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Critical dynamics of gelation
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Shear relaxation and dynamic density fluctuations are studied within a Rouse model, generalized to include
the effects of permanent random crosslinks. We derive an exact correspondence between the static shear
viscosity and the resistance of a random resistor network. This relation allows us to compute the static shear
viscosity exactly for uncorrelated crosslinks. For more general percolation models, which are amenable to a
scaling description, it yields the scaling relatibs ¢— B for the critical exponent of the shear viscosity. Here
B is the thermal exponent for the gel fraction, ag#ds the crossover exponent of the resistor network. The
results on the shear viscosity are also used in deriving upper and lower bounds on the incoherent scattering
function in the long-time limit, thereby corroborating previous results.
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[. INTRODUCTION quenched, and give rise to structural arrest at sufficiently low
temperatures.

The most prominent critical phenomena at the gelation or In this paper we will concentrate on vulcanization and
vulcanization transition are of dynamic origin; see e.g., Refchemical gelation, both of which are commonly interpreted
[1] for a recent review. Relaxation times in the sol phaseas & percolation transitiofb]. The transition from a fluid
diverge as the gelation transition is approach2lj giving  Phase to an amorphous solid phase happens when a macro-
rise to critical behavior of the transport coefficients: The ef-SCopic cluster of crosslinked polymers has been formed.
fective diffusion constant goes to zero and the static shedfOWever, percolation theory can only account for the geo-

viscosity diverge$3,2], indicating structural arrest of a mac- metric connectivity of the macromolecules, and neither ther-

roscopic fraction of the monomers; see Fig. 1 below for amal fluctuations nor dynamic phenomena are comprised in

graphical illustration of the situation. There are strong pre—the percolation picture. Instead, one should start from a dy-

cursors of the gelation transition in the fluidlike sol phase:rlalmlc model, as is done here. The simplest model, Rouse

The decay of correlations is not exponential, but follows adynamlcs, ignores all interactions except for those which en-

S .~ “sure the connectivity of the clusters. de Genf&swas the
Kohlrausch "'?‘W]- Th|§ indicates a spectrum of relaxation first to estimate the static shear viscosity near the gelation
times extending to arbitrary large values.

o transition. Relating the viscosity(n) of a cluster of masa

_ All these phenomena are reminiscent of the glass transi, e |ongest relaxation time of the cluster, he argued that

tion, so that the gelation transition can be regarded as a Pargn)~R2 scales like the squared linear dimension of the

gon for the latter. However there are important differencesster. The radius of gyration is determined by the mass of

which are best explained in the context of vulcanization. Inthe cluster according tR~n*d, whered;=d—g/v is the

this case the distinction between thermal and quenched de-

grees of freedom is simple and unambiguous: Chemical

crosslinks are quenched, and the monomers equilibrate in a

fixed crosslink configuration. In contrast to this scenario, the

guench in the structural glass by lowering the temperature

does not allow for such a simple classification. Even though

it is generally believed that while decreasing the temperature

at a finite ratew some degrees of freedom are quenched,

namely, those whose relaxation timesre larger than the 1

inverse quench ratesw>1. Nevertheless the identification

of these quenched degrees of freedom is neither simple nor

unique, and some properties of structural glasses do in fact

depend on the rate of quen¢H]. The so-called physical

gelation seems a better candidate to model glassy behavior.

In this case the temperature can be easily adjusted so that the

binding energy for two monomers participating in a crosslink 12 1

is comparable to the thermal energy. Crosslinks form and g, 1. Sketch of some critical quantities for gelation as a func-

break up so that both monomer positions and crosslinkgon of the crosslink concentratianfor a mean-field distribution of

equilibrate. By lowering the temperature crosslinks aregrossiinks. The gelation transition occurscat= 3. The plot dis-
plays the averaged static shear viscos#glid line) according to
Eq. (3.26), the effective diffusion constarilashed ling according

*Deceased12 May 2000. to Eq.(4.17) and the gel fractioridotted ling according to Ref(8].
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Hausdorff-Besicovitch dimension of the fractal, and relatedcrosslink distribution which corresponds to finite-
to the exponent for thg correlation lengttand the gel frac- dimensional percolation, we know the expansion ofk
tion B. Given a scaling ansa}k?] for the numl_)er ofn  =¢/6+11€%/1764+O(€%), or use high-precision simula-
clusters _per polymer, 7,~n""exp{—n/n*}, with n*  tions ind=3 to obtaink|y_3~0.71.
~|p—p¢ ™", one can average over all cluster sizes to ob-  The established correspondence between the random
tain =3, n(n)n7,~|p—pc| %, with k=2v—p. This scal-  polymer network and the random resistor network also turns
ing relation was rederived in many other ways. Itis incorreciot to be useful for a computation of the intermediate inco-
becausg it ignores the mtern_al structure of percolation clusggrent scattering functio,(q). The long-time asymptotics
El_er:s :’VE'Ch ISI n:)ht oglyhde'termfmcl—:‘d Py the (Iaxponqﬁtatn? V. | of Si(q) was discussed in Reffig] for a mean-field distribu-

€ latter ruie the benavior ot CluSters on large spalial SCaley, , of crosslinks. In this paper, we derive upper and lower
whereas the intrinsic self-similar connectivity is character-b . . :
. ! . : ounds onS(q) which put our previous results on a firmer
ized by the spectral dimensio. In contrast to a linear . . .

basis. We furthermore use a scaling analysis to extract the

chain withdg=1, a percolation cluster contains a hierarchyI i toti f link distributi
of branches and possibly loops, giving rise to a valuelof ong-time asymplotics .O.S‘(q). or a crossiink distrioution
which corresponds to finite-dimensional percolation.

>1. Apparently, Cate$9] was the first to notice that the . . .
bp y $9] The paper is organized as follows: In Sec. I, we introduce

relaxation spectrum acquires a Lifshits tail which modifies X : )
the above estimate for the viscositgn) of a single perco- the basic dynamic model of a monodisperse sol of phantom
monomer chains, which are permanently crosslinked by

lation cluster. .
In a different approach, the viscosity at the sol-gel transi-100kean springs chosen at randfil]. We present a formal

tion has been related to the conductivity of a random resistogolution of the dynamic model, and introduce the two ob-
network[10] which is made up of a fractiop of supercon- servables, which we want to discuss: the stress relaxation
ducting and a fraction (% p) of normal conducting bonds. function and the incoherent scattering function. In Sec. lIl,
Approaching the percolation transition from below, the con-we discuss the static shear viscosity. First, the relation be-
ductances~|p—p.| ~® is expected to diverge with an expo- tween our dynamic model and random resistor networks is
nents, which was predicted to be the samekasBefore it  established. Second, we relate the critical exponent of the
was realized that percolation clusters are multifractals, the&iscosity to the exponents arising in a scaling description of
two scaling arguments were considered to give identical rethe crosslink distribution, as exists for finite-dimensional
sults, namely,k=s=2v—g8. If multifractality is treated percolation. Third, we show how to compute the static shear
properly, the two scaling arguments give different resultsviscosity exactly for the case where the crosslinks are dis-
This is most easily seen in two dimensions, where dualitytributed according to mean-field percolation. This result is
[11] implies s= ¢. Here, ¢ is the so-called crossover expo- then rederived using replicas in the last subsection of Sec.
nent, which cannot be expressed throygtand ». It was lll. The intermediate incoherent scattering function is dis-
computed by Harris and Lubensiy2] in the context of cussed in Sec. IV. We first derive exact upper and lower
random resistor networks, where a fraction p of normal  bounds, which are then used to extract the long-time asymp-
conducting bonds was removed. The crossover expogent totics for a mean-field distribution of crosslinks and corrobo-
characterizes the average resistaﬁ¢e)~r¢/” between two rate previous resulfs8]. Some details of this calculation are
connected nodes, which are a distan@part. delegated to the Appendix. In the last part of Sec. IV we
In this paper we concentrate on the fluidlike sol phase otompute critical exponents associated with the long-time as-
a gelling polymer melt. We show that for Rouse dynamicsymptotics of the scattering function for a crosslink distribu-
the exponent of the static shear viscoditis given exactly tion which admits a scaling description—as is the case for
by finite-dimensional percolation. We conclude with some re-
marks and perspectives for future directions in Sec. V. A
k=¢p—pB (1.1)  brief account of our results was given in RET4].

in disagreement witboth the above scaling arguments. The
derivation of the exponerk requires two steps. First, the Il. DYNAMIC MODEL AND ITS SOLUTION
viscosity is expressed in terms of the random connectivity
matrix, which characterizes the connections in the polymer
network. In a second step we prove that bonds between We consider a system oN identical, monodisperse
monomers can be identified with electrical resistors, and usémacromolecular units, each consisting &f monomers.
results from the theory of random graphs to relate matrixThese units may be monomers, dimers, linear chains, or ar-
elements of the connectivity matrix to the resistance betweehitrary branched structures, which may also contain loops. In
two nodesi andj of the corresponding random resistor net-the following these molecular units are called polymers, re-
work. In fact, we consider the derivation of such a correspongardless of their topology or their degree of polymerization
dence as one of the main results of this paper. L. Monomers on polymeri is characterized by its time-
For a mean-field distribution of crosslinks we compute thedependent position vectorR(i,s) (i=1,... N and
static shear viscosity exactly and find a logarithmic diver-s=1, ... L) in d-dimensional space. We suppose that the
gence, in agreement with the general scaling relatid) polymers are subjected to a space- and time-dependent ex-
for mean-field exponents or space dimensionality6. For a  ternal velocity fieldv{*(r). Here Greek indices indicate Car-

A. Dynamic model
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tesian coordinatea=x,y,z, ..., and wewill always con- d
sider a flow field in the* direction, increasing linearly with H=: 2—
rv, ie.,

L
Z r'(i,s;i’,s")R(i,s)-R(i’,s").
(2.6)

HMZ

)= y - . s
vE(r) =G xial”, 21 The connectivity matrixI’ has a deterministic pad )y,

which reflects the internal structure of the polymers, and a

with a time-dependent shear rate. As usual,é,, g denotes  onqom part representing the crosslinks

the Kronecker symbol, i.eg, =1 for =g, and is zero

otherwise. o, a? ’
We employ the simplest, purely relaxational dynamics I(,817,8")= 12 61 T poiy(s,8")
(see, e.g. Chap. 4 in Rdfl5] or Chap. 15.1 in Ref.16])
M
o oH . . o + Zl (5i,ie55,se_ 5i,ié55,sé)
ﬂth(l,S):—Zm‘l'vt[Rt(l,S)]-l—ft(l,S). &=
(2.2 X(‘Si’,ie‘ss',se_ 5i’,ié s',sé)- (2.7)

In the absence of the thermal no'gahe monomers relax to In order to determine the model Completely, it onIy remains
the statedH/dR=0 such that their velocity is equal to the t0 specify the probability distribution of the crosslink con-
externally imposed velocny field. The noigehas zero mean figurations. We shall discuss two different types of probabil-
and covariance & (|,s)§t,(| s')=2¢ 15a’ﬁ5i'i/5s’5,5(t ity distributions P(G): (i) crosslinks are chosen indepen-

—t"), whered(t) is the Diracs function. Here, the overbar dently with equal probability for every pair of monomers,

indicates the average over the realizations of the Gaus,3|aCnOrresDcmOIIng to a mean-field distributifitv, 18, and(ii) a

noise£. The relaxation constant is denoted dyand we use distribution of crosslinks, which generates clusters amenable
energy. units such thaT=1. In Eq.(2.2) the ﬁamiltonian to the scaling description of finite-dimensional percolation.
Hi=Hy+ U consists of two terms. The first one guarantee A precise characterization of these distributions is given be-

the connectivity of each polymer, whose internal structure is
characterized by a connectivity matri¥,,(s;s’): B. Observables
N We shall focus on two observables. First, we aim at a
> 2 Toy(sisHR(,9)-R(i,s"). (2.3  computation of the intrinsic shear stres&” as a function of
=hss'=1 the shear rate,. Following Chap. 3 in Ref[15] or Chap.

) ) . 16.3 in Ref.[16], we express the shear stress in terms of the
We have chosen a harmonic potential to constrain the re'%rce per unit area, exerted by the polymers
tive distance between two monomers on the same polymer
with the typical distance given by the persistence lerigth Po N

>0. As an example fof' ., we mention the special case of ataﬁ: lim — N 2 2 £(i,s) RB(I s). (2.8
linear chains. Their connectivity matrix is explicitly given by tg——o ST

L-1 HereR(i,s) is the solution of the equation of motid@.2)
ool(S:S') = E (8ei—8cr1) Sy iq). (2.8 with some initial conditiorRtO(i,s) at timet; in the di_stant
past. Moreoverp, stands for the polymer concentration, and
F{(i,s):=—dH/IR{(i,s) is the force acting on monoméi
The second part of the Hamiltonian modélspermanently ) at timet. For the simple shear flofEq. (2.1)], a linear
formed crosslinks between randomly chosen pairs of monoresponse relation
mers. The configuration of crosslinks will be denoted dy
={i¢,Seig,SL}0,, i.e., the list of theM crosslinked pairs xy_f dr G
of monomers. The relative distances between any two mono- t=rkrs
mers, participating in a crosslink, are constrained by a har-
monic potential with response functiors;, will be shown to be valid for
arbitrary strengths of the shear ratg. For a time-
g M independent shear ratethe shear stress is also independent
::2— Z [R(ie,Se) —R(iL,s0)1% (2.5  of time, and the intrinsic shear viscosityis then related to
the shear stress via

(2.9

whose strength is controlled by the parameier0. For a M I e

—0 hard crosslinks can be recoverdd]. Since the Hamil- 7(G)=0"I(Kpo) = po fo dt G;. (210
tonian is quadratic in the monomer positions, it can be ex-

pressed in terms of ML X NL connectivity matrixI" accord-  Note that we have made the dependence oh the realiza-
ing to tion G of the crosslinks explicit.
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Second, in the absence of the shear flaw;0, we com-

pute the intermediate incoherent scattering function CiP=Uzq 2 TGl TB 4
')’7
1 N & 2 [t / a, 1B,y
S(@G:= lim S-S S exia [R(,9)-Ro(i.9)T), o7 ) rvae T @as
—14-1

tg——
(211 Multiplying Eq. (2.195 by I', and fixing the initial condition
at timety— —o0, we end up with
with special emphasis on its long-time behavior. Due to iso- .
tropy the scattering function depends only on the modulus lim Fcaﬁ_ f dt'T'Uy, t,)z T
q:=|q| of the wave vector. ty—o» oc
We expect that observables, like the viscosity and the
incoherent scattering function, are self averaging in the madn writing down Eq.(2.16 we have taken advantage of the
roscopic limit, and compute the averages fact that I' is a positive semidefinite matrix, implying
lim,_..U;=Eg, whereE, denotes the orthogonal projector
onto the null space df. Inserting Eq(2.16) into Eq.(2.13),
(m) ::Eg: P(G) n(9) (2.12  we find an expression for the stress tensor

ayhy (2.1

Lttt

_ _ o ofP= ft dt’(i,Gt_t,)E TEITEY (217
and, accordingly{S,(q)) over all crosslink realizations. — dt P

in terms of the time-dependent linear response function
C. Formal solution

The equation of motior(2.2) is linear for the spatially Gt=@Tr((1—E0)exp[ — Z_d;F]) (2.18
homogeneous shear gradig¢@tl), and hence can be solved N {a

e.xactly.. For notational convc?men;:e we mtzodubﬂ.— As a consequence of the simple shear fl@) we have
dimensional vectors such a&{:=(R{"(1,1),...R{(N,L)), ToB_ 5 t -

' =04 pF 04x0pyf,d7 k(7). It follows from definition
whoseNL components are the respective spatial component(sztt

of the position vectorsRy(i,s). The force vectorsF; 10 that the static shear viscosity
= —(d/a®>)I'RY and the noise vector&®, a=x,y,z,... are la® 1-Eq(G)
defined in an analogous manner. Furthermore we use the 7(9)=— f dtG= 2dN TG
abbreviatioth"'Bz Oa,x9p,yk: for the spatial components of
the velocity gradient tensor, which according to E2j1), is s given by the trace of the Moore-Penrose inveisd of T,
spatially homogeneous. i.e., the inverse ol restricted to the subspace of nonzero
Expression2.9) for the stress tensor can be rewritten as eigenvalues.
Next we turn to a computation of the incoherent scattering
a,B pod l a.B function in the absence of the shear flow. In this case we
=—— lim Tr(I'C{"") -
Na tg— — have k=0, and henceTtt, =6,,5- Note thatR—R; is a
Gaussian Markov process whose distribution is characterized

) (2.19

N L . .. N .
_ II\JI_2 2 E ree By(isis), (213 in the limitt,— — by a vanishing mean and the covariance
to— w I=1s=1 2 t dr
lim (R*—RY)(RP—RE) " =—5 drexp — —I
- t 0 t 0 g a,B 0 g_af .
whereC#:=R¥(RP)" is the matrix of second moments of ° (2.20

R, and the superscript® denotes transposition. The

matrix C®# may be calculated from the equatlon of To derive Eq.(2.20, we have used solutio(2.14. Hence
motion (2 2 as follows: Introducing U.(i,s:i’,s’) the scattering function is expressed in terms of the diagonal

=exp{—dt/({2AT(i,si’,8), it is readily verified that matrix elements of thé&lL X NL matrix
._1 td dr
Re=U,_ tOZ Tt“tﬁRﬂJrf dt'u,_ t,E o =7 jo TEXP{_FF]
(2.14 t a’?1-Eq

dt
o 2r]] s

1 N L
S(alg)=Jr 2, 2, e -daldlisiol - (222

(ot d T
is the unique solution of Eq2.2), with initial condition Ry,
prowded thafl't {7 is the solution of the differential equation
PAREN VTtyf with initial condition T¢#=6, 5.
Slnce§t is Gaussmn white noise with zero mean, we obtain

via
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where, again, the dependence on the realizafidras been K
made explicit. Eo(Gli ,s;i’,s’)zgl N_kL‘SM”'Nk‘SNk A (2.30

D. Cluster decomposition

Each crosslink realizationy defines a random labeled ©Of the orthogonal projectdg, onto the null space df. Here

graph, which can be decomposed into its maximal pathwisé/(i) denotes the cluster containing polymer Equation
connected components or clusters (2.30 follows from the fact that the null space df is

spanned by vectors which are constant when restricted to any

0 one cluster. Physically this reflects that there is no force act-
g= N (223 ing on the center of mass of any one cluster. Hence the
k=1 number of zero modes df is equal to the total numbdg of
clusters.
Here NV, denotes thekth cluster withN, polymers out of a For calculating disorder averages it will be advantageous

total of K clusters. The associated connectivity matrix, alsoto reorder the sums in Eq&2.25 and (2.29 by first sum-
called the Kirchhoff matrix or admittance matrix in graph ming over all clusters consisting of a given numbenof
theory (see, e.g., p. 54 in Ref20]), is of block-diagonal polymers, and subsequently summing over all “sizes”

form: Thus we obtain a decomposition of the average
K
I'(G)=PTMN). (2.24 <Ny .
=1 <k21 wak>> =3 nm(hn (23D

Therefore the viscosity2.19 is decomposed into contribu-

ions from different cl r rdin . . .
tions from different clusters according to for an arbitrary real-valued functioh In Eq. (2.31), we in-

K N troduce the average
K
79)= 2 N 7N, (2.25
N K
1/1
where the individual contribution from clustéy; is defined <f>”::7'_n<ﬁk§=:1 ON, f(Nk)> (2.32

by

over all clusters oh polymers, each consisting &f mono-
mers. Furthermore,

a? (1_E0(Nk)>. (2.26

7N =208 T T

In the same way the incoherent scattering function may be

decomposed into contributions from different clusters T“::<%§l 5Nk,n> (2.33
K Nk
Sialg)= 2 7 SalMo), (2.27

represents the average number of clusters ofrsizer poly-
mer. Note that up to now no particular crosslink distribution

where the individual contribution from clustéy; is defined o
has been specified.

by
L

1
SN =T S S expl - o (2.28 lll. SHEAR VISCOSITY
kb 1e Ny

i,s;1,8)}.
ieN s=1 . .
A. Relation to networks of random resistors

Combining Eqgs.(2.27), (2.28, and (2.21), we express the  The viscosity(2.19 of randomly crosslinked polymers

scattering function as can be quite generally related to the resistance of a random
K . electrical network. Thanks to the cluster decomposition
Ny g%t 1 (2.29), it suffices to consider an arbitrary connected cluster
S[(q|g):k§=:1 NPT §NkL] igf ;::1 N,L Ni. To establish this connection we identify a bond between
“ two neighboring monomers on the same polymer as a resis-
q2a?[1—Eq(MNy) tor of magnitudd?/a?, and a crosslink between polymers as
Xexp — d TN a resistor of magnitude 1. The resistance measured between
g any connected pair of verticdgs) and (’,s’) will be de-
t — noted byR(i,s;i’,s"). For an arbitrary connected resistor
X 1—exp{ B @F(Nk)]) (|,s,|,s)], (2.29 network Vi, the laws of Ohm and Kirchhoff leafR1] to a
relation betweerR and the Moore-Penrose inverse of the
where we have used the representation connectivity matrix:
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o 1-Eo(N) . . cubic lattice 79. Nearest-neighbor bonds are present with
R(Misii’,s")= W('vs;"s) probability p:=c/(2d), and absent with probability 2 p.
The bonds are interpreted as crosslinks, while the lattice
1-Bo(WNo) ., ., points are identified with monomers. Here the probabjiity

W(I SRUED is defined such that the average number of crosslinks is given

by M=cN. A percolating cluster first appears at a critical

_s 1-E(Ny) (.si’s). (3. crosslink concentration,;. The fractionQ of lattice points

"N T ' belonging to the infinite network serves as an order param-

eter, and vanishes continuously as the percolation transition
The matrix elements of the projectfig(V;) are all equal to €l Cerit
(N,L)~* according to Eq(2.30. Hence, when summing Eq. iS approachedQ ~ (c—cq)”. The correlation function
(3.1) over all (,s),(i’,s’)eN, the last term on the P(r) is proportional to the probability that two vertices
right-hand side is equal to —2N,L T{Ey(N;)(1  Which belong to the same cluster are a distanepart. As
—Eo(N))/T(N)], and thus vanishes. Using this fact and_the transition is approgched_, correlations.become increas-
definition (2.26) of 5(\}), the viscosity of a clusten; is  Ingly long ranged, as is indicated by a divergence of the

seen to be given by a sum over resistances correlation lengthé:
gaz ClCerit
2 2 o
N)=——— > RWNi,si’s). (3.2 £2:= 2, 12P(r) ~ (Ce—C) 2" (3.3
4dLN i 5 (7" e rezd

Together with Eq(2.25, this constitutes the announced con- At t_he critical point the correlation function shows an alge-
nection between the viscosity of a randomly crosslinked?r&iC decay
polymer melt and a random resistor network. We would like

to emphasize that this connection relies on the special form

(2.19 of the viscosity in the Rouse model.

r—oo
P(r)]c=c,, ~ 174727, (3.9
As far as geometric properties of percolation are concerned,
) o - _ the critical behavior is determined by two independent expo-
The gelatlon and the vulcanization transition were |nter'nents_ Here we choose the expon%bf the correlation
preted as a percolation transition already by Flory and Stockength and the anomalous dimensignThe other exponents

mayer[22-24. Even though the classical theories had to bemay be expressed in terms of those via various scaling rela-
replaced by modern approachds25] built on the analogy tions, such as
to critical phenomena, the percolation picture survived. It is
generally believed that the ensemble of macromolecular
clusters which are built in the process of gelation has the B=
same statistical connectivity as an ensemble of clusters
which are constructed in @dimensional bond percolation It is a well-established fact of the scaling description of per-
process. This identification is supported by experiment, €94 olation that the average number of cl gt f pm P
the measured cluster-size distribution of macromolecules i§~_. g€ number of clusters of aibaeys a
well described by the critical exponents predicted for bonas'c"’Illng law
percolation[5,7].

The most intuitive picture of gelation and vulcanization is

related to continuum percolation, which is expected to be in . . . .
the same universality class as random bond percol&fipn with the scaling functiorf decaying faster than any polyno-

In continuum percolation a set of points is randomly distrib—mlal for large arguments and approaching a nonzero constant

uted ind-dimensional space. The points are assumed to b@r small arguments. The exponentsand 7 are related toy

the centers of spheres with randomly distributed radii. Two"’md v by

points are said to be connected if their spheres overlap. Cor-
respondingly, if a crosslinking agent is added to a dense _ 2d _ 2
=1+ (o .
polymer solution or melt, then we expect that pairs of mono- d+2-7’ v(d+2-17)
mers which are close to each other will be crosslinked with
high probability, provided the reaction is sufficiently fast as  After these preliminaries we turn to the calculation of the
compared to the diffusion time of the polymers. averaged viscosity. For the sake of simplicity we consider
The well-known characteristics of percolation clusterspolymers withL =1, that is, a network of Brownian particles.
will allow us to determine the critical behavior of the shearThis is relevant for random networks of macromolecules
viscosity as given by Eq$2.25 and(2.31). For this purpose which are generated by polycondensation, starting from
we first recall some quantities which are important in thesmall units without internal structure. Relati¢®2) between
scaling theory of percolation; see, e.g., R¢%5]. For defi-  the viscosity of a cluster and the corresponding resistance
niteness we consider bond percolation on dhdimensional  then simplifies to

B. Finite-dimensional percolation: scaling description

(d—2+ 7). (3.5

N| <

To=n""f[(Ccir—C)N7], (3.6

(3.7
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random resistor networks, goverf6,12,21 the growth of
(N = 4d_N2 E RNJi5i"). (3.89)  the resistanceR(r) between two points on the incipient
ki spanning cluster, which are a large spatial distane@art:
R(r)~r?". Referred to as the crossover resistance exponent
[12 27, ¢ is related[7] to the spectral dimension, according
=vd¢[ (2/dg) — 1], whered;=d— B/v is the Hausdorff-
Besmowtch dimension of the incipient spanning cluster.
Again using the scaling assumptiof3.6) and ( 7),|c=c

We remark that the averade),,, which was defined in Eq.
(2.32, is an expectation value over all lattice animals of size,
n, andN 7, refers to the average number of percolation clus
ters of sizen.

We make the basic assumption tiaf),, which, accord- b
ing to Eq.(2.32, only tests clusters of a given finite sihe N> Ed.(3.11) amounts to
does not acquire any irregularity as the critical point is ap-
proached and tha(tr;>n|c:ccm~nb with some yet unknown

exponentb. We will see below in Eq(3.22 that this holds
true withb=1/2 in the special case where the crosslinks are
distributed according to mean-field percolation. Furthermorewhich, upon comparison with Eq(3.9), gives A(b+1)
we remark that this assumption may be circumvented in a=(2— 5)v+ ¢ and, after a little algebra, the relation
more sophisticated approach, as will be explained below.

crit

“ ClCrit

n; nran?* 1 ~ (Co—c)" 277774 (312

Using the properties of the scaling functidnand Eg. b=oc¢=(2/ds)—1. (3.13
(3.7, Egs.(2.25 and(2.3)) yield for the asymptotic behav-
ior of the viscosity Thus we have derived the scaling relation
ClCerit @

(m) ~ nZl N7 77>n|c:ccm~ E n7'nnb k=08 (3.19
for the viscosity exponerk.
cT Cerit As already mentioned, the above scaling assumption is
~ (Ceg—C) A®), (3.9  encoded in a more general scaling relation. In Refg] and
[27] the authors discussed the generating function
with a critical exponentA(b):=3bv(d+2—7)—3v(d—2

+ 7). Thus the remaining task is the derivation of the expo- A2 1
nentb. Z(\,w):={ exp — >\ Trie (3.15
Since the critical behavior of the viscosity is believed not N

to be determined solely by large-scale geometrical proper-
ties, i.e., by the exponentgand », the appearance of a new of the distribution of the resolvent &f. Among other things,

exponent is expected. From E@8.8) and(2.32 the average theYy showed by means of a renormalization-group analysis
over clusters of siza is written in the form up to second order im=6—d the validity of the scaling

relation
K N
@’ |1
(=777 5 2 Onn 2 1 Cert
" 4dn°r, \ N kni,i':l

k=1 Z(\,w) ~ (Ccrit_C)'BZ[(Ccrit_C)7¢)\21(Ccrit_c)llaw]v
(3.1
X Oy Ny Oy AR ')> ' 310 with an appropriate scaling functiaon We use the fact that
the system is translationally invariant and relate the viscosity
which yields to Zvia
ad 2 1 N _ @[ [1-E
EnZZ n27n<77>n:<ﬁ E 5A/<i>,A/<i')R(I;I')> (m="%q r /.,
= . ,
S PN (3.17)
=——Ilm_—— ). )
=( 3 R CIS N A
i"e M)
crc To derive the second equality, we have employed the expan-
crit H
- (Ccrit_ )_(Z_U)V_QS- sion
(3.11) 1 i g,
. o —=——FE+ + , — 1
To obtain the second equality in E¢3.11), we used the lNtio w 0 r Olw), =0 (318

enumeration invariance of the system, and the asymptotic
behavior forc{c,; is obtained from Eq(2.45 in Ref.[12].  in Eq. (3.15. From Eq.(3.17), the result(3.14 is readily
The exponentp, which was first introduced in the context of rederived.
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C. Mean-field percolation: exact results

1

To go beyond scaling arguments and to compute the vis- (f)n= 2 f(T) — < 2 LI - >: W; (7o)
cosity for all crosslink concentrations, we have to resort to ! (3.2
simpler cluster distributions than the one given by bond per-
colation in finite-dimensional space. We only consider theThe last step is understood as follows: The assumption that
simplest distribution which is equivalent to mean-field per-Aj is a tree of sizen fixes the number of vertices and edges
colation, as far as static quantities are concerned. All pairs ah A\, . Hence, due to the independence of the crosslinks in
monomers are equally likely to be crosslinked, and no corgq. (3.19, the number of graphs, which may be realized
relations between crosslinks are taken into account. Morgithin this assumption, depends only on the sizeand all
precisely, for a functiorf depending on the realizatio  trees7, can be proven to occur equally likely as a realization

={ie,Se;ig,SL}M , of the network we define the average by of Ni. Accordingly, the probabilityr, {(N~3K_ 10N, T)

M for a clusterV, of sizen to be realized as the tre® is equal
2-n
fy:= lim ton*".
h N,M o Hl (|\“-)2,e,§e:_1 Se? Note further that the resistance between two vertices
M/N=c i” in a tree simplifies considerably, because there is a unique
X f({ie,Seis,So}). (3.19  path connecting andi’, implying that all resistors are in

series. Therefore the resistarigéi;i’) is equal to the num-
ber of crosslinks connecting andi’. Hence we refer to
The static shear viscosity can be computed exactly for thiTheorems1) and(2) in Ref.[28] for computing
simple distribution, making use of results in the mathemati-
cal literature on random graphs. The calculations are easiest n Nt p(p—1)n—=
for a network of Brownian particles, that is, polymers con-(R(i;i")),=(n—-2)! X, BT TR nm/2, i#i'.
sisting of just one monomer each€1). The generalization =2 ' (3.22
to more complex molecular units with arbitralty—not nec- '
essarily linear—will be shown to be straightforward. It will Obviously, one ha¢R(i,i)),=0. Now Egs.(3.2) and(3.22)
not change the critical behavior as compared to the tase imply
=1.
(a? D onTtp(v—1)
1. Brownian particles: L=1 (m)n= 2d — 4 (n— 1)!;2 BCEDIE (3.23
The statistical properties of clusters generated according
to the above distribution, have been studied extensively ifcombining Eqs(2.29), (2.31) and(3.23, and expanding the
the theory of random graphs, as developed in R&7].  exponential in Eq(3.20, one obtains
Strictly speaking, the ensemble of random graphs considered
in Ref.[17] comprises random labeled graphs consisting of fa® & & - (20)M N2y (p—1)
(M= gae 2y 2 2 (7

T(n—)!

N
N vertices andM =cN edges, and each of th%ﬁ)() possible
graphs is equally likely to occur, i.e., double edges or self-

2> -2 j-I : 0
loops are suppressed. Obviously this ensemble differs from _{a E 2C)j2 E (—1) ( _I)J_ v(v—1)
the one considered in E¢3.19, but one expects both to " 8dcjs = H(G—=1=w!
have the same properties in the macroscopic limit. This may J-
be understood by comparing the numiaxN) of possibili- 2 (2¢)] 2 V(V 1)

ties to realize a self-loop or double edgedmwith the num-
ber O(N?) of possibilities to choose a different monomer.

In the macroscopic limit there are no clusters of macro- g [ J— v
scopic size forr<c.:=3, and all monomers belong to tree X Z (=D'G=1 '
clusters without loops, see Theorelfisl) and (5€) in Ref.

[17]. Moreover, according to Eq2.18) in Ref.[17] one has T sum up this expression in closed form, we note that

(3.29

m

" 3 (~)'(atm-] mz(m
-2 at+m )
™=5cni ——(2ce 9" (3.20 = I
a?, for m=0
for the average number of trees of sizper polymer. Since ={ —(a(a+1))"t, for m=1, (3.2
each clusterVy of sizen=N, is expected to be realized as 0, otherwise

exactly one of then" 2 labeled tree<;, of sizen, one has

%7 0x,.7,= On, ., and the expectatiof2.32 over clusters  For m=0 and 1, this is verified by inspection, and for
of sizen is expressed as an expectation over trees: =2 it is verified by differentiating formula 0.154.5 in Ref.
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(iéK(i,i')’se‘R(i,i'H/)=(i”s,) . . L. |2 RGT
(ie, .58 )=(i5) ° Q\ R(|,s;|f's/):7z(|,|’)+¥ kZo Q(Sg, +Sey, )
. ,//’ =
: o . (3.28
/ [N . { .
*‘///f | O e Ty 4 \ wheres, :=s, s =S’ and (?/a?)Q(o,0') is the re-
™ “ N\p\e\“‘”‘ (i,;R o 8% )\. sistance measured between monomend monomer’ on
N (i’ 5o ) (i) R (")
\U & ¢ the same polymer. It follows that
(ie; 5e, ) L /RGN
1 . , .,
FIG. 2. Contributions to the total resistance in E§.28. 2 > kZO Qse, 1S, ,) | =(L+H(R(,i"))n) Q1
Crosslinks are depicted as zigzag lines, and intrapolymer bonds as ss'=1 - n
straight lines. (3.29

The latter holds due to the fact that monomer and polymer
labels are distributed independently in the aver&ge7),

and we have introduced the averaged single-polymer resis-
tance

[29] twice with respect tax. Hence the result of the and|
sums in Eq(3.24) is equal to 1y, and we obtain

a’
<77>:ﬁ , for L=1 (3.2 1

Q== 2 Qo,0"). (3.30

R P
M1=2c) <€

for the averaged viscosity for all<Oc<%. The viscosity
exhibits a logarithmic divergence at the critical concentratio
Cuit= 73, corresponding to the critical expondat 0. This is

in accordance with the more general re<81t.4) because for 2 12
d=6 one hasB=1= ¢ [7]. The behavior(3.26 of the av- <7]>n=|_( 1+ _ZQL><77>n|L=l+ —LQ . (331
eraged viscosity is displayed in Fig. 1. a 4d

Upon inserting Eq(3.28 into Eq. (3.2), these two relations
ead to

Thus the averaged viscosity for genetat 1 follows from

Egs.(2.3) and (3.3)), the averaged viscosit§8.26 of the
The result(3.26) is readily generalized to networks of corresponding Brownian-particle case, and the relation

crosslinked polymers, all having the same numberl of  3”_ nr,=1, which is valid for all 6<c<3. This gives rise

monomers and the same geometric structure. The only difto the exact result

ference is that now there are two different kinds of resistors

2. Network of polymers: Generdl

with magnituded?/a? and 1, corresponding to intrapolymer la? 2 1 ?
bonds and crosslinks, respectively. Due to the fact that the (m)= ﬁL 1+ ngL In 1—2¢ —2c|+ ELQL
monomer labelss are distributed independently from the (3.32

chain labelsi in the expectation3.19, it follows by the
same arguments as above that in the macroscopic limit afbr the averaged viscosity of a crosslinked polymer melt on
polymers are connected within tree clustfigsi,}. Thusthe the sol side. As in the Brownian-particle case, it exhibits a
average(3.21) over all possible configurations of clusters logarithmic divergence at the critical crosslink concentration
consisting ofn polymers generalizes to Ceit=3. The result(3.32 is universal in the sense that the
details of the model only affect the prefactor of the critical
n-1 L divergence. The prefactor depends on the persistence length
<f>n:< iz 2 )%2 f({ie,Sesil,SLh). and the “extension” of the crosslinka, as well as on the_
e I S 1 L numberL of monomers of a polymer and on the geometric
(3.27 structure of a polymer through the averaged single-polymer
resistanceQ, . Let us mention three concrete examples for

. the latter. First, in the special case where the polymers are
In Eq. (3.27) the average is taken over equally probable treey,ain molecules, the averaged single-polymer resistance is

e .
To={ie,igte—1 and over independently chosen, equallygiven by QLZLJ‘E(L,(,/:1|0—<T'|:(|-2—1)/(3L)- Ac-

e ) ’
probable, monomer labels. Givani’<7,, the resistance cordingly, for long chains, the viscosity is proportional to

R(i,s;i’,s") splits up into two additive contributions; see | > . s
. N : S o L, as it should be within a Rouse-type mofi&b]. Second,
also Fig. 2. The first is the crosslink pari(i;i"), which is for ring polymers,Q, = (L2—1)/(6L) is half as large as for

equal to the number of interpolymer crosslinks, that is resiss

. . linear chains. Third, for star polymers, one obtai@s
tors of magnitude one, on the unique path on the fge _ N2y 2 e . .
from i to i’. Let us denote these crosslinks by 2(L=1)7/L7, which implies a linear growth ofy) in L

] RGN ) for largeL. In all three cases the scaling of the prefactor with
{ie Se ie, Setk=1 - The second stems from intrapolymer | jn (3.3 is not altered when passing to the linait O of
resistors of magnitude/a2. Thus we write hard crosslinks.
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D. Alternative derivation with replicas To obtain the second equality in E(.35, we use the fact
that the dimensionality of the null space Ibfis equal to the
total number of clusters, and refer to Theorems(W)7and
V.12 in Ref.[30]. In the following we computés () with

In this section we rederive the res(®.26) for the disor-
der average of the viscosity of a network of Brownian par-

ticles by means of the replica trick. We consider the mean - ! i &)
field distribution of crosslinks, where each crosslinki (), replicas, and show that it has a singular contribution{or

1<i<i’<N, occurs independently with probabilityc2N. — 0 which cancels the second term in £8.35. The regular

In many respects this ensemble is equivalent in the macrd?@rt of G({2) determines the viscosity.

scopic limit to the one with a fixed number of crosslinks, ~INtroducing the generating function

which underlies(3.26), and was defined by the expectation N

(3.19 for L=1. In particular,c.;=3 and the expression 7 (Q)'_f (H dx )

(3.20 for the average number, of trees of sizen per poly- N )N

mer remain valid, as can be inferred from Theorems V.7 and

V.5 in Ref.[30]. Additionally, Eq.(3.22) continues to hold, 10

because the crosslinks are distributed independently and with xexp — 5 2 XX (L i+ Q60) |,

equal probabilities. Therefore, the averaged viscosity is b

given by Eq.(3.26 for both ensembles. (3.39
In this subsection we focus again on the non-percolating

regimec<cg;= 3. To leading order ifN>1 the ensemble, the resolvent3.34) is expressed as

where the crosslinks are distributed with probabilit/R, is

characterized by the characteristic function G(Q) 1 <3|n ZN(Q)>. (3.37)

=-m {0

N N— o0
c
Tr(I'A) — _ Ai,i+Ai’,i’7Ai,i’7Ai’,i—
(e ) exp| N 2 e cN Now the standard replica technique is applied to perform the
(3.33 average of the logarithm in EQq.3.37 via InZy
=lim,,_,o(Zy—1)/n. In so doing we introduce hatted vectors

of the connectivity matrid’. HereA denotes an arbitrary ~ X=(x",x%... x") for n-times replicated variables. Then
x N matrix. Note that, contrary to our previous conventions,SPeCIfyingA; . :=—(X;-X;:)/2 in the characteristic function
in this subsection we do not include the limit—x in the  (3-33, we obtain for the disorder average
average(s). The ensemblg3.33 of random matrices is N R N
closely related to that in Reff31], where the density of states (2 (Q)]n>:J' I dx; oxd — QE o
of I' was investigated with the replica trick; see also Refs. N rNOL (27r)”32 2 ‘
[32] and[33] for recent works devoted to this issue.

ii'=1

The following computation of ) with replicas has a lot c N I,
in common with that of the density of states in RE$1]. +N > e TN eN|. (3.39
Therefore we have chosen a less detailed exposition in this hi'=1

subsection and only concentrate on the main steps. Com- introd del lated . dom field
pared to Ref[31] there is one large difference, however. ForNeXt we introduce a delta-correlated Gaussian random fie

N ; ;
the purpose of 7 one can solve the resulting saddle-point ¥ —H. with zero mean, which serves to decouple the
equation exactly by analytic means. double sum over exponentials in the exponent of Bd39.

The basic quantity in the replica calculation is the aver-1 NS léads to the functional-integral representation
aged resolvent or Green function

([ZN(Q)]“>=fszexq—NF(Q,n,zp)], (3.39

) 1 1
G(Q)::NIITOC m<Tr r+Q > where
([ 1B\ 1 v ax
—hl'inw ﬁ(<Tr TV >+5<Tf(Eo)>) F(Q,n,l//):=c+Efl{ndx[z//(x)]z—ln[ fﬂn—’_(%r)“ze 012
(3.39

2 n/4 A A 7(A7A)2
Xex;{ \/ZC(;) JRndyw(y)e y “
(3.40

of I', in terms of which the viscosity2.19 is written as

. {a® _ (Tr(Ep)) . . .
lim (77>=Tl|m G(Q)—hmw The saddle-point method is now applied to evaluate
N—o Q-0 N—o Eq. (3.39 in the limt N-—ow, vyielding
la? 1-c e ~ ~ .
=2 lim|G(Q)- =]|. (3.35  ([Zn(Q)]™) ~ exd —NF(Q,n,¢)], where ¢ is the unique
dg o 20 solution of the saddle-point equation
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e(p)=c(2mQ)™?

2 -
oxol Y d_+ui) o022+ 62(p)
2\dp* p dp

s
5—¢F(Q,n,¢)|¢=;,:o. (3.41)

Note that existence and uniquenessyofare guaranteed,
since for crosslink concentrations<@<3 it is straightfor-
ward to prove that ({,n,y) is strictly convex in the argu-
ment . For the following it will be more advantageous to
work with the Gaussian transform (3.49

« Q
SnJ dy " le 7212+ oy (1)
0

Here s,:=n7"4T'(n/2+1) denotes the surface of the unit

n/4
(X):=\2¢c %) J dgﬁp(y)e*@**)z (3.42  sphere inR". The normalization(3.45 translates to
Rn

~ ” 10, N
of the solutiony, in terms of which the saddle-point equa- S"fo dpp" e (p)=2c(270)"2. (3.50
tion (3.41) is written as
Observing that lim_.o[nf5dpp" *f(p)]=1(0) is valid for

A~ _0Ou2 IV (y—n2
Jnd§ @™ Y2 I e Y2 any sufficiently quickly decaying functiofy we obtain from

(%) =2c fRndAy97()92/2+ ) (343 Egs.(3.49 and(3.47)
2
and the resolverltEqg. (3.37)] reads ¢2(p)=2ce Lex 9 d 1 i e P42+ 95 (p)
0 21dp® pdp
o
1 [pedyyPes T2HOW) (3.5
G(Q)—llino 2 [odye B (3.44 and

Note that Eq.3.43 implies the normalization condition G(Q)= Ee_ch dp pe‘Pz’”‘Pg(P), (352
0

S () = 12
ﬁﬁndx¢(x)_20(2”)n ' (349 respectively. Here we made use of

In order to compute the viscosit.35, Egs.(3.43 and ¢0(0)=2c, (3.53

(3.44) have to be solved for smald after a continuation to . _ o .
n=0. We restrict ourselves to solutions of Eq. (3.43, which is obtained from Eq3.50. The remaining task is to

Q . . . .
which preserve rotational invariance in replica space an§°MPuteeq (p) up to first order in), which, in turn, deter-

To this end we make the expansion
a Q a
X)= Q|X]). 3.4
R = o0 (VIR (349 e8(0)=eYp)+a(pO+ 00D, (354
For later purposes the _dependenc_e on parameters has_ befﬁgert it into Eq.(3.51), and equate the zeroth- and first-order
made explicit. Introducingr-dimensional spherical coordi-
. terms
nates, Eq(3.44) transforms into
_9n_ 2
@5(p)=—W(—2ce 27 r72), (3.55

1 fydppnie el

G(€2)= lim Z”Qfgdp pn—le—p2/2+¢f}(p) )

n—0

(3.47

=211 0 -1 dz 1d 0
9(p)={2[1—eo(p) 1} a2 pdp ®o(p).
To proceed with Eq(3.43, we employ an integral represen- (3.5

tation of the exponential of th@-dimensional Laplacian. o
More precisely, for any rotationally invariant functié|y|) ~ Here W denotes the principal branch of the Lambert

the identity W-function[34], which is defined as the real solution of the
transcendental equation
dy N
fRn(ZWQ)nzexp{—m(x—y) ]f(|y|) Wx)exdW(x)]=x, x>—1le. (3.57

Moreover, from inserting Eq3.54) into Eq. (3.52, we ob-
tain the desired expansion

B Q(d®> n-1d .
=exp & d_p2+_p dp (p)
1 0
(348 G(Q)= 7o fo dp ped(p)[Q H+g(p)]+O(Q).
is valid for allne N, and its application to E(q3.43 yields (3.58

011510-11



BRODERIX, LOWE, MULLER, AND ZIPPELIUS PHYSICAL REVIEW E63 011510

In order to calculate the integrals in E@®.58, we employ ¢ Cerit
the relation 0°tq ~ (Ceir—C) # with =2, 4.2)
deo(p) _ peo(p) (359 and the effective diffusion constant vanishes linearly,
dp 1-eo(p)’ ' )
which follows from Eqgs(3.55 and(3.57). It helps to rewrite Di=lim q?| di(S(q))=Dy 1> n?r,
both the first term g—0 7O n=0
0 d 0 1 0 ClCerit

peolp) =g, @olp)| 3 @olp) 1 (3.60 ~ (Ceir—C) 7, (4.3

and, in combination with Eq.3.56), the second term wherey=1 andDy:=({L) ! is the bare diffusion constant;

2 and (3) the incoherent scattering function decays algebra-
%p)a(p)=— 1dflrd %p) ically at the critical point
pealp)9(p 2 dp|21ap PP

t
—In[1—<p8(p)]—<p8(p)} (3.61) (S(q)) ~ t7*  with x=3. (4.4

. . . ) The analysis in Ref8] relies on the cluster decomposition
of the integrand in Eq(3.58. In addition, observing the (2.27 for S(q) in the form of Eq.(2.31):
normalization(3.53 and (d<p8/dp)(0)=0, which also fol-

lows from Eq.(3.59, the evaluation of the integral in Eq.

(3.58 leads to <s[<q>>=§O N7a(SU(A))n - (4.5)

G(Q)=F5 %[In(1—20)+2c]+(9(9). (3.62

In addition, the plausible assumption has been used that the
long-time asymptotics ofS,(q)) is obtained by inserting the
Hence, the singular contributions fét—0 cancel in Eq. long-time asymptotics ofS;(q)), into the right-hand side of
(3.35, and we end up with the expression Eqg. (4.5).
The purpose of this section is twofold. First, for the case
(3.63 of uncorrelated crosslinks as in R¢8], we check whether
the corrections to the leading long-time behaviof 8fq)),,
do not influence the leading long-time behavior(&(q)),
for the averaged viscosity, which coincides with the exactas assumed in Refl8]. This is done in Sec. IVB by
result(3.26) derived in Sec. IlI C. asymptotic evaluations of an upper and a lower bound on
We conclude that the replica trick and the assumption of S(q)), which are constructed in Sec. IV A. Second, in Sec.
replica symmetry provide an exact method to perform thev C we determine the exponentg u, y, andx from the
disorder average in the random matrix ensenmBI&83 be-  known critical exponents of random bond percolation by
low the critical concentration. This was demonstrated for thescaling relations. This generalizes the results in R&ifto a
viscosity, but we conjecture that it holds more generally, e.gnon-mean-field distribution of crosslinks.
for the density of states.

2
lim ()= -—
Nosos 8cd

In —2c

1—20)

A. Upper and lower bound on{S,(q))

IV. INTERMEDIATE INCOHERENT SCATTERING . . . . e
FUNCTION Since the connectivity matriX’ is positive semidefinite,

the second exponential in E@.29 is bounded above by 1;
Dynamic density fluctuations in polymer melts are en-hence
coded in the intermediate incoherent scattering function

(2.13). The leading long-time behavior of its avera@(q)) « Ny q’t ] 6
—exp — . .

over all crosslink realizations was computed in H&f. for St(Q)ﬁZl N INL
the ensemblg3.19 of uncorrelated crosslinks, for which
Cuit=3. Among others things, it was found théi) the in-
coherent scattering function decays for all crosslink concen
trations 0<c<c; like a stretched exponential

For the computation of the crosslink average it is advanta-
geous to reorder the sum according to Ej31):

t—o 1 <U. = i — Dqut 4
(S(@) ~ texp{~ ()7} with a=3, (4.1 (S@)<th(a)= 2, nmyex n[r @D
wheretq~q‘2 is a diffusive time scale{2) as the gelation A lower bound onSi(q) is obtained by neglecting the

transition is approached the diffusive time scale diverges, double-exponential contribution in E(R.29:
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g2t L1
) & En
g%’ 1-Eo(Ny) . y
Tw(I,S,I,S)]. (4.8)

xexp{—

Next we apply the Jensen inequality to the right-hand side of

Eq. (4.8 by replacing the normalizedands sums over the

exponentials by the exponential of the normalized sums. To-

gether with Eq.(2.31), this yields

e 2
(s(@)=3 n, exp[— 2ol t]
n=1 n
242 _
><<exp(—%Tr ! FEO ]> . (4.9

PHYSICAL REVIEW E63 011510

derive the second line in E@¢4.12. Details of this calcula-
tion are deferred to the Appendix.

We start with the upper bour{d.7), which in the notation
(A1) of the Appendix readsf(q)=F (0, Dyg?). Therefore
we conclude from Eq(A19) that

lim ekl =1
i (867Do0’t) rexp{—2[h(c)Dogt]} ™
(413

This result also confirms the previously obtained asymptotic
equality in the second line of E¢4.12.

As to the lower bound4.10), we first recall the expres-
sion (3.31) for (7), and the inequality(7),| —1=<bn,
which follows from Eqs(3.23 and(3.22), with b>0 being
a finite constant. Again in the notatigAl) of the Appendix,
this yields

The lower bound is completed by yet another application of

the Jensen inequaliexp(s),=exp(°),), and the identifica-
tion (2.26) of the resulting exponent with the viscosity

%+2< 77>n) ]
(4.10

In summary, we have found the chain of inequalities

L(q)=<(S(a))<U(a). (4.1

(S[(Q)>>Ct(Q)==zl N7y eXP| —Dog?

B. Uncorrelated crosslinks

It was Ref. [8] that

(S(@))n
t—oo
~ exp{—Dgyg’t/n}. This relation follows from Eq(2.29. As-

argued in

suming that the corrections to this leading behavior do not

play a rde in the cluster decompositid@.5), the Kohlrausch
law

o0
— 0

t
(S(@)) ~ > nr,exp{—Dgg?t/n}

n=0

t—oo 1
~ W/ﬁexp{— 2[h(c)Dogt]"3,

(4.12

0<c=1/2, was found8] which yields the critical exponents
in Egs. (4.1)—(4.4). Here we introduced the function(c)
:=2¢—1—In(2c), and observedh(c)~ (Cqi—€)? for ¢ gt
In order to derive the second line in E@.12, the explicit

form (3.20 of 7, in the case of uncorrelated crosslinks was
used,n! was replaced by its Stirling asymptotics, and the
sum overn by an integral, whose evaluation yielded the re-

sult.

L(q)=e B1%F(q?B,,Do0?t), (4.14

where B;:=Dy/1?LQ, /(2d) and B,:=Dgbla?L(1
+ Q,1%/a%)/(2d). Consequently, EqA20) implies

lim £4a) =1
e _(8¢”Dog’t) "Pexp{—2[h(c)Doq’t]"? ~
q6t~>0

(4.195

Taken together, Eq€4.13 and (4.15 provide us with the
equality

im (S(a)) 1
E (8c®Doq’t) *?exp[—2[h(c)Dog’t]4 ™
q6t~>0

(4.1

In other words, the boundgt.11) only confirm the previ-
ously obtained Kohlrausch lay.12), if one also considers
the limit of small momentum transfer—as may be a reason-
able approximation for an experimental low-angle-scattering
situation. Nevertheless, we believe that the stretched expo-
nential (4.12 reflects the true long-time asymptotics of
(Si(q)) for finite g, as well, and that the lower bourid.10
is not sharp enough to reproduce this.

On the other hand the boun¢4.11) are sharp enough to
establish the expression

©

o 1
D =D, 1;0 n?r,=

bui-ze) 4

for the effective diffusion constariD¢;. The first equality

In this subsection we want to confirm that the correctionsvas already stated in E@4.3). The second follows for O

to the asymptotic behavior dfS,(q)), do not influence the
Kohlrausch law(4.12). To do so we employ boundg.11).

<c<1/2 by differentiating the relation £3,_;n7, with
respect to the crosslink concentratiorObviously, the result

We also perform a more careful evaluation of the sums oveis in accordance witty=1 in Eq. (4.3). The linear depen-

the cluster sizes, than the one which was used in Riéf] to

dence ofDg on c is displayed in Fig. 1.
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C. Scaling description x=7—2~0.18. (4.295

In this subsection we extend the results of R8f.to the
crosslink statistics generated bydimensional random bond The approximate numerical values are those for random
percolation, whose basic properties were recalled in Sedond percolation in three dimensiohg]. A discussion of
[ B. these results in comparison to the experimental data will be
For the case of uncorrelated crosslinks, we saw in Refgiven in Sec. V.
[8]—and confirmed in Sec. IV B by alternative methods—
that the critical exponent&t.1)—(4.4) of the Kohlrausch law
(4.12 do not depend on the numbér of monomers per
polymer. Therefore we restrict ourselves to the dasel of Starting from a Rouse model of a crosslinked polymer
Brownian particles in the following. The results of the last melt, we discuss the critical dynamics of the gelation transi-
subsection also motivate us to repla@&(q)), by its long-  tion with particular emphasis on the static shear viscosity and
time asymptotics in Eq4.5), that is, the long-time behavior of the incoherent scattering function.
Our main result is an exact relation for the critical exponent
of the viscosity,

V. CONCLUDING REMARKS

— 00

t o0
(S(q)) ~ nzo nT,exp—Dog’t/n}.  (4.18
k=p—B, (5.1)

For t—o this series is expected to be dominated by terms
with largen. Therefore we insert the scaling 1d®.6) for 7,

in Eq. (4.18, and use the fact that the associated scalin
functionf decays exponentially for large Up to a constant

in terms of the crossover and thermal exponents of percola-
ion theory. Two crosslink distributions have been analyzed
in detail: one corresponding to a mean-field percolation

this yields model and one corresponding to finite-dimensional percola-
o tion. For the first distribution we were able to derive the
1-7 Uo 2 exact expressiori3.32 for the static shear viscosity. This
~ N~ "exp — (Cqir—C) 77 Nn—Dygt/n}. ; i ) :
(Sa) n§=:0 A= (Con—©) oqt/n} result is valid for all crosslink concentrations<@< C
(4.19 =1, and exhibits a logarithmic divergence at the critical

) crosslink concentration;, that is,k=0. The critical expo-
In order to proceed, we replace the sum ovém Eq.(4.19  npentk=0 also follows from the scaling relatio®.1) when
by the integral inserting the mean-field values=1, see e.g., Ref27], and
. B=1. For the second crosslink distribution the scaling rela-
f dn nt~"exp{ — (Ceir—C) ¥ n—Dyg?t/n}, (4.20  tion (5.1) can either be evaluated in terms of tee:6—d
0 expansion[27] for ¢ and B, yielding k= e/6+ 11€?/1764
+O(€%). Alternatively, one may insert the numerical value
which should not affect the IOng-time asymptotiCS either. US'of ¢ known from high_precision simulations of random re-
ing formula 3.471.9 in Ref29], we then express the integral sjstor networks ind=3 dimensions[35], which, together
in Eq. (4.2() in terms of a Bessel functiqn. Its asymptotic with the corresponding value g8 givesk|y_3~0.71.
expansion according to formula 8.451.6 in Ref9] finally The experimental values fde are systematically larger.
gives, up to a constant, Early experiments by Adaret al. [3] were performed near
the gelation threshold of polycondensation reactions. For the
=% (Cgit—C) samples with low molecular weight, data for the viscosity
(S(@) ~ (Dog?t)27— 374 were fitted to a power-law divergence with exponént
=0.8+0.1. On the other hand, the viscosity data of samples
X exp{ —2[Do0*(Ceir—C)7t1"3 (4.2 with high molecular weight could not be fitted to a power-
law divergence. Considerably larger exponent values were

(27-5)/(40)

for c<cgy. Forc=ceq we conclude observed in more recent experiments on silica gels and ep-
oxy raisins. Colbyet al. [36] reported values 14k<1.7,
t==  const and Martin et al. obtainedk=1.4+0.2 from viscoelastic
(S(a)) ~ (Doq?t)™ 2 (4.22 measurement§37] and k=1.5+0.2 rather indirectly from

measurements of the incoherent scattering fundt&@nThe
directly from Eq.(4.20. Hence we findx=1 for the critical ~ origin of the scatter of the experimental data is not clear. A
exponeni4.1), the same value as was found for uncorrelatedsplitting of the static universality class into different dynamic
crosslinks. In contrast, the exponents defined by relationsnes has been suggesf{&fl Another possible explanation is
(4.2—(4.4) turn out to be different. More precisely, we ob- the size of the critical region, which is expected to depend on

tain the scaling relations chain length[38]. The observed range of exponent values
could then be interpreted as a crossover from mean-field to
u=1lo~2.22, (4.23  critical behavior.
What are the shortcomings of our theory? We have writ-
y=(3—-7)/0~1.82, (4.24  ten the average macroscopic viscosity as a weighted sum of
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contributions from individual clusters. Such a decompositioncrepancies beyond the experimental error bars remain and
holds exactly within the Rouse model of a crosslinked meltare probably due to our neglect of excluded-volume and hy-
but is expected to be valid more generally—as long as therdrodynamic interactions.

are no interactions between different clusters. Retaining the Our approach can be extended to study stress relaxation at
cluster decomposition, the only unknown is the contributionfinite frequencies. Within the Rouse model, the dynamics is
of an individual cluster, because the distribution of clusterscompletely determined by the eigenvalue spectrum of the
should indeed be given by percolation theory, and hence igandom connectivity matriX’. For the mean-field distribu-
known to high precision. As far as single clusters are contion of crosslinks its eigenvalue spectrum can be computed
cerned, we expect that relaxation times are longest for Rous#ith the replica trick[31], so that stress relaxation at finite
dynamics. If, for example, we were to use Zimm dynamicsfrequencies becomes accessible to analytical theory. Work
together with a preaveraging approximation, we would findalong these lines is in progress.

shorter relaxation times as compared to the Rouse model,

and hence even smaller valueslofThis suggests that the ACKNOWLEDGMENTS

discrepancy between theory and experiment cannot be cured,

if we retain the cluster decomposition. Hydrodynamic inter- ~ This work was supported by the DFG through SFB 345.
actions, excluded-volume interactions, and entanglement eK-B. acknowledges financial support by the DFG under
fects all invalidate the cluster decomposition. One expect§rant No. Br 1894/1-1.

entanglement effects to play a vital role in stress relaxation

[15]. However, the static viscosity measures stress relaxation APPENDIX: EVALUATION OF THE BOUNDS (4.11)

only on the longest time scales in the sol phase. It was ar-

gued[36,39 that in the regime close to the transition, en-. > i
tanglement effects are less important for two reasons: firs{ the @symptotic evaluation fdr—o of the bounds4.11)

there are almost no permanent entanglements in the senseqt the averaged.interr_nediate .incoherer.]t scattering function
interlocking loops; second, the time scale of a temporary™(d)- The quantity of interest is the series

Here we present some technical details which are needed

entanglement of two clusters is determined by the smaller -
cluster, whereas the dynamics on the longest time scales is —TIn.—BVn

" . . F(B,T):= nr.e e -V Al
determined by the larger cluster. From calculations of static (B,T) n§=:1 Tn (A1)

guantities we know that the excluded-volume interaction is

essential for the stability of the network in the gel phg&@. where B=0, T>0 and 7,= n”‘ze‘”h(c)/(2cn! e") follows

In the sol phase, on the other hand, the role of the excludedrom Eq. (3.20 with h(c):=2c—1—In(2c). Now pick a
volume interaction is less transparent. On one hand.ethe natural numbeP, split the series in two parts given by the
=6—d expansion for a gelation model with excluded- first P—1 terms and the terms with=P, respectively, and

volume interactiong41] yields the same critical exponents apply the Stirling approximation, E46.1.58 in Ref. [43],
as obtained from the expansion of percolation theofy].

On the other hand, the excluded-volume interaction is known nl=(2m)Yn" 2expg{—n+ 6(n)/(12n)},  (A2)
to be relevanf42] for static and dynamic properties of poly-
mer melts and solutions belod~ 4. 0<d(n)<1, to the terms witm=P. Thus we infer the ex-

The decay of density fluctuations in silica gels has beeristence of a constant
investigated by quasi elastic light scatterifj. In the sol
phase, a stretched exponential of the autocorrelation was ob- e MiPI<y <1, (A3)
served, S;(q) ~exp{—(t/ty)“} with «=0.65+0.05. The ex-
perimentally determined time scatg is diffusive and di- such that
verges as the gelation transition is approachge (ce
—c) %2 The critical behavior of the diffusion constant was Up  ~
determined as well and in particular the exponent value F(B,T)=Rp(B,T)+ WF(B'T)’ (A4)
=1.9+0.1 was found. At the critical point, the scattering
experiments reveal an algebraic decay in tim&gf) with  where
an exponenx=0.135*0.015. All these findings are in quali-

tative agreement with our theory. In fact our expression P-1 Up B
(2.29 for S(q) has been suggested on phenomenological Rp(B,T):= >, nTn—mz—me_“h<°) e T/ng=Bin
grounds as a starting point for the discussion of the critical n=1 c(2m)™n

dynamics at the sol-gel transitiga0]. The exponent values (AS)

of mean-field theory, see Eqgt.1)—(4.4), deviate from the nd

experimental ones, as one would expect. If we use the scaft

ing description of finite-dimensional percolation, then the ex- o

ponenta of the stretched exponential is unchanged. Its value, BE(BT):= n—32exo —nh(c)—T/n—BJnl. (A6
a=1%, is characteristic of Rouse dynamics and independent (B.T) r1§=:1 A (© \/—}' (A8)
of cluster statistics. The corrections to the other exponents go

in the right direction; see Eq$4.23—(4.25. However, dis- Note that
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P-1
|Rp(B,T)|<e TP~V
n=1

upefnh(c) where
NTh— 55 1737
n 2C(27T)l 2n32

(A7) Fy(r,T):= 21 e 22\ Teog 27/ (N\T].  (Al4)

decays exponentially fof — o, uniformly in B=0.
In order to proceed witlr (B, T) we use the Fourier rep- Using z;(r)=2z/(0), we obtain the r-independent upper

resentation bound
e*XZ/(Za) %
—al2_ JX ~ " " "
e Y= fRdxé Zna) ™ a>0, (A8) |F1(r,T)|<e‘221(0>ﬁEl e 202y (0~ Z{(ONT
he
and arrive at P
<fe 2a(ONT, (A15)
~ dx (=
— iX Annp—B
F(B.T) L(4wD0t)”2€ fA(X)d)\nEl € ' Here f is a uniform constant for alllT=T,>0, because

(A9)  Z.(0)>Z/(0) for n>1 andz,(0)~n2for n—c. Thus we

) ) conclude from Eqgs(A4), (A7), (A13), and(A15) that
where A(x) :=h(c) +x?/(4T). According to Eq.(11.1. in

Ref.[44] the series in Eq(A9) admits an integral represen- F(0,T)
tation such that TIinoc (8S2T) Pexd —2[N(O) T3 =up (Al6)
e BI(48)
F(B,T)= —rlzf dxe* f dkf dé—/—sz 22\ holds for allP e N.
T AX) &e 1)° _ _ 1
(A10) I;or|B>O tge mgquallty h(c,r)<+h(c)+27"qr| leads
to the lower boun
After a partial integration with respect toand the subse-
quent changes-of-variables=x(4T) Y2 and {:=(2¢) 12, e %2 "
Eq. (A10) reads d{ ——pe 2TheBO]
R (2m)
5 —i e &2 ZeZizﬁ y 7g2/ -
F(B'T):(wT)l’szdg(Zw)l’sz Z A e’ =~ AThe)] df(ﬁ)ne (287,
All
(A1D) (A17)

with h(c,r):=h(c)+r?/2. The zintegration can be done

with the help of the residue theorem. To this end we closelhis bound, together with the same arguments which led to
the integration contour with a semicircle in the complex up-EQ. (A16), now yield

per half-plane and remark that the integrand has simple poles

2,(BI{):=2(BI{) +iz/(BI{), neZ, in this half-plane, i F(B,T) ~u,  (ALS)
whose real and imaginary parts are given by T (8¢7T) Y2exp{—2[h(c)T]V3 ~ °F
B2T—0
sgn(n) Jih 2 (2am?—h 12
z,(r):= v, ——{JIh(c,n]*+(27n)*—h(c,r)} for all PeN. Letting P—o, and observing Eqs(A3),
(AL2) (A16), and(A18), respectively, implies
1
=—{\[h(c.n 7+ (2an)?+h(c,r)}* i F(0.T) _
V2 lIm ey ey —2ihoT7g L (ALY
Hence we find
and
B 12 -2
F(B,T)= —> d{ >—m F(B,T)
T R (2m) i =
. lIm 7Ty Texp—2ihiom g~ & (A20)
X [e AThEBIOI L 2F, (B/L,T)], (A13) B0
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