

(Rc)11
2251.7(0)31023 (Rc)14

2252.3(3)31022

(Rc)13
2251.7(9)31022 (Rc)33

2253.0(4)31021

(Rc)34
2257.4912 . . .31022 (Rc)44

22522.0(0)31021

(Rc)11
3a54.2(3)31021 (Rc)11

3b52.7(3)31021

(Rc)12
3a58.3(2)31021 (Rc)12

3b55.2(0)31021

(Rc)22
3a51.7(5) (Rc)22

3b59.6(8)31021

TABLE XXIV. Universal ratios Rj
i and (RA) j

i for i , j
51,22,21. Numbers in parentheses represent the uncertainties

Rj
157.55(7)31022

Rj
2151.07(8)31021 Rj

2258.38(9)31022

(RA)21
1 50 (RA)22

1 53.91(8)31022

(RA)1
2152.95(8)31021 (RA)1

2258.26(0)31021
01610
f

-

Ĩ ~s!5E
0

`da

a
asI ~a!. ~A4!

In fact, when the Mellin transform has simple poles, it pr
vides the asymptotic expansion in powers ofa of the func-
tion I (a) according to the formula

I ~a!5(
i

Res@a2sĨ ~s!#s5si
, ~A5!

where the sum runs over the poles. In our cases the ab
sum is finite since the theory presents only a finite numbe
IR divergent terms. The finite part ofI (a) is therefore given
by

I 05Res@ Ĩ ~s!#s505 lim
s→0

s Ĩ~s!. ~A6!

Finally, we also need the following theorem on convolutio
if the function I (a) has the form of a convolution@as in Eq.
~A3!#, then its Mellin transform is given by

Ĩ ~s!52Q̃~s!G̃~22s!, ~A7!

whereQ̃(s) is the Mellin transform ofQ(t) and G̃(s) may
be considered as the Mellin transform of the angular integ
of g„uwu,arg(w)… with respect to the radial coordinateuwu,

G̃~22s!5E d2wuwu2sg~w,w̄!. ~A8!

In our calculation we have used forQ(t) the function

Q~ t !5e2t, ~A9!

whose Mellin transformation is the Gamma function

Q̃~s!5G~s!. ~A10!

For the calculation ofG̃(22s) we refer the reader to the
next Appendix.

APPENDIX B: CALCULATION OF THE „Cij
p„1…

…k

In this appendix, we show how to compute the first co
rection to the structure constants, i.e., the finite part of

~Ci j
p !k

(1)5E 8
^wp~`!Fk~w!w j~1!w i~0!&d2w. ~B1!

n-

TABLE XXV. Universal ratio (Rx) j
i for i , j 51,2,3. We also

have (Rx) j
j52D j /(12D j ) according to the sum rules and (Rx)4

j

50 becauseB4450. Numbers in parentheses represent the unc
tainties.

(Rx)2
151.1(9)31021 (Rx)3

154.2(5)31021

(Rx)1
2254.0(0)31022 (Rx)3

2254.0(0)31021

(Rx)1
3a52.0(0)310211 (Rx)1

3b51.8(7)
(Rx)2

3a53.0(3)31024 (Rx)2
3b52.7(8)
3-23
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The conformal four-point correlation functions entering t
integral may be computed by means of modified Coulo
gas methods@5#. In this approach the central chargec is
parametrized by

c51224a0
2 , a65a06Aa0

211, ~B2!

a1a2521.

The vertex operators are defined byVnm(x)5:eianmF(x):
whereF(x) is a free scalar field and the chargesanm are
defined by

anm5 1
2 ~12n!a21 1

2 ~12m!a1 . ~B3!

The conformal dimension of the operatorVnm(x) is given by
Dnm52anmanm with

anm52a02anm5 1
2 ~11n!a21 1

2 ~11m!a1 . ~B4!

The integrals encountered in our computation are of t
types.

In the first case, no screening charge is needed; there
they can be computed in a straightforward way. For instan
this is the case of the integral of the four-point correlati
function ^w1(x1)w2(x2)w2(x3)w3(x4)&. As an example, we
provide the calculation of (C22

3 )1
(1) in the magnetic deforma

tion of the TIM:

~C22
3(1)!152E 8

^w3~`!w2~1!w1~z!w2~0!&.

Since 2a121a221a2152a0, no screening charge is neede
Therefore,

~C22
3(1)!15NE d2zuzu21/5uz21u21/5, ~B5!

whereN is a normalization factor that is fixed by the opera
algebra and the structure constants~see Table II!:

N5c4c55
1

2AG~ 4
5 !G3~ 4

5 !

G~ 1
5 !G3~ 3

5 !
.

Using

E d2zuzu2auz21u2b52S~b!B~11a,11b!

3B~11b,212a2b!,

with

B~a,b!5
G~a!G~b!

G~a1b!
, S~x![sinpx,

we find

~C22
3(1)!152

25

32

S2~ 1
10 !S1/2~ 1

5 !

S3/2~ 2
5 !

G4~ 9
10 !G~ 1

5 !

G3~ 3
5 !

. ~B6!
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In the second case, one screening operator is needed an
integral takes the form

Z~a,b,c,d,e!5E d2wE d2zuzu2au12zu2b

3uw2zu2cuwu2du12wu2e. ~B7!

The exponentsa,b,c,d,e are computed in the Coulomb ga
formalism @5#. Notice that the exponentd is in fact d8
2s/2, wheres comes from the Mellin regularization schem
~see Appendix A!. It can be shown using transformations
the complex plane that@5#

Z~a,b,c,d,e!5S~a1c!21E d2wuwu2du12wu2e

3@S~a1b1c!S~b!uI 1~a,b,c;w!u2

1S~a!S~c!uI 2~a,b,c;w!u2#,

where

I 1~a,b,c;h![
G~2a2b2c21!G~b11!

G~2a2c! 2F1~2c,2a2b

2c21;2a2c;h!,

I 2~a,b,c;h![h11a1c
G~a11!G~c11!

G~a1c12!

3 2F1~2b,a11;a1c12;h!. ~B8!

The generalized hypergeometric functions are defined by

pFq~a1 , . . . ,ap ;b1 , . . . ,bq ;z![(
k50

`
~a1!k•••~ap!k

k! ~b1!k•••~bq!k
zk

with (a)k[G(a1k)/G(a).
There are several ways to computeZ(a,b,c,d,e). We

have used two equivalent methods in order to have a n
trivial check. Let us explain them briefly for completenes

~1! The first method is the one considered in@44#. Using
monodromy properties of the integral, we can writeZ as

Z5z11J1
21z22J2

21z12J1J2

with

J1[E
0

1

zd~12z!eI 1~a,b,c,z!

5B~b11,2a2b2c21!B~d11,e11!

3 3F2~2c,2a2b2c21,d11;2a2c,21d1e;1!,

~B9!

and
3-24



UNIVERSAL AMPLITUDE RATIOS OF THE . . . PHYSICAL REVIEW E 63 016103
TABLE XXVI. Numerical values of the first correction of some structure constants (Ci j
k )3

(1) with 1
< i , j <4, and 0<k<4. Numbers in parentheses represent uncertainties.

(C11
1 )3

(1)(mr)50.7189 . . .3@ ln(mr)1C1(m)# (C11
3 )3

(1)'20.040(1)
(C12

0 )3
(1)58.79920 (C12

2 )3
(1)520.6571

(C12
4 )3

(1)50.149171 (C22
1 )3

(1)(mr)52.8759 . . .3@ ln(mr1C2(m)#
(C22

3 )3
(1)50 (C14

0 )3
(1)(mr)524.7123 . . .3@ ln(mr)1C3(m)#
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J2[E
0

1

zd~12z!eI 2~a,b,c,z!

5B~a11,c11!B~21a1c1d,e11!

3 3F2~2b,a11,21a1c1d;a1c

12,31a1c1d1e;1!. ~B10!

In these formulas thezi j are defined by

z1152 1
4 S~a1c!22S21~c1d1e!S21~a1b1c1d1e!

3S~b!S~a1b1c!S~d!@S~b2c2d!2S~b1c2d!

1S~b1c1d!2S~2a1b1c1d!2S~b1c1d12e!

1S~2a1b13c1d12e!#, ~B11!

z225
1
4 S~a1c!22S21~c1d1e!S21~a1b1c1d1e!

3S~a!S~c!S~a1c1d!@S~a1b2d!1S~a2b1d!

2S~a1b1d!1S~a1b12c1d!2S~a2b2d22e!

2S~a1b12c1d12e!#, ~B12!

z1252S~a1c!22S21~c1d1e!S21~a1b1c1d1e!

3S~a!S~b!S~c!S~a1b1c!S~d!S~a1c1d!.

~B13!

~2! The second method is the one considered in@57#. It
consists in decomposingZ into its holomorphic and antiho
lomorphic parts:

I 5s~b!s~e!@J1
1J1

21J2
1J2

2#1s~b!s~e1c!J1
1J2

2

1s~b1c!s~e!J2
1J1

2 , ~B14!

where

J1
15J~a,b,c,d,e!, J2

15J~b,a,c,e,d!,

J1
25J~b,222a2b2c,c,e,222d2e2c!, ~B15!

J2
25J~222a2b2c,b,c,222d2e2c,e!

with the notation
01610
J~a,b,c,d,e!

5E
0

1

duE
0

1

dv ua1d1c11~12u!bvd~12v !c~12uv !e

5B~11c,11d!B~21a1d1c,11b! 3F2~2e,21c

1d,11d,31a1b1c1d,21c1d;1!.

The J integrals appearing in Eq.~B14! are not independent
Using a contour deformation it can be shown that they
related as

S~a1b1c!J1
21S~a1b!J2

25
S~a!

S~c1d1e!

3@S~d!J1
11S~c1d!J2

1#,

~B16!

S~c1d1e!J2
21S~d1e!J1

25
S~d!

S~a1b1c!

3@S~a!J2
11S~a1c!J1

1#.

~B17!

This has the advantage that some of theJi
6 can be computed

in an easier way than others.
In most cases, we were able to compute these type

integral exactly in terms of a product of Gamma functions
using some known relations of hypergeometric functions
the argumentz51 @58#. Given their cumbersome expres
sions, the results are not reported here. When no clo
forms were available, the integrals were determined num
cally ~using the two different representations above! by di-
rectly calculating the hypergeometric functions3F2(z) at z
51. In this case, we used fast convergent expressions o
hypergeometric functions in order to reach rather accu
results~with approximately 0.5% confidence!.

We have performed the above set of calculations for m
netic, thermal, and submagnetic perturbations. The res
are in Tables XIV, XVI, and XXVI. We did not pursue thi
calculation for the vacancy density perturbation because
the UV difficulties explained in the text and also because
this case form factors were expected to provide a reason
approximation of the correlators in the whole range ofr.

APPENDIX C: REGULARIZATION OF THE VEV’s

The VEV’s of primary operatorsF l ,k in the minimal
modelsMp,p8 perturbed by an integrable relevant opera
f i were conjectured in@40#. They can be written as
3-25
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^0suF l ,ku0s&5B( l ,k),i ,s~j,h!gD l ,k(12D i ), ~C1!

where s labels the different vacua. The prefact
B( l ,k),i ,s(j,h) can be further decomposed as

B( l ,k),i ,s~j,h!5b( l ,k),i ,s~j! Qi~j,h!, ~C2!

whereb( l ,k),i ,s(j) is a simple function for any perturbatio
f i and any vacuumu0s& whereasQi(j,h) can be expresse
as

Qi~j,h!5eI i (j,h), I i~j,h!5E
0

1`

dtFi~ t;j,h!. ~C3!

In Sec. IV we presented the explicit formulas for the thr
integrable deformations of the TIM. The above integral m
diverge for some values of the two parameters

j5
p

p82p
, h5~j11!l 2jk. ~C4!

In fact, due to the asymptotic behavior ofFi(t;j,h),

Fi~ t;j,h!;e2ai (j,h)t, t→1`, ~C5!

this occurs whenai(j,h)<0. In this case, the integra
I i(j,h) needs to be regularized in order to extract its phy
cal value. Its regularization may be performed in a numbe
equivalent ways, for instance, by means of an analytic p
longation inj @from values for whichQi(j,h) converges#,
possibly also using a sufficient number of times the reflect
equations satisfied by the VEV’s. Here we present ano
simple method of controlling the divergences ofI i(j,h),
specializing our discussion to the VEV̂F2,1&4 of the sub-
leading magnetization operator of the TIM in the mass
phase reached by perturbation of the vacancy operatorf1,3
[t[w4, with g4,0. This example presents all possib
types of divergence of the above integrals. Let us cons
initially the general expression of the functionF in the case
of f1,3 perturbation@40#:

F1,3~ t;j,h!5
1

t S cosh 2t sinh~h21!t

2 cosht sinh~jt !sinh~j11!t

2
h221

2j~j11!
e24tD . ~C6!

In our examplej54 andh56; hence

I 4~4,6!5E
0

1`

dt F4~ t;4,6!,

~C7!

F4~ t;4,6!5
1

t S cosh 2t sinh 7t

2 cosht sinh 4t
2

7

8
e24tD ,

and the asymptotic behavior

F4~ t;4,6!;e4t, t→1`, ~C8!
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leads to the divergence of the above integral. The comp
VEV under investigation can be expressed as

^0sus8u0s&

5

sin
3

2
ps

sin
p

4
s

S 5

2D 7/8F p
21

25
ug4u

3AGS 1

5DGS 2
7

5D
GS 4

5DGS 12

5 D G
35/32

Q4~4,6!, ~C9!

wheres51,2,3 labels the three different vacua. Assuming
regularization ofQ4(4,6), notice that fors52 the first term
in Eq. ~C9! implies

^0sus8u0s&50. ~C10!

To computeI 4(4,6), let us break the integral as

I 4~4,6!5E
0

1

dt F4~ t;4,6!1E
1

1`

dt F4~ t;4,6!. ~C11!

The first integral is always convergent since, in general,

lim
t→0

F1,3~ t;j,h!5const, ~C12!

thanks to a compensation between the two terms in Eq.~C6!.
Hence it is sufficient to make an analytic prolongation of t
second integral by subtracting its divergent part. This can
done by expressing the second integral initially as

E
1

1`

dtF4~ t;4,6!5E
1

1`S F4~ t;4,6!2
e4t

2t
1

e2t

2t D dt

1Y~24!2Y~22!, ~C13!

and then by making an analytic prolongation of the functi

Y~a!5E
1

1`dt

t
e2at, Ree~a!.0, ~C14!

to the domain Re(a)<0. Notice that, although the analyti
extension of the functionY(a) is not monodromic (a50 is
in fact a branch-cut point!, its exponentialeY(a) is uniquely
defined and this is precisely the expression that enters
formula ~C9! for the VEV. In the punctured complex plan
aPC2$0% we have

eY(a)5
eg

a
e2 f (a), ~C15!

where g50.577 216 . . . is theEuler-Mascheroni constan
and the holomorphic functionf (a) is defined by the power
series
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f ~a!5 (
n51

`

~21!n
an

n!n
, aPC. ~C16!

The last series is quickly convergent and allows good
merical estimations.

The divergences that appear in the expression of the V
proposed in Ref.@40# can be generally tamed as in Eq.~C13!
above, i.e., by subtracting the leading~and subleading! ex-
ponential terms and then performing the analytic contin
tion of Y(a). However, sometimes the first term in the righ
hand side r.h.s. of Eq.~C13!, i.e., the integral accompanie
by the subtractions, is still logarithmically divergent. This
in particular the case of our example of^w3&4. When this
happens, the pure power law behavior in the coupling c
stantgi of the VEV ~C1! is modified. To face this situation
one may perform an extra regularization of the integral
making a shift of the parameterj that characterizes the min
mal models,

j→j1e, ~C17!

and then carefully taking the limite→0. In our example this
results in shifting 4→41e, 6→61e, and considering the
expression

E
1

1`S F4~ t;41e,61e!2
e4t

2t
1

e2t

2t
2

e2et

t Ddt

1Y~24!2Y~22!1Y~e!. ~C18!

The limit e→0 of the first integral in Eq.~C18! is obtained
by puttinge50 and hence it can be calculated by performi
a numerical integration. Concerning the last term, once u
to evaluate the VEV, we have

eY(e)5
eg

e
1O~1!. ~C19!

Let us consider now the dependence of the VEV on the c
pling constantg[2g4 once the shift~C17! has been per-
formed. We have

g35/32→g35/321(13/128)e, ~C20!

since the conformal weights depend onj. By expanding this
formula in powers ofe we have

g35/321(13/128)e5~g0!(13/128)eg35/32S g

g0
D (13/128)e

5g35/32F11
13

128
e ln

g

g0
1O~e2!G ,

~C21!

where we have introduced an arbitrary value of the coup
constantg0 for taking the logarithm of the adimension
quantity g/g0. Once this expression is multiplied by E
~C19!, it gives rise to
01610
-

V

-

-

y

d

u-

g

g35/32S eg

e
1

13

128
egln

g

g0
1O~1! D . ~C22!

In conclusion, the example of the VEV~C9!, apart from a
divergence 1/e which can be discarded, presents a logari
mic part and a power law term:

^0sus8u0s&5B(2,1),4,sg
35/32ln

g

g0
1C(2,1),4,sg

35/32.

~C23!

It is important to notice that in the previous expression
constantB(2,1),4,s is uniquely determined by this procedu
and is not affected by a change of the reference coup
constantg0. Instead, the second constantC(2,1),4,s may be
freely modified by rescaling the arbitrary value of the refe
ence coupling constantg0. In this sense, the constan
B(2,1),4,s possesses a precise physical value in QFT an
may enter the definitions of amplitude ratios as theB pref-
actor.

APPENDIX D: FORM FACTORS IN THE THERMAL
SECTOR

In this appendix, we will discuss some features of t
form factors in the thermal deformation of the TIM. In pa
ticular, we will show that it is necessary to determine~for
instance by a numerical method! the one-particle form fac-
tors of w1 independently in order to compute its highe
particle form factors. We will discuss these matrix eleme
in the high-temperature phase of the model with the m
spectrum and theZ2 quantum number of the particles give
in Table XV. Let

Fa1 , . . . ,an
~u1 , . . . ,un!5^0us~0!uAa1

~u1!•••Aan
~un!&.

~D1!

Since s(x) is a Z2 odd operator, the nonvanishing matr
elements will be those onZ2 odd multiparticle states. Hence
the matrix elements that contribute to the summation~4.36!
are, in increasing order of total energy of the correspond
states,F1 , F3 , F12, F6 , F14, F111, F23, F15, . . . . Accord-
ing to the analysis of Refs.@10,47#, the two-particle form
factors can be conveniently written as

Fab
s ~u!5Fab

min~u!
Q ab

s

Dab
, ~D2!

where Fab
min is the minimal solution of the set of Watso

equations that has neither poles nor zeros andQ ab
s andDab

are polynomials in coshu. The latter requirement takes int
account the pole structure of this matrix element~indepen-
dent of the field! whereas the former depends on the fie
under consideration, in this cases(x). To determine the
above quantities we need initially the expression for the e
tic two-particleS matrix of the model@21,22#, which can be
expressed as
3-27
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Sab~u!5 )
aPAab

f a~u!pa, ~D3!

where

f a~u![
tanh1

2 ~u1 ipa!

tanh1
2 ~u2 ipa!

. ~D4!

The different amplitudes can be found in Table II of Re
@47# and are not reported here. The exponentspa denote the
multiplicities of the corresponding poles@located at u
5 ipa andu5 ip(12a)# identified by the indicesa. Cor-
respondingly,Fab

min is parametrized by

Fab
min~u!5S 2 i sinh

u

2D da,b

)
aPAab

ga~u!pa, ~D5!

wherega(u) is given by the integral representation

ga~u!5expF2E
0

`dt

t

cosh@~a21/2!t#

cosht/2 sinht
sin2~ ût/2p!G

~D6!

with û5 ip2u. The polynomialsDab(u) are entirely deter-
mined from the poles of theSmatrix. According to@10#, they
are given by

Dab~u!5 )
aPAab

@Pa~u!# i a@P12a~u!# j a, ~D7!

i a5n11, j a5n, if pa52n11, ~D8!

i a5n, j a5n, if pa52n,

whereAab and pa are defined in Eq.~D3! and can be read
from Table II of Ref.@47#. The functions

Pa~u![
cospa2coshu

2 cos2~pa/2!
~D9!

give a suitable parametrization of the pole of the FF au
5 ipa. The asymptotic behavior ofga(u) and Pa(u) is
given by
l.

ry

01610
.

ga~u!;euuu/2, Pa~u!;euuu for u→`. ~D10!

An upper bound on the maximal degree of the polynom
Q ab

s can be fixed by the constraint@10#

y<Ds , ~D11!

wherey is defined by

lim
uu i u→`

Fa1 , . . . ,an
~u1 , . . . ,un!;eyuu i u. ~D12!

Collecting all the above results, let us consider the tw
particle form factorF12

s (u):

F12
s ~u!5F12

min~u!
Q 12

s

D12~u!
. ~D13!

By using Eqs.~D11! and ~D12!, for the degreed of Q12 we
haved<1. The residue equations~4.42! at the simple order
poles corresponding to the bound states supply us with
equations, namely,

2 i lim
u→ iuab

c

~u2 iuab
c !Fab

s ~u!5gab
c Fc

s , ~D14!

with a51, b52, c51,3, andgab
c is given by

2 i lim
u→ iuab

c

~u2 iuab
c !Sab~u!5~gab

c !2. ~D15!

These two equations are able to fixF12
s unambiguously pro-

vided F1
s and F3

s are known. However, there is no way t
determine these one-particle form factors in the bootst
program. Notice, in fact, that the above equations are a
satisfied by the two-particle FF’s of the subleading magn
zation s8(x). Therefore, one needs to extract the on
particle FF’s ofs(x) and s8(x) by means of some othe
independent method, such as, for instance, that provided
the numerical truncated conformal space approach, discu
in Sec. V.
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