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Heuristic derivation of continuum kinetic equations from microscopic dynamics
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We present an approximate and heuristic scheme for the derivation of continuum kinetic equations from
microscopic dynamics for stochastic, interacting systems. The method consists of a mean-field-type, decoupled
approximation of the master equation followed by the ‘‘naive’’ continuum limit. The Ising model and driven
diffusive systems are used as illustrations. The equations derived are in agreement with other approaches, and
consequences of the microscopic dependences of coarse-grained parameters compare favorably with exact or
high-temperature expansions. The method is valuable when more systematic and rigorous approaches fail, and
when microscopic inputs in the continuum theory are desirable.
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I. INTRODUCTION

Ever since its introduction in a classic treatment of t
Brownian motion@1#, the Langevin equation has been pla
ing an important role in modern statistical physics. It pr
vides a mathematical framework and a physical basis
studying stochastic processes in statistical, mechanical
tems. Applications are wide-ranging@2#, including chemical
reactions, laser physics, diffusive processes, and mo
theories of dynamical critical phenomena@3#. Recent topics
such as surface growth@4# and pattern formation@5# also rely
heavily on the Langevin equation.

It is fair to say, however, that despite its popularity, t
Langevin equation for a specific problem is seldom deriv
from the corresponding microscopics. It is often postula
on the grounds of symmetry and physical reasoning. O
rarely in simple circumstances is it derived with reasona
mathematical rigor from the more fundamental master eq
tion. To this end, theV expansion introduced by van Kam
pen @6# is a well-established technique. It consists of a d
composition of the slow variable into a macroscopic part a
a fluctuating part, followed by a systematic expansion of
master equation in inverse powers of the volumeV of the
coarse-graining block. While the leading order in the exp
sion gives the deterministic equation of motion for the sl
variable, the next order yields a Fokker-Planck equation
the fluctuating part, from which the noise term of the as
ciated Langevin equation can be identified. An independ
method, based on a Fock space representation of clas
objects using creation and annihilation operators, was in
duced by Doi@7# and reformulated by Rose@8# and Grass-
berger and Scheunert@9#. Although not directly cast in the
Langevin language, it also addresses the dynamics of cla
cal many-particle systems. The method is noted for its ap
cation in birth-death processes such as chemical react
Later, Peliti@10# recast it in a path-integral form and treate
random walks and aggregation problems.

In this paper, we shall present an approximate sche
somewhat in between a mere postulation and rigorous
mulations, for deriving the Langevin equation from the m
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croscopic specification of the dynamics. Our goal is not
propose a new formal derivation, but rather to give a qui
simple, and heuristic means that can be applied generall
stochastic systems, several of which shall be discussed
low.

Expositions of the historical, philosophical, and technic
aspects of the Langevin equation are beyond the scop
this paper. Interested readers are thus referred to the rele
literature@2#. This paper is organized as follows. An eleme
tary recapitulation of the master equation and Lange
equation is presented in Sec. II. Section III contains sev
examples as illustrations of the method, as well as ass
ment of the quality of the approximation involved. Concl
sions are given in Sec. IV. A discussion of the noise cor
lation is given in the Appendix.

II. MASTER EQUATION AND TIME-DEPENDENT
GINZBURG-LANDAU EQUATION

In statistical physics, one of the most important applic
tions of the Langevin equation is in the theories of dynami
critical phenomena@3#. Therefore, our discussion shall b
cast in that language, although it should be obvious that
method itself is not limited to systems exhibiting those ph
nomena. For concreteness, consider the kinetic Ising m
that obeys Glauber~i.e., spin-flip! dynamics @11#. At the
classical, microscopic level of description, the system c
sists ofN spinss i interacting via the Hamiltonian

H52J(
^ i , j &

s is j , ~1!

where J is the coupling constant and̂i , j & denotes a sum
over nearest-neighbor pairs. The time evolution of the s
tem is governed by a master equation

P~sW ;t11!2P~sW ;t !

5(
sW 8

@w~sW 8→sW !P~sW 8;t !2w~sW →sW 8!P~sW ;t !#, ~2!

whereP(sW ;t) is the joint probability of finding the system in
the spin configurationsW [$s1 ,s2 , . . . ,sN% at time t, and
©2000 The American Physical Society02-1
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w’s are the transition rates between two configurations
differ only by one spin flip. There is a great deal of freedo
in the choice ofw, as long as the following detailed balanc
condition is satisfied to ensure the same equilibrium dis
bution Peq(sW );e2bH(sW ),

w~sW 8→sW !

w~sW →sW 8!
5

Peq~sW !

Peq~sW 8!
5e2b[H(sW )2H(sW 8)] , ~3!

with b51/kBT. In practice, the choice is largely dictated b
mathematical convenience. The most common choices ow
are the Metropolis rate in Monte Carlo simulations for
ease of implementation, and the heat-bath rate~also known
as the Kawasaki rate@12#! in analytic calculations for its
analyticity. In this paper, we confine our attention to t
latter choice. It is given by

w~sW →sW 8!5
1

11e2b[H(sW )2H(sW 8)]
. ~4!

Since the master equation is not very convenient for a
lytic purposes such as a renormalization-group analysis,
often turns to a mesoscopic, continuum representation.
an Ising system with Glauber dynamics, the relevant c
tinuum field is the local magnetization densityf(rW,t), which
obeys a kinetic equation

]f

]t
52G

dH
df

1z, ~5!

H5E ddr H 1

2
~¹f!21V~f!J , ~6!

V~f!5
u

2
f21

g

4!
f41•••. ~7!

This is an example of the time-dependent Ginzburg-Lan
~TDGL! kinetic equation. In Eq.~6!, d is the dimensionality
of the system, andH is a coarse-grained Hamiltonian. Fo
Eq. ~5! to describe a stochastic process, the noise termz(rW,t)
is needed, which accounts for the effect of thermal fluct
tions and prevents the system from trapping in metasta
states. For mathematical convenience, it is often taken to
Gaussian with zero mean:

^z~rW,t !&50, ~8!

^z~rW,t !z~rW8,t8!&52Dd~rW2rW8!d~ t2t8!. ~9!

For equilibrium systems, the correlationD in Eq. ~9! has to
be chosen to ensure that the stationary solution of Eq.~5! is
consistent with the Boltzmann weightPeq;e2H ~cf. the Ap-
pendix!. For a system as simple as the Ising model, thestatic
continuum HamiltonianH can actually be derived from th
microscopicH via the partition function by means of th
Hubbard-Stratonovich transformation@13#, which is a trick
based on the Gaussian integral. For the dynamics, the TD
equation has been derived by coarse graining the ma
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equation@14#, which in principle yields expressions of th
coarse-grained parametersG, u, and g in Eqs. ~5!–~7! as
functions of microscopic ones in Eq.~2!.

However, for more complicatedH, the Hubbard-
Stratonovich transformation fails and the coarse grain
cannot be done explicitly. Moreover, these methods rely
the existence of a HamiltonianH and the associated equilib
rium Boltzmann weighte2bH, which is not valid in generic
nonequilibrium situations defined only by the dynamics@15#.
For those cases, alternative to the established techni
@6–10#, it is highly desirable to have a straightforwar
method to extract a continuum description directly from t
dynamics@16#. In the next section, we shall present such
method.

III. FACTORIZATION AND NAIVE CONTINUUM
EXPANSION

Our method is very simple. It consists of two steps:
mean-field-type factorization of joint probabilities into sin
glet ones in the master equation, followed by a ‘‘naive
continuum expansion. The result is a continuum kine
equation with full knowledge of the microscopic dependen
of the coarse-grained parameters@17#. Since the input is the
master equation, whether the system is an equilibrium on
not @15# is irrelevant. To illustrate, we now discuss seve
examples in increasing order of sophistication.

A. 1D Ising model

Focusing on a spin at positionx in a one-dimensiona
~1D! Ising model, it is easy to find by integrating out a
other spins in Eq.~2! that

P1~x;t11!2P1~x;t !5P222w2221P221w221

1P121w1211P122w122

2P212w2122P211w211

2P112w1122P111w111 ,

~10!

whereP1(x;t) denotes the singlet probability of finding th
spin up at sitex at time t, andP111(x;t) denotes the joint
probability of finding three spins up at sitex21, x, x11,
respectively, and so on. From Eq.~4!, the heat-bath transition
rates are given byw2225w1115W4 , w2215w122

5w2115w1125W0, andw1215w2125W24, where

Wn[
1

11enbJ
. ~11!

Adopting a mean-field approximation, the joint probabiliti
are replaced by their factorizations, e.g.,P112(x;t)
→P1(x21;t)P1(x;t)P2(x11;t). Since (ssPs(x;t)
5P1(x;t)2P2(x;t)5^s& and (sPs(x;t)5P1(x;t)
1P2(x;t)51, in the spirit of coarse graining we proceed
make the identification
2-2
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P6~x;t !↔ 16f~x;t !

2
, ~12!

wheref is the local magnetization density. By usingf in-
stead of spin number densities, we take advantage of s
metries anticipated in the final kinetic equation. Since a s
flip depends on a total ofz11 spins in Eq.~2!, where z
52d for hypercubic lattices, the factorization effective
produces a power-series expansion inf up to fz11. After
replacing P’s by f ’s, we make the transition to the con
tinuum by ‘‘naively’’ expanding aboutx, such as

f~x61;t !→f~x;t !6
]f~x;t !

]x
1

1

2

]2f~x;t !

]x2 1•••.

~13!

For most applications, we are only interested in the lo
distance behavior, hence it suffices to stop at the lowest
rivatives as shown. This procedure results in a determini
kinetic equation forf in precisely the form of Eqs.~5!–~7!,
barring the noise termz:

]f

]t
52GS 2

]2f

]x2 1rf1
g

6
f3D ,

where the coefficients are given by

G5
1

2
~W242W4!,

r 5
1

2G
~3W42W2412W0!,

g5
3

G
~W41W2422W0!. ~14!

Several remarks are in order.
~i! Symmetries in the resulting continuum equation~with

respect tof, x, andt) are as expected, because the appro
mations respect those symmetries and leave them intact

~ii ! There are explicit temperature dependences in the
efficients that cannot be deduced by symmetry or phys
reasoning. Such dependences are specific to the choic
jump rates that are manifest through the approximati
used.

~iii ! Noting thatW2n512Wn for any n, we find G5 1
2

2W4.0 andg50 at anyT @18#, and r 52W4 /G has one
zero, atT50. This is consistent with the absence of pha
transition in the 1D Ising model at any finite temperature,
improvement over the usual mean-field resultTc

MF52J/kB .
There is no stability problem arising fromg50 because the
quadratic coefficient is positive forT.0.

~iv! In the presence of an external magnetic fieldh, the
degeneracies in jump rates are lifted@e.g., W1625(1
1e62bh)21#. To O(h), the kinetic equation acquires a ne
term Gmh on the right-hand side, where

m5
2b

G
~W0

21W4W24!. ~15!
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Linear response then determines that the susceptibilityx
5m/r 5b(12g2/2)/(12g), whereg[tanh 2bJ. In the Ap-
pendix, we show thatm is needed to fix the noise correlation

~v! Besides capturing the correct symmetries, our res
compare quite well with exact results. From Eq.~5!, the re-
laxation time can be read off easily ast51/Gr 51/(12g).
This turns out to be exact@11#. For the susceptibility, devia
tion from the exact resultbe2bJ @11# shows up only at
O„(bJ)5

… when expanded inbJ. Hence, our method has th
advantage that it embodies a refined mean-field theory
already applied to studies of stochastic resonance in Is
systems@19#.

~vi! Finally, due to the factorizations, only the determi
istic terms in Eq.~5! can be derived. The noise term has to
deduced separately~see the Appendix!. The result for the
noise correlationD in Eq. ~9! is D5kBTmG.

Having gone through the details of our method, we n
turn to a few less trivial examples.

B. 2D Ising model

The same procedure can be applied to the 2D Ising mo
with Glauber dynamics. Again we obtain Eq.~5!, with the
parameters given by

G5
1

8
~22W412W242W81W28!, ~16!

r 5
1

8G
~6W0112W424W2415W823W28!, ~17!

g5
3

2G
~26W024W414W2415W81W28!, ~18!

m5
b

2G
~3W0

214W4W241W8W28!. ~19!

It is worth noting thatG, g, andm are positive definite for all
T.0, whereas r has one zero atTc

GL'3.0898J/kB

'1.3616Tc , again an improvement over the mean-field p
diction Tc

MF54J/kB , where Tc522J/kB ln(A221)
'2.2692J/kB is the exact critical temperature. As expecte
there is nof5 and higher-order term@18#.

The results oft andx for the Gaussian case (g50) are
quite satisfactory. They differ from high-temperature ser
expansions@20# at orderO„(bJ)5

… and O„(bJ)4
…, respec-

tively, whereas the usual mean-field results are worse
O„(bJ)3

… andO„(bJ)2
….

C. 3D Ising model

Despite being more tedious~128 terms on the right-hand
side of the master equation!, we also derive the kinetic equa
tion for the 3D Ising model with Glauber dynamics. Th
results are

G5
1

32
~W21214W2815W2425W424W82W12!,

~20!
2-3
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KWAN-TAI LEUNG PHYSICAL REVIEW E 63 016102
r 5
1

32G
~25W212218W28215W24120W0145W4

130W817W12!, ~21!

g5
15

16G
~2W21216W2819W24212W0215W416W8

17W12!, ~22!

m5
b

8G
~10W0

2115W24W416W28W81W212W12!.

~23!

As for the 2D Ising model,G, g, andm are positive definite
for all T.0, andr has one zero atTc

GL'5.0733J/kB , 12%
higher than the best estimate@21#, compared to Tc

MF

56J/kB .

D. 1D driven lattice gas

In many generic nonequilibrium systems@15#, the free
energy does not exist and one has to start from the dynam
such as described by the master equation. A notable exa
is the driven diffusive system@22#, which is regarded as a
paradigm of spatially extensive interacting systems that
hibit cooperative phenomena in steady-state nonequilibr
situations. In its standard form, it models an Ising-like latt
gas of particles whose motion along a certain direction
biased by an external drive denoted byE. For E50, the
model reduces to the ordinary kinetic Ising model with K
wasaki, or spin-exchange, dynamics~modelB in @3#!.

A question subject to recent debate concerns the form
nonlinearities associated withE @23,24#. That is an important
issue because the nonlinearities decide to which univers
class of critical behavior the system belongs. It is interest
to see what the present method says about that. First
consider a one-dimensional, simplified version in which
particles are not interacting except being hard core, but t
hoppings to nearest neighbors are biased by having diffe
jump rates,p andq, to the right and left, respectively. Henc
the master equation reads

P1~x;t11!2P1~x;t !5pP12~x21;t !1qP21~x;t !

2pP12~x;t !2qP21~x21;t !,

~24!

where as usual an up~down! spin corresponds to the occu
pation of a particle~hole!, and joint probabilities such a
P12(x21;t) mean the probability of finding a particle-ho
pair at sitex21 andx. After factorizations and application
of Eq. ~12! and ~13!, we readily find

]f

]t
5D]2f

]x2 1
E
2

]f2

]x
, ~25!

where the diffusion coefficient isD5(p1q)/2, as expected
and the coefficient of driving isE5(p2q). The nonlinear
term is the same as in the ‘‘standard’’ field theoretic mo
01610
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@25#, which was proposed on the grounds of symmetries.
side remarks, note that we obtain the diffusion equation
p5q, and thatE is smooth in the ‘‘infinite’’ drive limit (p
51,q50), which is used in most Monte Carlo simulation
of driven diffusive systems.

E. 2D driven lattice gas

Generalization of the previous result to the 2D interact
driven lattice gas is immediate, despite the unpleasant
that there are altogether 512 terms in the master equatio
the presence of a driveE along the1y direction and attrac-
tive @J.0 in Eq.~1!# interaction between particles, the hea
bath rates for hoppings of particles along and against
drive take the form

Wn,6E[
1

11enbJ7EbJ
, ~26!

where the dimensionlessE (0<E,`) represents the ‘‘work
done’’ on the particle by the field. Obviously, the rates f
hoppings perpendicular toE areWn,05Wn .

Going through the same procedure as above, we eve
ally obtain a kinetic equation that is in complete agreem
with the standard field theory of the driven diffusive syste
@25#:

]f

]t
52S ax

]4

]x412axy

]4

]x2]y21ay

]4

]y4Df

1S r x

]2

]x21r y

]2

]y2Df1
1

6 S gx

]2

]x21gy

]2

]y2Df3

1
E
2

]f2

]y
. ~27!

The anisotropies are generated by the drive. Excluding
last term, this is the anisotropic generalization of the de
ministic TDGL equation with conserved magnetization, i.
modelB @3#:

]f

]t
5¹2S 2a¹2f1rf1

g

6
f3D . ~28!

All coefficients are determined as follows:

ax5
1

384
~69285W4268W8217W12!, ~29!

axy5
1

256
~20220W4216W824W121W212,2E1W212,E

14W28,2E14W28,E15W24,2E15W24,E25W4,2E

25W4,E24W8,2E24W8,E2W12,2E2W12,E!, ~30!
2-4
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ay5
1

768
~8W212,2E18W212,E131W28,2E131W28,E

135W24,2E135W24,E210W0,2E210W0,E250W4,2E

250W4,E237W8,2E237W8,E29W12,2E29W12,E!,

~31!

r x5
1

32
~29125W4120W815W12!, ~32!

r y5
1

64
~22W212,2E22W212,E27W28,2E27W28,E

25W24,2E25W24,E110W0,2E110W0,E120W4,2E

120W4,E113W8,2E113W8,E13W12,2E13W12,E!,

~33!

gx5
5

16
~31W424W823W12!, ~34!

FIG. 1. Quadratic coefficient in the transverse directionr x plot-
ted vs temperature. Its zero locates the critical temperatureTc

GL .
01610
gy5
1

32
~6W212,2E16W212,E17W28,2E17W28,E

2W24,2E2W24,E16W0,2E16W0,E14W4,2E14W4,E

213W8,2E213W8,E29W12,2E29W12,E!, ~35!

E5
1

16
~2W212,2E1W212,E23W28,2E13W28,E23W24,2E

13W24,E22W0,2E12W0,E23W4,2E13W4,E23W8,2E

13W8,E2W12,2E1W12,E!. ~36!

They have the following important properties.
~i! All but E are even inE, consistent with the invariance

of the dynamics under$E→2E,y→2y%.
~ii ! The quadratic coefficientr x is independent ofE. It has

one zero atTc
GL53.861 43J/kB , as shown in Fig. 1. In con-

trast, r y depends onE. Figure 2 displays the behavior o
r y(T,E) versusr x(T) as T is lowered from aboveTc

GL at
fixed E, as well asr y(T5Tc

GL ,E) versusE. It shows that for
any E.0, r x always vanishes beforer y does whenT is
decreased. For smallE, r y'r x1cE2, wherec.0. Conse-
quently, at the critical temperature, the dominant derivati
come from ther y andax terms, leading to the identification
of an intrinsically anisotropic critical theory with scaling o
momentaky;kx

2 . This agrees with a previous perturbativ
argument@25#.

~iii ! The coefficientE of the leading nonlinearity induced
by the drive vanishes linearly inE at smallE, and saturates
to a constant atE5`. This dependence, exhibited in Fig.
is already anticipated above from the 1D model and arg
previously@24#, but at odds with the claims in@23#.

~iv! TheE50 limit. SettingE50, we readily recover the
isotropic modelB with ax5ay , r x5r y , andgx5gy , mak-
ing use of the identityW2n,0512Wn,0 . We also findaxy
Þax — the continuum model derived is not rotationally in
variant. While this is not surprising since the symmetry
absent in the original lattice model, it turns out thataxy
FIG. 2. ~a! Trends ofr y vs r x asT is varied acrossTc
GL at fixedE. From bottom to top:E50, 2, 4, 6, 10, 14, 20, and 50.~b! Intercept

r y(r x50) in ~a! plotted vsE.
2-5
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quirement of higher symmetry at the critical point is gene
for the underlying lattice model or specific to the method

F. Two-species driven lattice gas

In all the above examples, each site has only two lo
states~spin up or down!. In the two-species driven lattice-ga
model@26#, motivated in part by multi-ionic conductors an
traffic flow problems, there are three possibilities: as a h
or either of two types of particles. The two types of partic
are driven in opposite directions as if they were opposit
charged and driven by an electric field, with local partic
densities denoted byr1 andr2 . Due to the extra local state
it is not easy to write down the correct set of equations
symmetry and intuition alone. One way to proceed@26# is to
express the entropy in terms ofr1 andr2 , and obtain the
diffusion terms by functional differentiations. The drivin
terms can then be added to the kinetic equations by gen
izing that for the one-species model. Another way is to u
the V expansion@6,27#. The current method has also be
applied @28#. The equations derived are the same as
@26,27#, with the advantage of tractable microscopic origi
in each coefficient. Hence, this model further testifies
usefulness of the present approach when symmetry and
ition are not very helpful.

We end this section with a final remark. Since the meth
begins with a factorization of joint probabilities, the ensui
equation is deterministic. All information about correlatio
seems to have been lost. The situation can be remedied,
ever, by introducing a noise term to restore a probabilis
description. Correlations can then be computed by avera
over the noise by means of standard field-theoretic te
niques@29#. For equilibrium systems, the noise can be fix
by requirements such as the fluctuation-dissipation theo
~Appendix A!. For nonequilibrium systems, there is no ge
eral rule. One usually has to resort to extrapolation fr
equilibrium or to theV expansion@6,27#.

IV. CONCLUSION

We have presented in detail a very simple and straight
ward method to derive the deterministic kinetic equatio

FIG. 3. The coefficient of the leading nonlinearity,E, vs the
microscopic drive,E, at different temperatures. From top to bottom
kBT/J51, 3, 3.861 43 (5Tc

GL), 5, 10, 20, and 50.
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from known microscopic dynamics for stochastic, interacti
systems. The method has a mean-field flavor. It preserves
underlying symmetries of the dynamics and is in line w
the spirit of coarse graining. The resulting equations are
good agreement with other either more or less rigorous
proaches, as demonstrated explicitly via several examp
Hence, despite the approximate and heuristic nature of
approach, it proves to be a useful and convenient mean
obtain a correct continuum theory, especially~i! when other
more rigorous approaches do not apply or are too involv
~ii ! when symmetries of the system are not intuitively ob
ous; and~iii ! when microscopic dependences of the co
tinuum parameters are wanted.
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APPENDIX A: NOISE CORRELATION

Since the present method only gives the deterministic p
of the kinetic equation, the noise term has to be conside
separately. Here we follow the common practice of assum
that the noisez is Gaussian distributed and correlated ov
negligible ranges. Then the only question is to determine
correlationD in Eq. ~9!.

There are two ways to do it. The first makes use of
correspondence between the Langevin equation,

]f

]t
52G

dH
df

1z, ~A1!

^z~rW,t !z~rW8,t8!&52Dd~rW2rW8!d~ t2t8!, ~A2!

and the Fokker-Planck equation,

]P
]t

52E ddx
d

dfS 2G
d H
df

P2D
dP
df D , ~A3!

which is a continuity equation. A stationary solution of th
Fokker-Planck equation is obtained by setting the probab
current to zero, i.e., (•••)50, which gives P}e2GH/D.
Since the free energyF@h# in the presence of an externa
field h is of the formF@h#5F@0#2hf, it differs fromH by
a factor ofm. Hence, by matchinge2F[h]/kBT ande2GH[h]/D,
we deduce that

D5kBTmG. ~A4!

In passing, it is worth noting that the kinetic coefficient d
fined in

]f

]t
52l

dF
df

1z ~A5!

is l5D/kBT, which is the Einstein relation.
2-6



n-
to

the

ts.
e

HEURISTIC DERIVATION OF CONTINUUM KINETIC . . . PHYSICAL REVIEW E 63 016102
An alternative way to determineD is to use the
fluctuation-dissipation theorem, which in momentum
frequency space takes the form

2kBT

v
Imx~k,v!5G~k,v!. ~A6!

Although neither the susceptibilityx nor the two-point cor-
relation functionG can be calculated in closed form for ge
eralH, Eq.~A6! holds order by order so that we only need
cs

ev

.

,

a

,
,

il
e
er
ba
-
ll

on
rg
th

ts
ed
hi
the

01610
-
consider the Gaussian model in the case ofg50. Thus, by
Fourier transforms, we obtainx(k,v)5Gm/@2 iv1G(k2

1r )# andG(k,v)52D/@v21G2(k21r )2#, which by virtue
of Eq. ~A6! also gives Eq.~A4!.

Since the above deductions require the knowledge of
equilibrium distribution, they do not apply to nonequilibrium
situations@15#. In those cases, there are no similar shortcu
Extrapolation from equilibrium analogy or application of th
V expansion@6,27# seems to be all one can do.
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