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For measurements of turbulent heat transport in RayleigiaBeconvection the correction for the sidewall
conductance is usually neglected or based on measurements or estimates for the empty cell. It is argued that the
lateral thermal coupling between the fluid and the wall can invalidate these approaches, and that corrections
based on calculations of the two-dimensional temperature fields are required in some cases. These corrections
can increasey obtained from fits ofA/= A 4R (R is the Rayleigh numbegrto the Nusselt numbel(R) by
0.02 or more, yielding values in the range 0.30 to 0.33, which are larger than most theoretical predictions.
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One of the important issues in turbulent convection of aperature field based on simplified models of the turbulent
fluid heated from below is the global heat transport of thesystem were carried out for several sidewall-fluid combina-

system[1], as expressed by the Nusselt number tions with sidewalls of uniform widthl,,, which terminated
abruptly at the top and bottom plates. These plates were as-
N=Nett/N;  Ners=qL/AT. (1) sumed to provide constant-temperature boundary conditions

Tp=1 and T.=—1 below and above the system respec-
tively. The fluid was represented by three quiescent BLs of
conductivity A and an interior of uniform temperaturg,
=(T,+T.)/2. Two BLs were of thicknesk=L/2A\ and lo-
N=NoR" 2 cated neaz= *+H parallel to the top and bottom platg$].
The third was parallel to the sidewall, but its nature is more

is fitted to the data. HerR=agL3AT/kv is the Rayleigh ambiguous. One modéMod. 1) assumes a laminar viscous

number, witha the isobaric thermal expansion coefficiegt, BL [5] an?/zas&gns to it a fixed average thickngg$ |,

the gravitational acceleratiom, the thermal diffusivity, and =0.25-R. * which is determined by the Reynolds number
» the kinematic viscosity. Various data sets for Prandtl num{2] Re=0.03RY2%5~%¢ (R,=0.03RY%s %% of a large-
bers o=1v/x=0.66 yielded values ofy from 0.28 to 0.31 scale flow forc=2 (0=0.7). Although this is in good
[1,2]. Several theoretical models made predictiongyah a  agreement with measurements of the time-averaged velocity
similar rangg[1]. for o=7 [6], the velocity in the BL fluctuatef6]. Presum-

To determineN from Eq. (1), the heat current applied to ably the fluctuations enhance the effective thermal conduc-
the cell bottom must be corrected for the part passingivity. Thus, assigning the fluid conductivity to this BL
through the sidewall. In all cases | know of this correction isprobably overestimates the thermal barrier provided by it
based on measurements or estimates for the empty cell tdvetween the turbulent interior and the wall. Another problem
assumed to be negligible. Unfortunately, in several cases neinay be that for largd. and modesR the model predicts
ther is a good approximation. The reason is that the verticatalues ofl , in excess of 1 cm. It seems unlikely that such a
temperature variation in the fluid is mostly across boundanghick vertical layer will be stable in the presence of the vig-
layers(BLs) near the top and bottom, with a nearly uniform orously turbulent flow adjacent to it, and in the presence of
temperature over most of the cell interior. The thermal cou-gravity. Thus, as an alternative, a thin BL of fixed=0.1 cm
pling of the temperature profile of the wall to that of the fluid with conductivity A was used as a second modk®lod. 2).
then yields relatively large temperature gradients in the wallThis one probably underestimates the thermal barrier, with
near the ends. Consequently the current entefiegving  the physical case somewhere between the two models. The
the wall at the cell bottonttop) usually is much larger than lateral coupling between the wall and the fluid assures that
for an empty cell. Although this may seem obvious, its ne-Q\(z) [and thus als®x(z)] depends orz. It was assumed
glect significantly reduced the results fpiin several experi- that the relevant correction @,,(—H)=Qy(H) at the ends
ments. Corrections based on numerical calculations of thevhere the horizontal BLs in the fluid are located, although
two-dimensional temperature field in the cell and wall in-this may be an issue deserving further consideration. The
creasey by 0.02 or more for some experimental wall-fluid cylindrical sample was approximated by a two-dimensional
combinations, yielding values well above most theoreticathin-slab model which may be viewed as a sheet of unit
predictions[1]. width and uniform temperature in the direction, with a

For a more quantitative examination, let the verticakis  length in thex direction equal tady,(1+A/Ay) (Ayw andA
be pointing downward with its origin at the cell center, andare the cross sectional areas of the wall and the)flaidd a
defineH=L/2. Let a fixed currenQ=Qr+Qyy be applied heightL in the z direction. This preserves the ratio of the
at z=H, with Q¢ and Qy flowing through the fluid and cross sectional areas of the wall and the fluid, and should be
sidewall respectively. Numerical calculatiof8 of the tem-  a good approximation when the cell diameter is much larger

Hereq is the heat-current density, the sample heightAT
=T,— T, the temperature difference, andthe conductivity
of the quiescent fluid. Usually a powerlaw
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FIG. 2. Temperature fields for case 2 of Table | and Mod. 1.
White, Ty; black, T,,. (a) N=15; (b), N=50. Only the lower half
of the portion near the sidewall is shown.

FIG. 1. Heat-current density(x,H) entering the wall and fluid

at the bottom £=H) for A’'=15. Solid line, HDPE wall and Mod.
1 [case 2, Table I, same as Figa#. Dashed line, Plexiglas wall
and Mod. 1(case 1, Table)l Dash-dotted line, HDPE waltase 2,
Table ) and Mod. 2. The dotted line gives the current that would
prevail for HDPE if the gradient in the system were vertical and

equal toAT/L.

and Mod. 1 are presented in Fig. 2. The vertical line extend-
ing throughout the entire system is the fluid-wall boundary.
To the left and below the I'”-shaped line the fluid is as-
sumed to be quiescent, with a conductivity Above and to
the right of itT=T,. One sees that the temperature variation
in the wall is largest near the cell bottom, leading to an

than the wall thickness. Only the lower halz<H was enhanced wall current near=H. This is seen more clearly
simulated, since the problem is symmetric about the horizon F19- 1. Wh'Ch glvesq(x,H) for the example in '.:'g' @
tal midplane. Only a horizontal section=Xk<(dy+I, (N:. 15) with a h|gh-dep5|ty polyethylengiDPE) Sldewall'
+41) was solved numerically. The contribution from (solid and dash-dotted lingsand for the same geometry with

>(dw+1,+4l) was represented by a constant temperatur
gradient in the BL and’ =T, above it. The current density
g(x,z=H)=A(x)(dT/d2z),-4 with A (x) the conductivity of
the material at lateral positior (either wall or fluid was

& Plexiglas sidewalldashed ling The dotted line is the cur-
rent that would prevail for HDPE if the entire system had a
uniform vertical temperature gradient equalAd/L. Near

the right-hand side of the figure the convection enhances the

computed. Examples are shown in Fig. 1. The sums c’peat transport by a factok’= 15 regardless of the wall. In

g(x,H), separately over the wall and fluid domainxpigave

Qw(H) andQg(H). The fractions

fw=Qw(H)/Q,

fpzl_fw

the range 0.635x=<0.9 the effect of the viscous boundary
layer of width 0.21 cn{solid line, Mod. 1 or 0.1 cm(dash-
dotted line, Mod. 2is noticed. Atx=0.635 the temperature

(3y  9gradient az=H is continuous but, because of the disconti-

nuity of the conductivity, the current densityx,H) is dis-

were then calculated. The correctadis given by A= fFN continuous. In the wallX<0.635) the current decreasesxas

if the wall current was originally neglected, i.e., &

—QL/AATA [7].

Examples of the calculated temperature fields for
=15 R=5x1CP) and 50 R=4x 10°) for case 2 of Table |

TABLE I. Parameters for examples 6f . The walls are Plexi-
glas (Pl), HDPE (PE), stainless stedISS.

decreases, but because of the adiabatic boundary condition at
the outside of the wall the horizontal gradient has to vanish
there. For Mod. 1, integration af(x,H) for these examples
yields f=0.869(0.924 for HDPE (Plexiglas. For compari-
son, the (inappropriat¢ constant-temperature-gradient ap-
proximation would yield 0.97000.982 for HDPE (Plexi-
glas.

To demonstrate the relevance ©f, Fig. 3 shows new

L I Ref measurements corresponding to cases 1 and 2 in Table | in

the form of logo(ANR ?") versus logo(R). The closed
(open symbols are for a HDPEPlexiglas sidewall. For the

circles the sidewall correction was neglected. The two data
sets differ from each other by about 5%. The squares were

20 0.58] obtained after multiplying byfr based on Mod. 1. The
100 0.59] agreement is very good. The diamonds result when Mod. 2 is
40 0RO used. The agreement now is perfect R=7X 10°. The

Case Fluid N Wall Aw dy
W/m K WmK c¢cm cm

1 ethanol 0.167 Pl 0.19 0635 45 2.0
2 ethanol 0.167 PE 043 0635 45 2.0
3 He gas 0.011 SS 0.24 0.05

4 He gas 0.011 SS 0.24 0.27

5 He gas 0.011 SS 0.24 0.15

6 water 0.616 PI 0.19 0.16 10 0.5

small deviations of 1.5% or less for largBrare not under-

stood, but may be asociated with inadequacies of the model
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FIG. 3. Measurements of for cases 1 and 2 in Table I. Open
(closed symbols are for a HDPEPIlexiglag wall. Circles, without
sidewall correction; squares, with correction using Mod. 1; dia- FIG. 4. Fractionfr of Q entering the fluid az=H for cases
monds, with correction using Mod. (¢he data were shifted down- Jisted in Table I. The solid lines, labeled by the cases of Table I, are
ward by 0.0}. for Mod. 1. The broken lines are for Mod. 2 and correspond to case

1 (long dashed ling 2 (short dashed line 3 (dotted ling, 4 (dash-
when the horizontal BLs become very thin. The change in dotted ling, and 5(dash-double-dotted line
atR=3x 10’ is 0.018(0.012 for Mod. 1 and 0.0340.017
for Mod. 2 for the HDPE(Plexiglag wall. tion, which can only be carried out with consideration of the

The above analysis suggests that the nature of the wallfecise experimental sidewall geometry and a more quanti-
near the top and bottom p|ates matters much more than tHé.“Ve treatment of the BL along the Wa“, would be desirable.
central section. Unfortunately, complicated and often unpub- Figure 6 shows the recent data of Xtial. [11] obtained
lished sidewall geometries involving flanges and seals, a¥ith acetone and HDPE wallgl2]. Here also the Nusselt
well as the approximations in the treatment of the vertical
BL, prevent a quantitative calculation of the correction ap- -0.651

N

propriate for published values ¢¥. Nonetheless it is pos- § p
sible to get a rough idea about the effectfafon the data. e 07
Thus, (W) for the cases listed in Table | and Mod. 1 is ?5_0_75 I
shown in Fig. 4 as solid lines. Cases 3, 4, and 5 correspond >

approximately to the experiments of the references in the last 08}
column of the table. One sees that the correction is relatively
large for the gaseous helium experiments. This is so because
the conductivity rationy/\ is relatively large. But even for
them f- is close to one and the wall correction less than a
few percent forv=10° (R=5x 10'9). At the other extreme,

an exceptionally thin low-conductivity Plexiglas wall and a
relatively high-conductivity fluidwaten yield a nearly neg-
ligible correction for all\ (case 6. Figure 4 also illustrates

logio( NR27)
S
~J
[, ]

-0.7

the dependence df onl,. The broken lines are for Mod. 2 S
for cases 1 to Fsee the caption S 075
In order to get an estimate of the impact which the wall z
correction has on published data, the original as well as the o 08 X
o

corrected 7] results from Refs[8—10] are shown in Fig. 5.
A fit over the range 1B<R<10" of Eq. (2) yields y -0.85
=0.314, 0.306, and 0.289 for the original data, 0.327, 0.320,

and 0.304 for the corrected data using Mod. 1, and 0.334,

0.334, and 0.317 for the corrected data using Mod. 2 for F|G. 5. Measurements of{(R) by Chavanneet al. ([8], closed

Refs.[8-10 respectively. The corrected values are largercircles, Niemelaet al. ([9], open squargs and Wu ([10], open

than the pure powerlaw exponents predicted by various thezircles. (a), original data;(b), after wall correction using Mod. 1;
oretical modelq1]. Of course a more quantitative evalua- (c), after wall correction using Mod. 2.

015303-3



RAPID COMMUNICATIONS

GUENTER AHLERS PHYSICAL REVIEW E53 015303R)
-0.68 . . . tainty the corrected data are also consistent with these con-
o clusions. However, for 738log(R)<9.3 they can also be in-
0.7 terpreted to imply that a powerlaw witp=0.289 (0.292) is
applicable when Mod. IMod. 2) is used. The data are then
-0.72 consistent with a transition at 1dg)(=9.3 to a regime with
v=0.309(0.316 for Mod. 1 (Mod. 2) which was obscured
S in the original data by rounding due to the wall contribution.
N-I 0.74 This issue will require more careful study in the future. An-
= other conclusioi11] was that the Grossmann-Lohse predic-
5-076 tion [2] N=ao~ Y RY+bo~V'R¥7 fits the data. This is
still true for the corrected data within their possible system-
-0.78 atic errors, albeit only foR=10°. The new coefficients
=0.312(0.298 andb=0.00256(0.00292 for Mod. 1 (Mod.
08 2) differ slightly from the original estimatefgl1l] a=0.326
.’ andb=0.00236.
T ‘ ‘ Lt . In this Rapid Communication it was argued that the lat-
-0.82 7 8 9 10 11 eral thermal coupling between the fluid and the wall in tur-
log(R) bulent Rayleigh-Beard convection can require that the cor-

rection for the current passing through the wall be based on
_ FIG. 6. Nusselt-number measurements from REf] as a func- 5 two-dimensional calculation of the temperature field of the
tion of the Rayleigh number on logarithmic scales. Open Symb°|ssystem. Simply subtracting the conductance of the empty cell
original data[12]; solid symbols, corrected data; circles, aspect ra-can lead to errors of 20% or more of the Nusselt numider
tio '=12.8; squaresI'=3.0; triangles,I'=1.0; diamonds,I' ;" \ntayorable cases, and can yield a systematic underesti-
=0.5; plusses, corrected data of Ré]; crosses, corrected data of mate by 0.02 or more of the exponeptobtained from a
Ref.[9]. In this figure all corrected data are based on Mod. 1. power-law fit to the data. The wall correction can be signifi-

number is reduced by the wall effect and the effective expo-Cant for Rayleigh numbers up to *#or so. This work also

nents are increased. FRE= 107, 10°, and 10°, for instance, Suggests improvements in the design of future convection
thel'=3, 1.0, and 0.5 data give=0.253(0.272 and 0.280 cells which will minimize the wall current. Obviously the
0.282(0 ’288 f;md 0.295and 0.300.308 and 0.31¢respec- sidewalls must be mgdg as thml as pos§|ble anq constru_cted
ti\./ely when the wéll conduct.ance is ignorédéluded with of the Iowest—conduct_|V|ty material consistent with the fluid
Mod. 1 and with Mod. 2 For comparison, the corrected data to be used. qually important, the sidewall should 'extend
of Refs.[8] and[9] for T=0.5 using Mod. 1 are shown as parallel to the sides of the top and bottom plates with any

. . flanges, seals, or gaskets located well away from the active
xgl)l (those of Ref[10] were omitted to avoid overcrowd- surface of these plates.

One of the main conclusions of R¢l.1] was that data for | benefitted from stimulating conversations with J. Ni-
MR) cannot be fit by a single powerlaw over a wide rangeemela and K.R. Sreenivasan. This work was supported by
of R, but that nonetheless there exists a scaling functiorthe National Science Foundation through Grant No. DMROO-
F(R)=MR,T)/f(T") with f(T')=O(1). Within their uncer-  71328.
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