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Critical dynamics of gelation
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Shear relaxation and dynamic density fluctuations are studied within a Rouse model, generalized to include
the effects of permanent random crosslinks. We derive an exact correspondence between the static shear
viscosity and the resistance of a random resistor network. This relation allows us to compute the static shear
viscosity exactly for uncorrelated crosslinks. For more general percolation models, which are amenable to a
scaling description, it yields the scaling relationk5f2b for the critical exponent of the shear viscosity. Here
b is the thermal exponent for the gel fraction, andf is the crossover exponent of the resistor network. The
results on the shear viscosity are also used in deriving upper and lower bounds on the incoherent scattering
function in the long-time limit, thereby corroborating previous results.
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I. INTRODUCTION

The most prominent critical phenomena at the gelation
vulcanization transition are of dynamic origin; see e.g., R
@1# for a recent review. Relaxation times in the sol pha
diverge as the gelation transition is approached@2#, giving
rise to critical behavior of the transport coefficients: The
fective diffusion constant goes to zero and the static sh
viscosity diverges@3,2#, indicating structural arrest of a mac
roscopic fraction of the monomers; see Fig. 1 below fo
graphical illustration of the situation. There are strong p
cursors of the gelation transition in the fluidlike sol pha
The decay of correlations is not exponential, but follows
Kohlrausch law@2#. This indicates a spectrum of relaxatio
times extending to arbitrary large values.

All these phenomena are reminiscent of the glass tra
tion, so that the gelation transition can be regarded as a p
gon for the latter. However there are important differenc
which are best explained in the context of vulcanization.
this case the distinction between thermal and quenched
grees of freedom is simple and unambiguous: Chem
crosslinks are quenched, and the monomers equilibrate
fixed crosslink configuration. In contrast to this scenario,
quench in the structural glass by lowering the tempera
does not allow for such a simple classification. Even thou
it is generally believed that while decreasing the tempera
at a finite ratev some degrees of freedom are quench
namely, those whose relaxation timest are larger than the
inverse quench rate,tv.1. Nevertheless the identificatio
of these quenched degrees of freedom is neither simple
unique, and some properties of structural glasses do in
depend on the rate of quench@4#. The so-called physica
gelation seems a better candidate to model glassy beha
In this case the temperature can be easily adjusted so tha
binding energy for two monomers participating in a crossl
is comparable to the thermal energy. Crosslinks form a
break up so that both monomer positions and crossli
equilibrate. By lowering the temperature crosslinks a
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quenched, and give rise to structural arrest at sufficiently
temperatures.

In this paper we will concentrate on vulcanization a
chemical gelation, both of which are commonly interpret
as a percolation transition@5#. The transition from a fluid
phase to an amorphous solid phase happens when a m
scopic cluster of crosslinked polymers has been form
However, percolation theory can only account for the ge
metric connectivity of the macromolecules, and neither th
mal fluctuations nor dynamic phenomena are comprised
the percolation picture. Instead, one should start from a
namic model, as is done here. The simplest model, Ro
dynamics, ignores all interactions except for those which
sure the connectivity of the clusters. de Gennes@6# was the
first to estimate the static shear viscosity near the gela
transition. Relating the viscosityh(n) of a cluster of massn
to the longest relaxation time of the cluster, he argued t
h(n);R2 scales like the squared linear dimension of t
cluster. The radius of gyration is determined by the mass
the cluster according toR;n1/df , wheredf5d2b/n is the

FIG. 1. Sketch of some critical quantities for gelation as a fu
tion of the crosslink concentrationc for a mean-field distribution of
crosslinks. The gelation transition occurs atccrit5

1
2 . The plot dis-

plays the averaged static shear viscosity~solid line! according to
Eq. ~3.26!, the effective diffusion constant~dashed line! according
to Eq.~4.17! and the gel fraction~dotted line! according to Ref.@8#.
©2000 The American Physical Society10-1
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Hausdorff-Besicovitch dimension of the fractal, and rela
to the exponent for the correlation lengthn and the gel frac-
tion b. Given a scaling ansatz@7# for the number ofn
clusters per polymer, tn;n2t exp$2n/n* %, with n*
;up2pcu21/s, one can average over all cluster sizes to o
tain h5Snh(n)ntn;up2pcu2k, with k52n2b. This scal-
ing relation was rederived in many other ways. It is incorr
because it ignores the internal structure of percolation c
ters which is not only determined by the exponentsb andn.
The latter rule the behavior of clusters on large spatial sca
whereas the intrinsic self-similar connectivity is charact
ized by the spectral dimensionds . In contrast to a linear
chain with ds51, a percolation cluster contains a hierarc
of branches and possibly loops, giving rise to a value ofds
.1. Apparently, Cates@9# was the first to notice that th
relaxation spectrum acquires a Lifshits tail which modifi
the above estimate for the viscosityh(n) of a single perco-
lation cluster.

In a different approach, the viscosity at the sol-gel tran
tion has been related to the conductivity of a random resi
network @10# which is made up of a fractionp of supercon-
ducting and a fraction (12p) of normal conducting bonds
Approaching the percolation transition from below, the co
ductances;up2pcu2s is expected to diverge with an expo
nent s, which was predicted to be the same ask. Before it
was realized that percolation clusters are multifractals,
two scaling arguments were considered to give identical
sults, namely,k5s52n2b. If multifractality is treated
properly, the two scaling arguments give different resu
This is most easily seen in two dimensions, where dua
@11# implies s5f. Here,f is the so-called crossover expo
nent, which cannot be expressed throughb and n. It was
computed by Harris and Lubensky@12# in the context of
random resistor networks, where a fraction 12p of normal
conducting bonds was removed. The crossover exponef
characterizes the average resistanceV(r );r f/n between two
connected nodes, which are a distancer apart.

In this paper we concentrate on the fluidlike sol phase
a gelling polymer melt. We show that for Rouse dynam
the exponent of the static shear viscosityk is given exactly
by

k5f2b ~1.1!

in disagreement withboth the above scaling arguments. Th
derivation of the exponentk requires two steps. First, th
viscosity is expressed in terms of the random connecti
matrix, which characterizes the connections in the polym
network. In a second step we prove that bonds betw
monomers can be identified with electrical resistors, and
results from the theory of random graphs to relate ma
elements of the connectivity matrix to the resistance betw
two nodesi and j of the corresponding random resistor ne
work. In fact, we consider the derivation of such a corresp
dence as one of the main results of this paper.

For a mean-field distribution of crosslinks we compute
static shear viscosity exactly and find a logarithmic div
gence, in agreement with the general scaling relation~1.1!
for mean-field exponents or space dimensionalityd>6. For a
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crosslink distribution which corresponds to finite
dimensional percolation, we know thee expansion ofk
5e/6111e2/17641O(e3), or use high-precision simula
tions in d53 to obtainkud53'0.71.

The established correspondence between the ran
polymer network and the random resistor network also tu
out to be useful for a computation of the intermediate inc
herent scattering functionSt(q). The long-time asymptotics
of St(q) was discussed in Ref.@8# for a mean-field distribu-
tion of crosslinks. In this paper, we derive upper and low
bounds onSt(q) which put our previous results on a firme
basis. We furthermore use a scaling analysis to extract
long-time asymptotics ofSt(q) for a crosslink distribution
which corresponds to finite-dimensional percolation.

The paper is organized as follows: In Sec. II, we introdu
the basic dynamic model of a monodisperse sol of phan
monomer chains, which are permanently crosslinked
Hookean springs chosen at random@13#. We present a forma
solution of the dynamic model, and introduce the two o
servables, which we want to discuss: the stress relaxa
function and the incoherent scattering function. In Sec.
we discuss the static shear viscosity. First, the relation
tween our dynamic model and random resistor network
established. Second, we relate the critical exponent of
viscosity to the exponents arising in a scaling description
the crosslink distribution, as exists for finite-dimension
percolation. Third, we show how to compute the static sh
viscosity exactly for the case where the crosslinks are
tributed according to mean-field percolation. This result
then rederived using replicas in the last subsection of S
III. The intermediate incoherent scattering function is d
cussed in Sec. IV. We first derive exact upper and low
bounds, which are then used to extract the long-time asy
totics for a mean-field distribution of crosslinks and corrob
rate previous results@8#. Some details of this calculation ar
delegated to the Appendix. In the last part of Sec. IV
compute critical exponents associated with the long-time
ymptotics of the scattering function for a crosslink distrib
tion which admits a scaling description—as is the case
finite-dimensional percolation. We conclude with some
marks and perspectives for future directions in Sec. V.
brief account of our results was given in Ref.@14#.

II. DYNAMIC MODEL AND ITS SOLUTION

A. Dynamic model

We consider a system ofN identical, monodisperse
~macro!molecular units, each consisting ofL monomers.
These units may be monomers, dimers, linear chains, or
bitrary branched structures, which may also contain loops
the following these molecular units are called polymers,
gardless of their topology or their degree of polymerizati
L. Monomer s on polymer i is characterized by its time
dependent position vectorRt( i ,s) ( i 51, . . . ,N and
s51, . . . ,L) in d-dimensional space. We suppose that t
polymers are subjected to a space- and time-dependen
ternal velocity fieldv t

a(r ). Here Greek indices indicate Ca
0-2
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CRITICAL DYNAMICS OF GELATION PHYSICAL REVIEW E 63 011510
tesian coordinatesa5x,y,z, . . . , and wewill always con-
sider a flow field in ther x direction, increasing linearly with
r y, i.e.,

v t
a~r !ªda,xk tr

y, ~2.1!

with a time-dependent shear ratek t . As usual,da,b denotes
the Kronecker symbol, i.e.,da,b51 for a5b, and is zero
otherwise.

We employ the simplest, purely relaxational dynam
~see, e.g. Chap. 4 in Ref.@15# or Chap. 15.1 in Ref.@16#!

] tRt
a~ i ,s!52

1

z

]H

]Rt
a~ i ,s!

1v t
a@Rt~ i ,s!#1j t

a~ i ,s!.

~2.2!

In the absence of the thermal noisej, the monomers relax to
the state]H/]R50 such that their velocity is equal to th
externally imposed velocity field. The noisej has zero mean
and covariance j t

a( i ,s)j t8
b ( i 8,s8)52z21da,bd i ,i 8ds,s8d(t

2t8), whered(t) is the Diracd function. Here, the overba
indicates the average over the realizations of the Gaus
noisej. The relaxation constant is denoted byz, and we use
energy units such thatkBT51. In Eq. ~2.2! the Hamiltonian
HªHW1U consists of two terms. The first one guarante
the connectivity of each polymer, whose internal structure
characterized by a connectivity matrixGpoly(s;s8):

HWª
d

2l 2 (
i 51

N

(
s,s851

L

Gpoly~s;s8!R~ i ,s!•R~ i ,s8!. ~2.3!

We have chosen a harmonic potential to constrain the r
tive distance between two monomers on the same poly
with the typical distance given by the persistence lengtl
.0. As an example forGpoly , we mention the special case o
linear chains. Their connectivity matrix is explicitly given b

Gpoly~s;s8!5 (
r 51

L21

~ds,r2ds,r 11!~ds8,r2ds8,r 11!. ~2.4!

The second part of the Hamiltonian modelsM permanently
formed crosslinks between randomly chosen pairs of mo
mers. The configuration of crosslinks will be denoted byG
5$ i e ,se ; i e8 ,se8%e51

M , i.e., the list of theM crosslinked pairs
of monomers. The relative distances between any two mo
mers, participating in a crosslink, are constrained by a h
monic potential

Uª

d

2a2 (
e51

M

@R~ i e ,se!2R~ i e8 ,se8!#2, ~2.5!

whose strength is controlled by the parametera.0. For a
→0 hard crosslinks can be recovered@13#. Since the Hamil-
tonian is quadratic in the monomer positions, it can be
pressed in terms of aNL3NL connectivity matrixG accord-
ing to
01151
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G~ i ,s; i 8,s8!R~ i ,s!•R~ i 8,s8!.

~2.6!

The connectivity matrixG has a deterministic partGpoly ,
which reflects the internal structure of the polymers, an
random part representing the crosslinks

G~ i ,s; i 8,s8!5
a2

l 2 d i ,i 8Gpoly~s,s8!

1 (
e51

M

~d i ,i e
ds,se

2d i ,i
s8
ds,s

e8
!

3~d i 8,i e
ds8,se

2d i 8,i
e8
ds8,s

e8
!. ~2.7!

In order to determine the model completely, it only rema
to specify the probability distribution of the crosslink co
figurations. We shall discuss two different types of probab
ity distributions P(G): ~i! crosslinks are chosen indepe
dently with equal probability for every pair of monomer
corresponding to a mean-field distribution@17,18#; and~ii ! a
distribution of crosslinks, which generates clusters amena
to the scaling description of finite-dimensional percolatio
A precise characterization of these distributions is given
low.

B. Observables

We shall focus on two observables. First, we aim a
computation of the intrinsic shear stresss t

a,b as a function of
the shear ratek t . Following Chap. 3 in Ref.@15# or Chap.
16.3 in Ref.@16#, we express the shear stress in terms of
force per unit area, exerted by the polymers

s t
a,b5 lim

t0→2`

2
r0

N (
i 51

N

(
s51

L

Ft
a~ i ,s!Rt

b~ i ,s!. ~2.8!

HereRt( i ,s) is the solution of the equation of motion~2.2!
with some initial conditionRt0

( i ,s) at time t0 in the distant

past. Moreover,r0 stands for the polymer concentration, an
Ft

a( i ,s)ª2]H/]Rt
a( i ,s) is the force acting on monomer~i,

s! at time t. For the simple shear flow@Eq. ~2.1!#, a linear
response relation

s t
x,y5E

2`

t

dt Gt2tkt , ~2.9!

with response functionGt , will be shown to be valid for
arbitrary strengths of the shear ratek t . For a time-
independent shear ratek the shear stress is also independe
of time, and the intrinsic shear viscosityh is then related to
the shear stress via

h~G!ªsx,y/~kr0!5r0
21E

0

`

dt Gt . ~2.10!

Note that we have made the dependence ofh on the realiza-
tion G of the crosslinks explicit.
0-3
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Second, in the absence of the shear flow,k50, we com-
pute the intermediate incoherent scattering function

St~quG!ª lim
t0→2`

1

NL (
i 51

N

(
s51

L

exp$ iq•@Rt~ i ,s!2R0~ i ,s!#%,

~2.11!

with special emphasis on its long-time behavior. Due to i
tropy the scattering function depends only on the modu
qªuqu of the wave vector.

We expect that observables, like the viscosity and
incoherent scattering function, are self averaging in the m
roscopic limit, and compute the averages

^h&ª(G P~G!h~G! ~2.12!

and, accordingly,̂St(q)& over all crosslink realizations.

C. Formal solution

The equation of motion~2.2! is linear for the spatially
homogeneous shear gradient~2.1!, and hence can be solve
exactly. For notational convenience we introduceNL-
dimensional vectors such asRt

a
ª„Rt

a(1,1),...,Rt
a(N,L)…,

whoseNL components are the respective spatial compon
of the position vectorsRt( i ,s). The force vectorsFt

a

52(d/a2)GRt
a and the noise vectorsj t

a , a5x,y,z,... are
defined in an analogous manner. Furthermore we use
abbreviationKt

a,b5da,xdb,yk t for the spatial components o
the velocity gradient tensor, which according to Eq.~2.1!, is
spatially homogeneous.

Expression~2.8! for the stress tensor can be rewritten

s t
a,b5

r0d

Na2 lim
t0→2`

Tr~GCt
a,b!

5
r0d

Na2 lim
t0→2`

(
i 51

N

(
s51

L

~GCt
a,b!~ i ,s; i ,s!, ~2.13!

whereCt
a,b

ªRt
a(Rt

b)1 is the matrix of second moments o
Rt and the superscript1 denotes transposition. Th
matrix Ct

a,b may be calculated from the equation
motion ~2.2! as follows: Introducing Ut( i ,s; i 8,s8)
ªexp$2dt/(za2)G%(i,s;i8,s8), it is readily verified that

Rt
a5Ut2t0(b Tt,t0

a,bRt0
b 1E

t0

t

dt8Ut2t8(
b

Tt,t8
a,bj t8

b

~2.14!

is the unique solution of Eq.~2.2!, with initial conditionRt0
,

provided thatTt,t8
a,b is the solution of the differential equatio

] tTt,t8
a,b

5(gKt
a,gTt,t8

g,b with initial condition Tt,t
a,b5da,b .

Sincejt is Gaussian white noise with zero mean, we obt
01151
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a,b5U2~ t2t0! (

g,g8
Tt,t0

a,gCt0
g,g8Tt,t0

b,g8

1
2

z Et0

t

dt8U2~ t2t8!(
g

Tt,t8
a,gTt,t8

b,g . ~2.15!

Multiplying Eq. ~2.15! by G, and fixing the initial condition
at time t0→2`, we end up with

lim
t0→2`

GCt
a,b5

2

z E2`

t

dt8GU2~ t2t8!(
g

Tt,t8
a,gTt,t8

b,g . ~2.16!

In writing down Eq.~2.16! we have taken advantage of th
fact that G is a positive semidefinite matrix, implying
limt→`Ut5E0 , whereE0 denotes the orthogonal projecto
onto the null space ofG. Inserting Eq.~2.16! into Eq.~2.13!,
we find an expression for the stress tensor

s t
a,b5E

2`

t

dt8S d

dt8
Gt2t8D(

g
Tt,t8

a,gTt,t8
b,g ~2.17!

in terms of the time-dependent linear response function

Gt5
r0

N
TrS ~12E0!expH 2

2dt

za2 GJ D . ~2.18!

As a consequence of the simple shear flow~2.1! we have
Tt,t8

a,b
5da,b1da,xdb,y* t8

t dt k(t). It follows from definition
~2.10! that the static shear viscosity

h~G!5
1

r0
E

0

`

dtGt5
za2

2dN
TrS 12E0~G!

G~G! D ~2.19!

is given by the trace of the Moore-Penrose inverse@19# of G,
i.e., the inverse ofG restricted to the subspace of nonze
eigenvalues.

Next we turn to a computation of the incoherent scatter
function in the absence of the shear flow. In this case
have k50, and henceTt,t8

a,b
5da,b . Note thatRt2R0 is a

Gaussian Markov process whose distribution is character
in the limit t0→2` by a vanishing mean and the covarian

lim
t0→2`

~Rt
a2R0

a!~Rt
b2R0

b!15
2

z
da,bE

0

t

dt expH 2
dt

za2 GJ .

~2.20!

To derive Eq.~2.20!, we have used solution~2.14!. Hence
the scattering function is expressed in terms of the diago
matrix elements of theNL3NL matrix

gtª
1

z E0

t

dt expH 2
dt

za2 GJ
5

t

z
E01

a2

d

12E0

G S 12expH 2
dt

za2 GJ D ~2.21!

via

St~quG!5
1

NL (
i 51

N

(
s51

L

exp$2q2gt~Gu i ,s; i ,s!%, ~2.22!
0-4
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where, again, the dependence on the realizationG has been
made explicit.

D. Cluster decomposition

Each crosslink realizationG defines a random labele
graph, which can be decomposed into its maximal pathw
connected components or clusters

G5ø
k51

K

Nk . ~2.23!

HereNk denotes thekth cluster withNk polymers out of a
total of K clusters. The associated connectivity matrix, a
called the Kirchhoff matrix or admittance matrix in grap
theory ~see, e.g., p. 54 in Ref.@20#!, is of block-diagonal
form:

G~G!5 %
k51

K

G~Nk!. ~2.24!

Therefore the viscosity~2.19! is decomposed into contribu
tions from different clusters according to

h~G!5 (
k51

K
Nk

N
h~Nk!, ~2.25!

where the individual contribution from clusterNk is defined
by

h~Nk!ª
za2

2dNk
TrS 12E0~Nk!

G~Nk!
D . ~2.26!

In the same way the incoherent scattering function may
decomposed into contributions from different clusters

St~quG!5 (
k51

K
Nk

N
St~quNk!, ~2.27!

where the individual contribution from clusterNk is defined
by

St~quNk!ª
1

NkL
(

i PNk
(
s51

L

exp$2q2gt~Nku i ,s; i ,s!%. ~2.28!

Combining Eqs.~2.27!, ~2.28!, and ~2.21!, we express the
scattering function as

St~quG!5 (
k51

K
Nk

N
expH 2

q2t

zNkL
J (

i PNk
(
s51

L
1

NkL

3expH 2
q2a2

d F12E0~Nk!

G~Nk!

3S 12expH 2
dt

za2 G~Nk!J D G~ i ,s; i ,s!J , ~2.29!

where we have used the representation
01151
e

o

e

E0~Gu i ,s; i 8,s8!5 (
k51

K
1

NkL
dN~ i !,Nk

dNk ,N~ i 8! ~2.30!

of the orthogonal projectorE0 onto the null space ofG. Here
N( i ) denotes the cluster containing polymeri. Equation
~2.30! follows from the fact that the null space ofG is
spanned by vectors which are constant when restricted to
one cluster. Physically this reflects that there is no force a
ing on the center of mass of any one cluster. Hence
number of zero modes ofG is equal to the total numberK of
clusters.

For calculating disorder averages it will be advantage
to reorder the sums in Eqs.~2.25! and ~2.29! by first sum-
ming over all clusters consisting of a given numbern of
polymers, and subsequently summing over all ‘‘sizes’’n.
Thus we obtain a decomposition of the average

K (
k51

K
Nk

N
f ~Nk!L 5 (

n51

`

ntn^ f &n ~2.31!

for an arbitrary real-valued functionf. In Eq. ~2.31!, we in-
troduce the average

^ f &nª
1

tn
K 1

N (
k51

K

dNk ,n f ~Nk!L ~2.32!

over all clusters ofn polymers, each consisting ofL mono-
mers. Furthermore,

tnªK 1

N (
k51

K

dNk ,nL ~2.33!

represents the average number of clusters of sizen per poly-
mer. Note that up to now no particular crosslink distributi
has been specified.

III. SHEAR VISCOSITY

A. Relation to networks of random resistors

The viscosity~2.19! of randomly crosslinked polymer
can be quite generally related to the resistance of a ran
electrical network. Thanks to the cluster decomposit
~2.25!, it suffices to consider an arbitrary connected clus
Nk . To establish this connection we identify a bond betwe
two neighboring monomers on the same polymer as a re
tor of magnitudel 2/a2, and a crosslink between polymers
a resistor of magnitude 1. The resistance measured betw
any connected pair of vertices~i,s! and (i 8,s8) will be de-
noted byR( i ,s; i 8,s8). For an arbitrary connected resisto
network Nk the laws of Ohm and Kirchhoff lead@21# to a
relation betweenR and the Moore-Penrose inverse of th
connectivity matrix:
0-5
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R~Nku i ,s; i 8,s8!5
12E0~Nk!

G~Nk!
~ i ,s; i ,s!

1
12E0~Nk!

G~Nk!
~ i 8,s8; i 8,s8!

22
12E0~Nk!

G~Nk!
~ i ,s; i 8,s8!. ~3.1!

The matrix elements of the projectorE0(Nk) are all equal to
(NkL)21 according to Eq.~2.30!. Hence, when summing Eq
~3.1! over all (i ,s),(i 8,s8)PNk , the last term on the
right-hand side is equal to 22NkL Tr@E0(Nk)„1
2E0(Nk)…/G(Nk)#, and thus vanishes. Using this fact a
definition ~2.26! of h(Nk), the viscosity of a clusterNk is
seen to be given by a sum over resistances

h~Nk!5
za2

4dLNk
2 (

~ i ,s!,~ i 8,s8!PNk

R~Nku i ,s; i 8,s8!. ~3.2!

Together with Eq.~2.25!, this constitutes the announced co
nection between the viscosity of a randomly crosslink
polymer melt and a random resistor network. We would l
to emphasize that this connection relies on the special f
~2.19! of the viscosity in the Rouse model.

B. Finite-dimensional percolation: scaling description

The gelation and the vulcanization transition were int
preted as a percolation transition already by Flory and Sto
mayer@22–24#. Even though the classical theories had to
replaced by modern approaches@6,25# built on the analogy
to critical phenomena, the percolation picture survived. I
generally believed that the ensemble of macromolec
clusters which are built in the process of gelation has
same statistical connectivity as an ensemble of clus
which are constructed in ad-dimensional bond percolatio
process. This identification is supported by experiment, e
the measured cluster-size distribution of macromolecule
well described by the critical exponents predicted for bo
percolation@5,7#.

The most intuitive picture of gelation and vulcanization
related to continuum percolation, which is expected to be
the same universality class as random bond percolation@5#.
In continuum percolation a set of points is randomly distr
uted in d-dimensional space. The points are assumed to
the centers of spheres with randomly distributed radii. T
points are said to be connected if their spheres overlap. C
respondingly, if a crosslinking agent is added to a de
polymer solution or melt, then we expect that pairs of mon
mers which are close to each other will be crosslinked w
high probability, provided the reaction is sufficiently fast
compared to the diffusion time of the polymers.

The well-known characteristics of percolation cluste
will allow us to determine the critical behavior of the she
viscosity as given by Eqs.~2.25! and~2.31!. For this purpose
we first recall some quantities which are important in t
scaling theory of percolation; see, e.g., Refs.@7,5#. For defi-
niteness we consider bond percolation on thed-dimensional
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cubic lattice Zd. Nearest-neighbor bonds are present w
probability pªc/(2d), and absent with probability 12p.
The bonds are interpreted as crosslinks, while the lat
points are identified with monomers. Here the probabilityp
is defined such that the average number of crosslinks is g
by M5cN. A percolating cluster first appears at a critic
crosslink concentrationccrit . The fractionQ of lattice points
belonging to the infinite network serves as an order para
eter, and vanishes continuously as the percolation trans

is approached:Q ;
c↓ccrit

(c2ccrit)
b. The correlation function

P(r ) is proportional to the probability that two vertice
which belong to the same cluster are a distancer apart. As
the transition is approached, correlations become incre
ingly long ranged, as is indicated by a divergence of
correlation lengthj:

j2
ª (

r PZd
r 2P~r ! ;

c↑ccrit

~ccrit2c!22n. ~3.3!

At the critical point the correlation function shows an alg
braic decay

P~r !uc5ccrit
;

r→`

r 2~d221h!. ~3.4!

As far as geometric properties of percolation are concern
the critical behavior is determined by two independent ex
nents. Here we choose the exponentn of the correlation
length and the anomalous dimensionh. The other exponents
may be expressed in terms of those via various scaling r
tions, such as

b5
n

2
~d221h!. ~3.5!

It is a well-established fact of the scaling description of p
colation that the average number of clusters of sizen obeys a
scaling law

tn5n2t f @~ccrit2c!ns#, ~3.6!

with the scaling functionf decaying faster than any polyno
mial for large arguments and approaching a nonzero cons
for small arguments. The exponentss andt are related toh
andn by

t511
2d

d122h
, s5

2

n~d122h!
. ~3.7!

After these preliminaries we turn to the calculation of t
averaged viscosity. For the sake of simplicity we consid
polymers withL51, that is, a network of Brownian particles
This is relevant for random networks of macromolecu
which are generated by polycondensation, starting fr
small units without internal structure. Relation~3.2! between
the viscosity of a cluster and the corresponding resista
then simplifies to
0-6
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h~Nk!5
za2

4dNk
2 (

i ,i 8PNk

R~Nku i ; i 8!. ~3.8!

We remark that the average^h&n , which was defined in Eq
~2.32!, is an expectation value over all lattice animals of s
n, andNtn refers to the average number of percolation cl
ters of sizen.

We make the basic assumption that^h&n which, accord-
ing to Eq.~2.32!, only tests clusters of a given finite sizen,
does not acquire any irregularity as the critical point is a
proached and that̂h&nuc5ccrit

;nb with some yet unknown
exponentb. We will see below in Eq.~3.22! that this holds
true with b51/2 in the special case where the crosslinks
distributed according to mean-field percolation. Furthermo
we remark that this assumption may be circumvented i
more sophisticated approach, as will be explained below

Using the properties of the scaling functionf and Eq.
~3.7!, Eqs.~2.25! and~2.31! yield for the asymptotic behav
ior of the viscosity

^h& ;

c↑ccrit

(
n51

`

ntn^h&nuc5ccrit
; (

n51

`

ntnnb

;

c↑ccrit

~ccrit2c!2A~b!, ~3.9!

with a critical exponentA(b)ª 1
2 bn(d122h)2 1

2 n(d22
1h). Thus the remaining task is the derivation of the exp
nentb.

Since the critical behavior of the viscosity is believed n
to be determined solely by large-scale geometrical prop
ties, i.e., by the exponentsh andn, the appearance of a ne
exponent is expected. From Eqs.~3.8! and~2.32! the average
over clusters of sizen is written in the form

^h&n5
za2

4dn2tn
K 1

N (
k51

K

dNk ,n (
i ,i 851

N

3dN~ i !,Nk
dNk ,N~ i 8!R~ i ; i 8!L , ~3.10!

which yields

4d

za2 (
n52

`

n2tn^h&n5K 1

N (
i ,i 851

N

dN~ i !,N~ i 8!R~ i ; i 8!L
5K (

i 8PN~ i !

R~ i ; i 8!L
;

c↑ccrit

~ccrit2c!2~22h!n2f.
~3.11!

To obtain the second equality in Eq.~3.11!, we used the
enumeration invariance of the system, and the asympt
behavior forc↑ccrit is obtained from Eq.~2.45! in Ref. @12#.
The exponentf, which was first introduced in the context o
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random resistor networks, governs@26,12,27# the growth of
the resistanceR(r ) between two points on the incipien
spanning cluster, which are a large spatial distancer apart:
R(r );r f/n. Referred to as the crossover resistance expon
@12,27#, f is related@7# to the spectral dimension, accordin
to f5ndf@(2/ds)21#, wheredf5d2b/n is the Hausdorff-
Besicovitch dimension of the incipient spanning clust
Again using the scaling assumptions~3.6! and ^h&nuc5ccrit

;nb, Eq. ~3.11! amounts to

(
n51

`

ntnnb11 ;

c↑ccrit

~ccrit2c!2~22h!n2f, ~3.12!

which, upon comparison with Eq.~3.9!, gives A(b11)
5(22h)n1f and, after a little algebra, the relation

b5sf5~2/ds!21. ~3.13!

Thus we have derived the scaling relation

k5f2b ~3.14!

for the viscosity exponentk.
As already mentioned, the above scaling assumption

encoded in a more general scaling relation. In Refs.@12# and
@27# the authors discussed the generating function

Z~l,v!ªK expH 2
l2

2 S 1

G1 iv D
j , j
J L ~3.15!

of the distribution of the resolvent ofG. Among other things,
they showed by means of a renormalization-group anal
up to second order in«562d the validity of the scaling
relation

Z~l,v! ;

c↑ccrit

~ccrit2c!bz@~ccrit2c!2fl2,~ccrit2c!1/sv#,
~3.16!

with an appropriate scaling functionz. We use the fact tha
the system is translationally invariant and relate the visco
to Z via

^h&5
za2

2d K S 12E0

G D
j , j
L

52
za2

d
lim

v→0

]

]l2U
l50

Z~l,v!. ~3.17!

To derive the second equality, we have employed the exp
sion

1

G1 iv
52

i

v
E01

12E0

G
1O~v!, v→0 ~3.18!

in Eq. ~3.15!. From Eq.~3.17!, the result~3.14! is readily
rederived.
0-7
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C. Mean-field percolation: exact results

To go beyond scaling arguments and to compute the
cosity for all crosslink concentrations, we have to resort
simpler cluster distributions than the one given by bond p
colation in finite-dimensional space. We only consider
simplest distribution which is equivalent to mean-field p
colation, as far as static quantities are concerned. All pair
monomers are equally likely to be crosslinked, and no c
relations between crosslinks are taken into account. M
precisely, for a functionf depending on the realizationG
5$ i e ,se ; i e8 ,se8%e51

M of the network we define the average b

^ f &ª lim
N,M→`
M /N5c

S )
e51

M
1

~NL!2 (
i e ,i e851

N

(
se ,se851

L D
3 f ~$ i e ,se ; i e8 ,se8%!. ~3.19!

The static shear viscosity can be computed exactly for
simple distribution, making use of results in the mathem
cal literature on random graphs. The calculations are ea
for a network of Brownian particles, that is, polymers co
sisting of just one monomer each (L51). The generalization
to more complex molecular units with arbitraryL—not nec-
essarily linear—will be shown to be straightforward. It w
not change the critical behavior as compared to the casL
51.

1. Brownian particles: LÄ1

The statistical properties of clusters generated accord
to the above distribution, have been studied extensively
the theory of random graphs, as developed in Ref.@17#.
Strictly speaking, the ensemble of random graphs consid
in Ref. @17# comprises random labeled graphs consisting

N vertices andM5cN edges, and each of the (
M

(2
N)

) possible
graphs is equally likely to occur, i.e., double edges or s
loops are suppressed. Obviously this ensemble differs f
the one considered in Eq.~3.19!, but one expects both to
have the same properties in the macroscopic limit. This m
be understood by comparing the numberO(N) of possibili-
ties to realize a self-loop or double edge inG with the num-
ber O(N2) of possibilities to choose a different monomer

In the macroscopic limit there are no clusters of mac
scopic size forc,ccritª

1
2 , and all monomers belong to tre

clusters without loops, see Theorems~5d! and ~5e! in Ref.
@17#. Moreover, according to Eq.~2.18! in Ref. @17# one has

tn5
nn22

2cn!
~2ce22c!n ~3.20!

for the average number of trees of sizen per polymer. Since
each clusterNk of sizen5Nk is expected to be realized a
exactly one of thenn22 labeled treesTn of size n, one has
STn

dNk ,Tn
5dNk ,n , and the expectation~2.32! over clusters

of sizen is expressed as an expectation over trees:
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^ f &n5(Tn

f ~Tn!
1

tn
K 1

N (
k51

K

dNk ,TnL 5
1

nn22 (Tn

f ~Tn!.

~3.21!

The last step is understood as follows: The assumption
Nk is a tree of sizen fixes the number of vertices and edg
in Nk . Hence, due to the independence of the crosslinks
Eq. ~3.19!, the number of graphs, which may be realiz
within this assumption, depends only on the sizen, and all
treesTn can be proven to occur equally likely as a realizati
of Nk . Accordingly, the probabilitytn

21^N21Sk51
K dNk ,Tn

&
for a clusterNk of sizen to be realized as the treeTn is equal
to n22n.

Note further that the resistance between two verticesi and
i 8 in a tree simplifies considerably, because there is a uni
path connectingi and i 8, implying that all resistors are in
series. Therefore the resistanceR( i ; i 8) is equal to the num-
ber of crosslinks connectingi and i 8. Hence we refer to
Theorems~1! and ~2! in Ref. @28# for computing

^R~ i ; i 8!&n5~n22!! (
n52

n
n12nn~n21!

~n2n!!
;

n→`

Anp/2, iÞ i 8.

~3.22!

Obviously, one haŝR( i ,i )&n50. Now Eqs.~3.2! and~3.22!
imply

^h&n5
za2

4d
~n21!! (

n52

n
n2nn~n21!

~n2n!!
. ~3.23!

Combining Eqs.~2.25!, ~2.31! and~3.23!, and expanding the
exponential in Eq.~3.20!, one obtains

^h&5
za2

8dc (
n52

`

(
l 50

`

(
n52

n

~21! l
~2c!n1 lnn1 l 2n22n~n21!

l ! ~n2n!!

5
za2

8dc (
j 52

`

~2c! j (
l 50

j 22

(
n52

j 2 l

~21! l
~ j 2 l ! j 2n22n~n21!

l ! ~ j 2 l 2n!!

5
za2

8dc (
j 52

`

~2c! j (
n52

j
n~n21!

~ j 2n!!

3(
l 50

j 2n

~21! l~ j 2 l ! j 2n22S j 2n
l D . ~3.24!

To sum up this expression in closed form, we note that

(
l 50

m

~21! l~a1m2 l !m22S m
l D

5H a22, for m50

2„a~a11!…21, for m51

0, otherwise

. ~3.25!

For m50 and 1, this is verified by inspection, and form
>2 it is verified by differentiating formula 0.154.5 in Re
0-8
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@29# twice with respect toa. Hence the result of then and l
sums in Eq.~3.24! is equal to 1/j , and we obtain

^h&5
za2

8dc F lnS 1

122cD22cG , for L51 ~3.26!

for the averaged viscosity for all 0,c, 1
2 . The viscosity

exhibits a logarithmic divergence at the critical concentrat
ccrit5

1
2 , corresponding to the critical exponentk50. This is

in accordance with the more general result~3.14! because for
d>6 one hasb515f @7#. The behavior~3.26! of the av-
eraged viscosity is displayed in Fig. 1.

2. Network of polymers: GeneralL

The result~3.26! is readily generalized to networks o
crosslinked polymers, all having the same numberL>1 of
monomers and the same geometric structure. The only
ference is that now there are two different kinds of resist
with magnitudesl 2/a2 and 1, corresponding to intrapolyme
bonds and crosslinks, respectively. Due to the fact that
monomer labelss are distributed independently from th
chain labelsi in the expectation~3.19!, it follows by the
same arguments as above that in the macroscopic limi
polymers are connected within tree clusters$ i e ,i e8%. Thus the
average~3.21! over all possible configurations of cluste
consisting ofn polymers generalizes to

^ f &n5S )
e51

n21
1

L2 (
se ,se851

L D 1

nn22 (Tn

f ~$ i e ,se ; i e8 ,se8%!.

~3.27!

In Eq. ~3.27! the average is taken over equally probable tr
Tn5$ i e ,i e8%e51

n and over independently chosen, equa
probable, monomer labels. Giveni ,i 8PTn , the resistance
R( i ,s; i 8,s8) splits up into two additive contributions; se
also Fig. 2. The first is the crosslink partR( i ; i 8), which is
equal to the number of interpolymer crosslinks, that is re
tors of magnitude one, on the unique path on the treeTn
from i to i 8. Let us denote these crosslinks b

$ i ek
,sek

; i ek
8 ,sek

8 %k51
R( i ,i 8) . The second stems from intrapolym

resistors of magnitudel 2/a2. Thus we write

FIG. 2. Contributions to the total resistance in Eq.~3.28!.
Crosslinks are depicted as zigzag lines, and intrapolymer bond
straight lines.
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R~ i ,s; i 8,s8!5R~ i ,i 8!1
l 2

a2 (
k50

R~ i ,i 8!

Q~sek
8 ,sek11

!,

~3.28!

wherese0
8 ªs, seR( i ,i 8)11

ªs8 and (l 2/a2)Q(s,s8) is the re-

sistance measured between monomers and monomers8 on
the same polymer. It follows that

1

L2 (
s,s851

L K (
k50

R~ i ,i 8!

Q~sek
8 ,sek11

!L
n

5~11^R~ i ,i 8!&n!QL .

~3.29!

The latter holds due to the fact that monomer and polym
labels are distributed independently in the average~3.27!,
and we have introduced the averaged single-polymer re
tance

QLª
1

L2 (
s,s851

L

Q~s,s8!. ~3.30!

Upon inserting Eq.~3.28! into Eq. ~3.2!, these two relations
lead to

^h&n5LS 11
l 2

a2 QLD ^h&nuL511
z l 2

4d
LQL . ~3.31!

Thus the averaged viscosity for generalL>1 follows from
Eqs. ~2.31! and ~3.31!, the averaged viscosity~3.26! of the
corresponding Brownian-particle case, and the relat
Sn51

` ntn51, which is valid for all 0,c, 1
2 . This gives rise

to the exact result

^h&5
za2

8cd
LS 11

l 2

a2 QLD F lnS 1

122cD22cG1
z l 2

4d
LQL

~3.32!

for the averaged viscosity of a crosslinked polymer melt
the sol side. As in the Brownian-particle case, it exhibits
logarithmic divergence at the critical crosslink concentrat
ccrit5

1
2 . The result~3.32! is universal in the sense that th

details of the model only affect the prefactor of the critic
divergence. The prefactor depends on the persistence lenl
and the ‘‘extension’’ of the crosslinksa, as well as on the
numberL of monomers of a polymer and on the geomet
structure of a polymer through the averaged single-polym
resistanceQL . Let us mention three concrete examples
the latter. First, in the special case where the polymers
chain molecules, the averaged single-polymer resistanc
given by QL5L22Ss,s851

L us2s8u5(L221)/(3L). Ac-
cordingly, for long chains, the viscosity is proportional
L2, as it should be within a Rouse-type model@15#. Second,
for ring polymers,QL5(L221)/(6L) is half as large as for
linear chains. Third, for star polymers, one obtainsQL
52(L21)2/L2, which implies a linear growth of̂h& in L
for largeL. In all three cases the scaling of the prefactor w
L in ~3.32! is not altered when passing to the limita↓0 of
hard crosslinks.

as
0-9
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D. Alternative derivation with replicas

In this section we rederive the result~3.26! for the disor-
der average of the viscosity of a network of Brownian p
ticles by means of the replica trick. We consider the me
field distribution of crosslinks, where each crosslink (i ,i 8),
1< i , i 8<N, occurs independently with probability 2c/N.
In many respects this ensemble is equivalent in the ma
scopic limit to the one with a fixed number of crosslink
which underlies~3.26!, and was defined by the expectatio
~3.19! for L51. In particular,ccrit5

1
2 and the expression

~3.20! for the average numbertn of trees of sizen per poly-
mer remain valid, as can be inferred from Theorems V.7
V.5 in Ref. @30#. Additionally, Eq.~3.21! continues to hold,
because the crosslinks are distributed independently and
equal probabilities. Therefore, the averaged viscosity
given by Eq.~3.26! for both ensembles.

In this subsection we focus again on the non-percola
regimec,ccrit5

1
2 . To leading order inN@1 the ensemble

where the crosslinks are distributed with probability 2c/N, is
characterized by the characteristic function

^eTr~GA!&5expH c

N (
i ,i 851

N

eAi ,i1Ai 8,i 82Ai ,i 82Ai 8,i2cNJ
~3.33!

of the connectivity matrixG. HereA denotes an arbitraryN
3N matrix. Note that, contrary to our previous convention
in this subsection we do not include the limitN→` in the
average^•&. The ensemble~3.33! of random matrices is
closely related to that in Ref.@31#, where the density of state
of G was investigated with the replica trick; see also Re
@32# and @33# for recent works devoted to this issue.

The following computation of̂h& with replicas has a lot
in common with that of the density of states in Ref.@31#.
Therefore we have chosen a less detailed exposition in
subsection and only concentrate on the main steps. C
pared to Ref.@31# there is one large difference, however. F
the purpose of̂h& one can solve the resulting saddle-po
equation exactly by analytic means.

The basic quantity in the replica calculation is the av
aged resolvent or Green function

G~V!ª lim
N→`

1

2N K TrS 1

G1V D L
5 lim

N→`

1

2N S K TrS 12E0

G1V D L 1
1

V
^Tr~E0!& D

~3.34!

of G, in terms of which the viscosity~2.19! is written as

lim
N→`

^h&5
za2

d
lim

V→0
S G~V!2 lim

N→`

^Tr~E0!&
2NV D

5
za2

d
lim

V→0
S G~V!2

12c

2V D . ~3.35!
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To obtain the second equality in Eq.~3.35!, we use the fact
that the dimensionality of the null space ofG is equal to the
total number of clusters, and refer to Theorems V.7~ii ! and
V.12 in Ref. @30#. In the following we computeG(V) with
replicas, and show that it has a singular contribution forV
→0 which cancels the second term in Eq.~3.35!. The regular
part of G(V) determines the viscosity.

Introducing the generating function

ZN~V!ªE
RNS )i 51

N
dxi

A2p
D

3expS 2
1

2 (
i ,i 851

N

xixi 8~G i ,i 81Vd i ,i 8!D ,

~3.36!

the resolvent~3.34! is expressed as

G~V!52 lim
N→`

1

N K ] ln ZN~V!

]V L . ~3.37!

Now the standard replica technique is applied to perform
average of the logarithm in Eq.~3.37! via lnZN

5limn→0(ZN
n 21)/n. In so doing we introduce hatted vecto

x̂ª(x1,x2,...,xn) for n-times replicated variables. The
specifyingAi ,i 8ª2( x̂i• x̂i 8)/2 in the characteristic function
~3.33!, we obtain for the disorder average

^@ZN~V!#n&5E
RNnS )i 51

N
dx̂i

~2p!n/2D expS 2
V

2 (
i 51

N

x̂i
2

1
c

N (
i ,i 851

N

e2~ x̂i2 x̂i 8!2
2cND . ~3.38!

Next we introduce a delta-correlated Gaussian random fi
c:Rn→R, with zero mean, which serves to decouple t
double sum over exponentials in the exponent of Eq.~3.38!.
This leads to the functional-integral representation

^@ZN~V!#n&5E Dc exp@2NF~V,n,c!#, ~3.39!

where

F~V,n,c!ªc1
1

2 ERn
dx̂@c~ x̂!#22 lnH E

Rn

dx̂

~2p!n/2 e2V x̂2/2

3expFA2cS 2

p D n/4E
Rn

dŷc~ ŷ!e2~ ŷ2 x̂!2G J .

~3.40!

The saddle-point method is now applied to evalu
Eq. ~3.39! in the limit N→`, yielding

^@ZN(V)#n& ;
N→`

exp@2NF(V,n,c̃)#, where c̃ is the unique
solution of the saddle-point equation
0-10
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d

dc
F~V,n,c!uc5c̃50. ~3.41!

Note that existence and uniqueness ofc̃ are guaranteed
since for crosslink concentrations 0,c, 1

2 it is straightfor-
ward to prove thatF(V,n,c) is strictly convex in the argu-
ment c. For the following it will be more advantageous
work with the Gaussian transform

f~ x̂!ªA2c S 2

p D n/4E
Rn

dŷ c̃~ ŷ!e2~ ŷ2 x̂!2
~3.42!

of the solutionc̃, in terms of which the saddle-point equ
tion ~3.41! is written as

f~ x̂!52c
*Rndŷ e2V ŷ2/21f~ ŷ!e2~ x̂2 ŷ!2/2

*Rndŷ e2V ŷ2/21f~ ŷ!
, ~3.43!

and the resolvent@Eq. ~3.37!# reads

G~V!5 lim
n→0

1

2n

*Rndŷŷ2e2V ŷ2/21f~ ŷ!

*Rndŷ e2V ŷ2/21f~ ŷ!
. ~3.44!

Note that Eq.~3.43! implies the normalization condition

E
Rn

dx̂ f~ x̂!52c~2p!n/2. ~3.45!

In order to compute the viscosity~3.35!, Eqs.~3.43! and
~3.44! have to be solved for smallV after a continuation to
n50. We restrict ourselves to solutionsf of Eq. ~3.43!,
which preserve rotational invariance in replica space
make the replica-symmetric ansatz

f~ x̂!5wn
V~AVux̂u!. ~3.46!

For later purposes the dependence on parameters has
made explicit. Introducingn-dimensional spherical coordi
nates, Eq.~3.44! transforms into

G~V!5 lim
n→0

1

2nV

*0
`dr rn11e2r2/21wn

V
~r!

*0
`dr rn21e2r2/21wn

V
~r!

. ~3.47!

To proceed with Eq.~3.43!, we employ an integral represen
tation of the exponential of then-dimensional Laplacian
More precisely, for any rotationally invariant functionf (u ŷu)
the identity

E
Rn

dŷ

~2pV!n/2 expH 2
1

2V
~ x̂2 ŷ!2J f ~ u ŷu!

5expH V

2 S d2

dr2 1
n21

r

d

dr D J f ~r!U
r5ux̂u

~3.48!

is valid for all nPN, and its application to Eq.~3.43! yields
01151
d

een

wn
V~r!5c~2pV!n/2

3

expH V

2 S d2

dr2 1
n21

r

d

dr D J e2r2/21wn
V

~r!

snE
0

`

dh hn21e2h2/21wn
V

~h!

.

~3.49!

Here snªnpn/2/G(n/211) denotes the surface of the un
sphere inRn. The normalization~3.45! translates to

snE
0

`

drrn21wn
V~r!52c~2pV!n/2. ~3.50!

Observing that limn→0@n*0
`drrn21f (r)#5 f (0) is valid for

any sufficiently quickly decaying functionf, we obtain from
Eqs.~3.49! and ~3.47!

w0
V~r!52ce22c expH V

2 S d2

dr22
1

r

d

dr D J e2r2/21w0
V

~r!

~3.51!

and

G~V!5
1

2V
e22cE

0

`

dr re2r2/21w0
V

~r!, ~3.52!

respectively. Here we made use of

w0
V~0!52c, ~3.53!

which is obtained from Eq.~3.50!. The remaining task is to
computew0

V(r) up to first order inV, which, in turn, deter-
mines theO(1) contribution ofG(V).

To this end we make the expansion

w0
V~r!5w0

0~r!1g~r!V1O~V2!, ~3.54!

insert it into Eq.~3.51!, and equate the zeroth- and first-ord
terms

w0
0~r!52W~22ce22c2r2/2!, ~3.55!

g~r!5$2@12w0
0~r!#%21S d2

dr22
1

r

d

dr Dw0
0~r!.

~3.56!

Here W denotes the principal branch of the Lambe
W-function @34#, which is defined as the real solution of th
transcendental equation

W~x!exp@W~x!#5x, x.21/e. ~3.57!

Moreover, from inserting Eq.~3.54! into Eq. ~3.52!, we ob-
tain the desired expansion

G~V!5
1

4c E0

`

dr rw0
0~r!@V211g~r!#1O~V!.

~3.58!
0-11
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In order to calculate the integrals in Eq.~3.58!, we employ
the relation

dw0
0~r!

dr
52

rw0
0~r!

12w0
0~r!

, ~3.59!

which follows from Eqs.~3.55! and~3.57!. It helps to rewrite
both the first term

rw0
0~r!5

d

dr Fw0
0~r!S 1

2
w0

0~r!21D G ~3.60!

and, in combination with Eq.~3.56!, the second term

rw0
0~r!g~r!52

1

2

d

dr F1

2 S d

dr
w0

0~r! D 2

2 ln@12w0
0~r!#2w0

0~r!G ~3.61!

of the integrand in Eq.~3.58!. In addition, observing the
normalization~3.53! and (dw0

0/dr)(0)50, which also fol-
lows from Eq. ~3.59!, the evaluation of the integral in Eq
~3.58! leads to

G~V!5
12c

2V
2

1

8c
@ ln~122c!12c#1O~V!. ~3.62!

Hence, the singular contributions forV→0 cancel in Eq.
~3.35!, and we end up with the expression

lim
N→`

^h&5
za2

8cd F lnS 1

122cD22cG ~3.63!

for the averaged viscosity, which coincides with the ex
result ~3.26! derived in Sec. III C.

We conclude that the replica trick and the assumption
replica symmetry provide an exact method to perform
disorder average in the random matrix ensemble~3.33! be-
low the critical concentration. This was demonstrated for
viscosity, but we conjecture that it holds more generally, e
for the density of states.

IV. INTERMEDIATE INCOHERENT SCATTERING
FUNCTION

Dynamic density fluctuations in polymer melts are e
coded in the intermediate incoherent scattering funct
~2.11!. The leading long-time behavior of its average^St(q)&
over all crosslink realizations was computed in Ref.@8# for
the ensemble~3.19! of uncorrelated crosslinks, for whic
ccrit5

1
2 . Among others things, it was found that~1! the in-

coherent scattering function decays for all crosslink conc
trations 0,c,ccrit like a stretched exponential

^St~q!& ;
t→`

t21/2exp$2~ t/tq!a% with a5
1

2
, ~4.1!

where tq;q22 is a diffusive time scale;~2! as the gelation
transition is approached the diffusive time scale diverges
01151
t

f
e

e
.

-
n

-

q2tq ;

c↑ccrit

~ccrit2c!2m with m52, ~4.2!

and the effective diffusion constant vanishes linearly,

Deff
21

ª lim
q→0

q2E
0

`

dt^St~q!&5D0
21(

n50

`

n2tn

;

c↑ccrit

~ccrit2c!2y, ~4.3!

wherey51 andD0ª(zL)21 is the bare diffusion constant
and ~3! the incoherent scattering function decays algeb
ically at the critical point

^St~q!& ;
t→`

t2x with x5 1
2 . ~4.4!

The analysis in Ref.@8# relies on the cluster decompositio
~2.27! for St(q) in the form of Eq.~2.31!:

^St~q!&5 (
n50

`

ntn^St~q!&n . ~4.5!

In addition, the plausible assumption has been used tha
long-time asymptotics of̂St(q)& is obtained by inserting the
long-time asymptotics of̂St(q)&n into the right-hand side of
Eq. ~4.5!.

The purpose of this section is twofold. First, for the ca
of uncorrelated crosslinks as in Ref.@8#, we check whether
the corrections to the leading long-time behavior of^St(q)&n
do not influence the leading long-time behavior of^St(q)&,
as assumed in Ref.@8#. This is done in Sec. IV B by
asymptotic evaluations of an upper and a lower bound
^St(q)&, which are constructed in Sec. IV A. Second, in Se
IV C we determine the exponentsa, m, y, and x from the
known critical exponents of random bond percolation
scaling relations. This generalizes the results in Ref.@8# to a
non-mean-field distribution of crosslinks.

A. Upper and lower bound on ŠSt„q…‹

Since the connectivity matrixG is positive semidefinite,
the second exponential in Eq.~2.29! is bounded above by 1
hence

St~q!<(
k51

K
Nk

N
expH 2

q2t

zNkL
J . ~4.6!

For the computation of the crosslink average it is advan
geous to reorder the sum according to Eq.~2.31!:

^St~q!&<Ut~q!ª(
n51

`

ntn expH 2
D0q2t

n J . ~4.7!

A lower bound onSt(q) is obtained by neglecting the
double-exponential contribution in Eq.~2.29!:
0-12
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St~q!>(
k51

K
Nk

N
expH 2

q2t

zNkL
J (

i PNk
(
s51

L
1

NkL

3expH 2
q2a2

d

12E0~Nk!

G~Nk!
~ i ,s; i ,s!J . ~4.8!

Next we apply the Jensen inequality to the right-hand side
Eq. ~4.8! by replacing the normalizedi ands sums over the
exponentials by the exponential of the normalized sums.
gether with Eq.~2.31!, this yields

^St~q!&> (
n51

`

ntn expH 2
D0q2t

n J
3 K expH 2

q2a2

dnL
TrS 12E0

G D J L
n

. ~4.9!

The lower bound is completed by yet another application
the Jensen inequalitŷexp(•)&n>exp(̂ •&n), and the identifica-
tion ~2.26! of the resulting exponent with the viscosity

^St~q!&>Lt~q!ª(
n51

`

ntn expH 2D0q2S t

n
12^h&nD J .

~4.10!

In summary, we have found the chain of inequalities

Lt~q!<^St~q!&<Ut~q!. ~4.11!

B. Uncorrelated crosslinks

It was argued in Ref. @8# that ^St(q)&n

;
t→`

exp$2D0q
2t/n%. This relation follows from Eq.~2.29!. As-

suming that the corrections to this leading behavior do
play a rôle in the cluster decomposition~4.5!, the Kohlrausch
law

^St~q!& ;
t→`

(
n50

`

ntn exp$2D0q2t/n%

;
t→` 1

~8c2D0q2t !1/2exp$22@h~c!D0q2t#1/2%,

~4.12!

0,c<1/2, was found@8# which yields the critical exponent
in Eqs. ~4.1!–~4.4!. Here we introduced the functionh(c)
ª2c212 ln(2c), and observedh(c);(ccrit2c)2 for c↑crit .
In order to derive the second line in Eq.~4.12!, the explicit
form ~3.20! of tn in the case of uncorrelated crosslinks w
used,n! was replaced by its Stirling asymptotics, and t
sum overn by an integral, whose evaluation yielded the r
sult.

In this subsection we want to confirm that the correctio
to the asymptotic behavior of^St(q)&n do not influence the
Kohlrausch law~4.12!. To do so we employ bounds~4.11!.
We also perform a more careful evaluation of the sums o
the cluster sizesn, than the one which was used in Ref.@8# to
01151
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derive the second line in Eq.~4.12!. Details of this calcula-
tion are deferred to the Appendix.

We start with the upper bound~4.7!, which in the notation
~A1! of the Appendix readsUt(q)5F(0, D0q2t). Therefore
we conclude from Eq.~A19! that

lim
q2t→`

Ut~q!

~8c2D0q2t !21/2exp$22@h~c!D0q2t#1/2%
51.

~4.13!

This result also confirms the previously obtained asympto
equality in the second line of Eq.~4.12!.

As to the lower bound~4.10!, we first recall the expres
sion ~3.31! for ^h&n and the inequality^h&nuL51<bAn,
which follows from Eqs.~3.23! and~3.22!, with b.0 being
a finite constant. Again in the notation~A1! of the Appendix,
this yields

Lt~q!>e2B1q2
F~q2B2 ,D0q2t !, ~4.14!

where B1ªD0z l 2LQL /(2d) and B2ªD0bza2L(1
1QLl 2/a2)/(2d). Consequently, Eq.~A20! implies

lim
q2t→`
q6t→0

Lt~q!

~8c2D0q2t !21/2exp$22@h~c!D0q2t#1/2%
>1.

~4.15!

Taken together, Eqs.~4.13! and ~4.15! provide us with the
equality

lim
q2t→`
q6t→0

^St~q!&
~8c2D0q2t !21/2exp$22@h~c!D0q2t#1/2%

51.

~4.16!

In other words, the bounds~4.11! only confirm the previ-
ously obtained Kohlrausch law~4.12!, if one also considers
the limit of small momentum transfer—as may be a reas
able approximation for an experimental low-angle-scatter
situation. Nevertheless, we believe that the stretched ex
nential ~4.12! reflects the true long-time asymptotics
^St(q)& for finite q, as well, and that the lower bound~4.10!
is not sharp enough to reproduce this.

On the other hand the bounds~4.11! are sharp enough to
establish the expression

Deff
215D0

21(
n50

`

n2tn5
1

D0~122c!
~4.17!

for the effective diffusion constantDeff . The first equality
was already stated in Eq.~4.3!. The second follows for 0
,c,1/2 by differentiating the relation 15Sn51

` ntn with
respect to the crosslink concentrationc. Obviously, the result
is in accordance withy51 in Eq. ~4.3!. The linear depen-
dence ofDeff on c is displayed in Fig. 1.
0-13
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C. Scaling description

In this subsection we extend the results of Ref.@8# to the
crosslink statistics generated byd-dimensional random bond
percolation, whose basic properties were recalled in S
III B.

For the case of uncorrelated crosslinks, we saw in R
@8#—and confirmed in Sec. IV B by alternative methods
that the critical exponents~4.1!–~4.4! of the Kohlrausch law
~4.12! do not depend on the numberL of monomers per
polymer. Therefore we restrict ourselves to the caseL51 of
Brownian particles in the following. The results of the la
subsection also motivate us to replace^St(q)&n by its long-
time asymptotics in Eq.~4.5!, that is,

^St~q!& ;
t→`

(
n50

`

ntn exp$2D0q2t/n%. ~4.18!

For t→` this series is expected to be dominated by ter
with largen. Therefore we insert the scaling law~3.6! for tn
in Eq. ~4.18!, and use the fact that the associated sca
function f decays exponentially for largen. Up to a constant
this yields

^St~q!& ;
t→`

(
n50

`

n12t exp$2~ccrit2c!1/sn2D0q2t/n%.

~4.19!

In order to proceed, we replace the sum overn in Eq. ~4.19!
by the integral

E
0

`

dn n12t exp$2~ccrit2c!1/sn2D0q2t/n%, ~4.20!

which should not affect the long-time asymptotics either. U
ing formula 3.471.9 in Ref.@29#, we then express the integra
in Eq. ~4.20! in terms of a Bessel function. Its asymptot
expansion according to formula 8.451.6 in Ref.@29# finally
gives, up to a constant,

^St~q!& ;
t→` ~ccrit2c!~2t25!/~4s!

~D0q2t !~2t23!/4

3exp$22@D0q2~ccrit2c!1/st#1/2% ~4.21!

for c,ccrit . For c5ccrit we conclude

^St~q!& ;
t→` const

~D0q2t !t22 ~4.22!

directly from Eq.~4.20!. Hence we finda5 1
2 for the critical

exponent~4.1!, the same value as was found for uncorrela
crosslinks. In contrast, the exponents defined by relati
~4.2!–~4.4! turn out to be different. More precisely, we ob
tain the scaling relations

m51/s'2.22, ~4.23!

y5~32t!/s'1.82, ~4.24!
01151
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x5t22'0.18. ~4.25!

The approximate numerical values are those for rand
bond percolation in three dimensions@7#. A discussion of
these results in comparison to the experimental data wil
given in Sec. V.

V. CONCLUDING REMARKS

Starting from a Rouse model of a crosslinked polym
melt, we discuss the critical dynamics of the gelation tran
tion with particular emphasis on the static shear viscosity
the long-time behavior of the incoherent scattering functi
Our main result is an exact relation for the critical expone
of the viscosity,

k5f2b, ~5.1!

in terms of the crossover and thermal exponents of perc
tion theory. Two crosslink distributions have been analyz
in detail: one corresponding to a mean-field percolat
model and one corresponding to finite-dimensional perco
tion. For the first distribution we were able to derive th
exact expression~3.32! for the static shear viscosity. Thi
result is valid for all crosslink concentrations 0,c,ccrit
5 1

2 , and exhibits a logarithmic divergence at the critic
crosslink concentrationccrit , that is,k50. The critical expo-
nentk50 also follows from the scaling relation~5.1! when
inserting the mean-field valuesf51, see e.g., Ref.@27#, and
b51. For the second crosslink distribution the scaling re
tion ~5.1! can either be evaluated in terms of thee562d
expansion@27# for f and b, yielding k5e/6111e2/1764
1O(e3). Alternatively, one may insert the numerical valu
of f known from high-precision simulations of random r
sistor networks ind53 dimensions@35#, which, together
with the corresponding value forb giveskud53'0.71.

The experimental values fork are systematically larger
Early experiments by Adamet al. @3# were performed nea
the gelation threshold of polycondensation reactions. For
samples with low molecular weight, data for the viscos
were fitted to a power-law divergence with exponentk
50.860.1. On the other hand, the viscosity data of samp
with high molecular weight could not be fitted to a powe
law divergence. Considerably larger exponent values w
observed in more recent experiments on silica gels and
oxy raisins. Colbyet al. @36# reported values 1.4<k<1.7,
and Martin et al. obtained k51.460.2 from viscoelastic
measurements@37# and k51.560.2 rather indirectly from
measurements of the incoherent scattering function@2#. The
origin of the scatter of the experimental data is not clear
splitting of the static universality class into different dynam
ones has been suggested@3#. Another possible explanation i
the size of the critical region, which is expected to depend
chain length@38#. The observed range of exponent valu
could then be interpreted as a crossover from mean-fiel
critical behavior.

What are the shortcomings of our theory? We have w
ten the average macroscopic viscosity as a weighted sum
0-14
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contributions from individual clusters. Such a decomposit
holds exactly within the Rouse model of a crosslinked m
but is expected to be valid more generally—as long as th
are no interactions between different clusters. Retaining
cluster decomposition, the only unknown is the contribut
of an individual cluster, because the distribution of clust
should indeed be given by percolation theory, and henc
known to high precision. As far as single clusters are c
cerned, we expect that relaxation times are longest for Ro
dynamics. If, for example, we were to use Zimm dynam
together with a preaveraging approximation, we would fi
shorter relaxation times as compared to the Rouse mo
and hence even smaller values ofk. This suggests that th
discrepancy between theory and experiment cannot be cu
if we retain the cluster decomposition. Hydrodynamic int
actions, excluded-volume interactions, and entanglemen
fects all invalidate the cluster decomposition. One expe
entanglement effects to play a vital role in stress relaxa
@15#. However, the static viscosity measures stress relaxa
only on the longest time scales in the sol phase. It was
gued @36,39# that in the regime close to the transition, e
tanglement effects are less important for two reasons: fi
there are almost no permanent entanglements in the sen
interlocking loops; second, the time scale of a tempor
entanglement of two clusters is determined by the sma
cluster, whereas the dynamics on the longest time scale
determined by the larger cluster. From calculations of st
quantities we know that the excluded-volume interaction
essential for the stability of the network in the gel phase@40#.
In the sol phase, on the other hand, the role of the exclud
volume interaction is less transparent. On one hand, the
562d expansion for a gelation model with exclude
volume interactions@41# yields the same critical exponen
as obtained from thee expansion of percolation theory@7#.
On the other hand, the excluded-volume interaction is kno
to be relevant@42# for static and dynamic properties of poly
mer melts and solutions belowd54.

The decay of density fluctuations in silica gels has be
investigated by quasi elastic light scattering@2#. In the sol
phase, a stretched exponential of the autocorrelation was
served,St(q);exp$2(t/tq)

a% with a50.6560.05. The ex-
perimentally determined time scaletq is diffusive and di-
verges as the gelation transition is approachedtq;(ccrit
2c)22.2. The critical behavior of the diffusion constant wa
determined as well and in particular the exponent valuy
51.960.1 was found. At the critical point, the scatterin
experiments reveal an algebraic decay in time ofSt(q) with
an exponentx50.13560.015. All these findings are in qual
tative agreement with our theory. In fact our express
~2.29! for St(q) has been suggested on phenomenolog
grounds as a starting point for the discussion of the crit
dynamics at the sol-gel transition@10#. The exponent values
of mean-field theory, see Eqs.~4.1!–~4.4!, deviate from the
experimental ones, as one would expect. If we use the s
ing description of finite-dimensional percolation, then the e
ponenta of the stretched exponential is unchanged. Its va
a5 1

2 , is characteristic of Rouse dynamics and independ
of cluster statistics. The corrections to the other exponent
in the right direction; see Eqs.~4.23!–~4.25!. However, dis-
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crepancies beyond the experimental error bars remain
are probably due to our neglect of excluded-volume and
drodynamic interactions.

Our approach can be extended to study stress relaxatio
finite frequencies. Within the Rouse model, the dynamics
completely determined by the eigenvalue spectrum of
random connectivity matrixG. For the mean-field distribu-
tion of crosslinks its eigenvalue spectrum can be compu
with the replica trick@31#, so that stress relaxation at finit
frequencies becomes accessible to analytical theory. W
along these lines is in progress.
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APPENDIX: EVALUATION OF THE BOUNDS „4.11…

Here we present some technical details which are nee
in the asymptotic evaluation fort→` of the bounds~4.11!
on the averaged intermediate incoherent scattering func
St(q). The quantity of interest is the series

F~B,T!ª(
n51

`

ntne2T/ne2BAn, ~A1!

where B>0, T.0 and tn5nn22e2nh(c)/(2cn!en) follows
from Eq. ~3.20! with h(c)ª2c212 ln(2c). Now pick a
natural numberP, split the series in two parts given by th
first P21 terms and the terms withn>P, respectively, and
apply the Stirling approximation, Eq.~6.1.58! in Ref. @43#,

n! 5~2p!1/2nn11/2exp$2n1u~n!/~12n!%, ~A2!

0,u(n),1, to the terms withn>P. Thus we infer the ex-
istence of a constant

e21/~12P!<up<1, ~A3!

such that

F~B,T!5RP~B,T!1
uP

2c~2p!1/2 F̃~B,T!, ~A4!

where

RP~B,T!ª (
n51

P21 S ntn2
uP

2c~2p!1/2n3/2e2nh~c!De2T/ne2BAn

~A5!

and

F̃~B,T!ª(
n51

`

n23/2exp$2nh~c!2T/n2BAn%. ~A6!

Note that
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uRP~B,T!u<e2T/~P21! (
n51

P21 Untn2
uPe2nh~c!

2c~2p!1/2n3/2U
~A7!

decays exponentially forT→`, uniformly in B>0.
In order to proceed withF̃(B,T) we use the Fourier rep

resentation

e2a/25E
R
dxeix

e2x2/~2a!

~2pa!1/2, a.0, ~A8!

and arrive at

F̃~B,T!5E
R

dx

~4pD0t !1/2eixE
A~x!

`

dl (
n51

`

e2lne2BAn,

~A9!

whereA(x)ªh(c)1x2/(4T). According to Eq.~11.1.1! in
Ref. @44# the series in Eq.~A9! admits an integral represen
tation such that

F̃~B,T!5
B

4pT1/2E
R
dxeixE

A~x!

`

dlE
0

`

dj
e2B2/~4j!

j3/2~ej1l21!
.

~A10!

After a partial integration with respect tox and the subse
quent changes-of-variableszªx(4T)21/2 and zª(2j)21/2,
Eq. ~A10! reads

F̃~B,T!5
2 i

~pT!1/2ER
dz

e2z2/2

~2p!1/2ER
dz

ze2izAT

ez21h~c,B/z!21
,

~A11!

with h(c,r )ªh(c)1r 2/2. The z-integration can be done
with the help of the residue theorem. To this end we clo
the integration contour with a semicircle in the complex u
per half-plane and remark that the integrand has simple p
zn(B/z)ªzn8(B/z)1 izn9(B/z), nPZ, in this half-plane,
whose real and imaginary parts are given by

zn8~r !ª
sgn~n!

&
$A@h~c,r !#21~2pn!22h~c,r !%1/2,

~A12!

zn9ª
1

&
$A@h~c,r !#21~2pn!21h~c,r !%1/2.

Hence we find

F̃~B,T!5S p

T D 1/2E
R
dz

e2z2/2

~2p!1/2

3@e22@Th~c,B/z!#1/2
12F̃1~B/z,T!#, ~A13!
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where

F̃1~r ,T!ª(
n51

`

e22zn9~r !AT cos@2zn8~r !AT#. ~A14!

Using zn9(r )>zn9(0), we obtain the r-independent uppe
bound

uF̃1~r ,T!u<e22z19~0!AT(
n51

`

e22@zn9~0!2z19~0!#AT

< f e22z19~0!AT. ~A15!

Here f is a uniform constant for allT>T0.0, because
zn9(0).z19(0) for n.1 andzn9(0);n1/2 for n→`. Thus we
conclude from Eqs.~A4!, ~A7!, ~A13!, and~A15! that

lim
T→`

F~0, T!

~8c2T!21/2exp$22@h~c!T#1/2%
5uP ~A16!

holds for allPPN.
For B.0 the inequalityAh(c,r )<Ah(c)1221/2ur u leads

to the lower bound

E
R
dz

e2z2/2

~2p!1/2e22@Th~c,B/z!#1/2

>e22@Th~c!#1/2E
R
dz

e2z2/2

~2p!1/2e2~2B2T!1/2/uzu.

~A17!

This bound, together with the same arguments which led
Eq. ~A16!, now yield

lim
T→`

B2T→0

F~B,T!

~8c2T!21/2exp$22@h~c!T#1/2%
>uP ~A18!

for all PPN. Letting P→`, and observing Eqs.~A3!,
~A16!, and~A18!, respectively, implies

lim
T→`

F~0, T!

~8c2T!21/2exp$22@h~c!T#1/2%
51 ~A19!

and

lim
T→`

B2T→0

F~B,T!

~8c2T!21/2exp$22@h~c!T#1/2%
>1. ~A20!
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