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Metastable state dynamics and power law relaxation in a supercooled liquid
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We consider glassy relaxation by using a model for supercooled liquid where the usual set of hydrodynamic
variables is extended to include the presence of very slowly decaying defect densities. The long time limit of
the density correlation function, the nonergodicity parameter, is studied in the vicinity of the dynamic transi-
tion point, and scaling exponents with respect to the distance from the critical point are obtained. In addition
to the usual square root cusp, we also see a linear dependence on distance from transition with respect to the
metastability parameters. We analyze the power law relaxation of the density correlation function at the initial
stage of the dynamics, and obtain an exponent dependent on temperature. Results are compared with data
obtained from light scattering experiments.
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[. INTRODUCTION sideration of the dynamics of the vacancies in a crystal from
a unified hydrodynamic approach was proposed by Martin,
The self-consistent mode-coupliid—3] approximation Parodi, and Pershd8], and was further developed by Cohen

for the memory function is particularly useful in understand-€t al. to describe linear transport in a crysf8l and also an

ing cooperative effects in a dense liquid. It predicts a two@Morphous solid10]. . .
g b g P In the present work we consider the defect mode in a

step relaxation process for glassy dynamics involving a ... ~.~. ; ;
- . . spirit similar to that introduced in Ref§11,12. The mode
power law decay of the dynamic density correlation over oupling contributions to the transport coefficients are ob-

intermediate time scales crossing over to the stret_ched exp§ained from the extended set of hydrodynamic equations, in-
nential behavior in the long time, termed thaelaxation. In ;

. . . cluding the dynamics of the defect mode. The liquidlike state
an extended version of mode coupling thephp, thereisa o jsts up to densities much higher than the critical density,

final exponential relaxation mode of the density correlation,pare simple mode coupling theoCT) will predict a
function, restoring the ergodicity over the longest timeghary transition. In the extended model, instead of a single
scales. The mechanism restoring the ergodicity was obtainegl,namic transition at a critical density, a line of transition is

as a result of coupling of density fluctuations with currents inghtained as a function of the packing fraction and the
a compressible liquid. This final decay mode presumably restrength of the coupling to the defect density. Following Ref.
lates to the presence of defects or free volumes in the amof11] we assume that the defects move in a metastable poten-
phous system. In the present paper we describe an extensigal, and we assume a simple two level model for the defect
of a simple mode coupling formalism with the inclusion of potential. We consider the nonergodicity parameter, which is
the extra slow mode of defect density that develops in thehe long time limit of the density correlation function for the
amorphous state. We consider the coupled dynamics of theupercooled liquid beyond the ideal transition point, and we
defect mode and the density fluctuations with the propeobtain scaling laws corresponding to a different choice of
wave vector dependence. Modeling of a supercooled liquidhermodynamic parameters, very close to the transition. Next
in terms of vacancies was first done in the free volumewe study the dynamics to consider the initial power law re-
theory of Cohen and Grest. The idea of liquidlike and solid-laxation of the density correlation function over an interme-
like clusters was introduced from a phenomenological picdiate time range in the presence of a very slowly decaying
ture of a supercooled liquid, to model the transport phenomeefect mode. Thus the role of the structure of the liquid as
ena in an amorphous systef®]. This mainly involved well as the coupling of the defect mode to the density fluc-
associating some free volume or void with individual units intuations over the so calleg-relaxation regime is probed.
the cluster structure of the liquids. The movement of the fredcrom the solution of the mode coupling equations for the
volumes was considered crucial for transport in the liquid. Adensity correlation function, we obtain the temperature de-
dynamic percolation theory was used to predict that at sompendence and the wave vector dependence of the power law
critical density the transport process is completely frozenexponents of the relaxation.

giving rise to very long relaxation times. In a hydrodynamic  The paper is organized as follows. In Sec. Il we briefly
approach, the transport properties of the isotropic fluid isdescribe the model considered. In Sec. Il we consider pre-
considered through dynamical equations for the conservedictions from the mode coupling equations in the asymptotic
modes which arise as a direct consequence of the micrdimit, and the consequent phase diagram with respect to the
scopic conservation laws in the systdi]. The hydrody- coupling constants. Here we also show the scaling behavior
namic description for crystals as well as liquid crystals in-of the nonergodicity parameter near the transition. In Sec. IV
volved extending the set of slow variables in the system tave obtain solutions to the dynamical equations for the struc-
include Nambu-Goldstone modes due to symmetry breakingure factor in the initial power law regime, and obtain the
The additional slow variable that was introduced was theemperature dependent exponents. We end the paper with a
displacement vector for the different lattice sites. The conshort discussion of the results.
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Il. THE MODEL STUDIED with ny as the particle number density. These results are
obtained with a free energy functional which has a typical

The Laplace transform of the density correlation funct|onEinetic part[16], followed by a “potential” part given by

normalized with respect to its equal time value is represente
in terms of the generalized transport coefficigift],z) as

pmF= | 4% plin(plpo) -1}
z+il'(q,2)

2-0%+izl'(q,2)’

#(a,2)= oY)

1 s o
_ﬁf dxdx’ Sp(x)c(x—x")dp(x")

where Q,=0q/VBmYq) is the characteristic microscopic R

frequency of liquid dynamics, ar®(q) is the static structure + f dxh[n(x)]+Fiq. (6)
factor. In simple mode coupling theoiy(q,z) is expressed

self consistently in terms of slowly decaying density corre-The functionalh[n(x)] corresponds to the defect potential,
lation functions, resulting in a feedback mechanism on thexndF,, is the defect-mass density interaction term. Follow-
transport properties. The enhancement of the transport coeihg Ref.[12] we take this to have a form with the parameters
ficient depends on the strength of the mode coupling contriz, and v characterizing the shape of the potential well in
butions expressed in terms of the structure factor of the ligterms of second and third derivatives, respectively;
U|q. If the Percus_—Yewck sc_>|ut|_on for a hard sphere systemzﬁzhu(g) and v=n3h"(n). The extrema of the potential
with a Verlet-Weiss correction is used for the structure fac- — .= . .
tor, the dynamic transition occurs gt=0.524. This simple °¢cur an=n, such thath’(n)=0. The potential well is
mode coupling model for the supercooled liquid dynamicscharactenzed in terms of two dimensionless paramegtarsl
can be obtained from an analysis of the equations of fluctuX

ating nonlinear hydrodynamics. Here one takes into account 2
the nonlinear equations for the conserved modes, and renor- yEL P rx
malizations of the transport coefficients are computed. These NokgT’ w? '
models were further extenddd3,14,11,12 to include the

extra slow mode of the defect density, to describe the solidwhereng is particle number density. The defect and mass
like nature of the supercooled liquid. In the present work thedensity interaction part of the effective Hamiltoni&,; is
approach in Ref[12] is followed to obtain a coupled set of given as

equations for the dynamics. The defect densi(y?,t) is
taken to be similar to the mass density in its Poisson brackets Fine= Bj dxdx’ sn(x)c(x—x")8p(x"). (8)
[15] with other hydrodynamic variables. The resulting cor-

rections to the transport coefficient are given in terms of the
mode coupling integralgl2]

)

Here we have treated the defect density as if it is similar
to the mass density variabl® is a constant giving the
- strength of the coupling between the defects and the particle
™(q,t) = if dk [V (q,k) (k. t) density. We define a dimensionless quantity
BmJ) (27)3 =Bpon/ngkgT as a measure of this coupling. In the model
considered here, the defect densitys weakly interacting
+VE(Q k) (k) g(a-kb], 2) with the mass densityng). The above resulf,Eq. (2)] re-
duces to the standard res[di7] for the one component sys-
. Rem if the defect density mode is ignored. The presence of a
full wave vector dependence are given by linear term in the mode coupling vertex comes about through
this coupling with a very slowly varying defect correlation
[18]. A wave vector independent schematic model contain-
ing a linear density correlation function term—the so called
+0(u) 3 $12 [19] model—was originally proposed to obtain
M stretched exponential behavior in the long time relaxation of
supercooled liquids. In this formulation of the MCT, the er-
and godicity restoring mechanism that finally takes over for the
final relaxation in the system is ignored. However, even in
the idealized model, instead of a dynamic transition at a criti-
cal density, a line of transition is obtained as a result of the
coupling to the defect density. In Sec. Ill, we will consider

1
v(g,k)= n—o[qu U(g,k)s(k)s(q—k) +g2xnoc(k)s(k)]

1
V(Z)(q,k)=z—no[Uz(q,k)—2qu(q,k)]s(k)s(q—k)

+0(w). 4 the behavior of the nonergodicity parameter in the vicinity of

) o the dynamic transition. In the present formulation we com-

Here the vertex functiok)(q,k) is given by pute the scaling behavior close to the transition in terms of
. . the different parameters for the defect well potential. Finally,
U(g,k)=ng[q-kc(k)+qg-(q—k)c(qg—k)], (5)  we consider a dynamical equation for the density correlation
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function, and compute the exponent of the power law relax- LB L I L L L L L IR
ation. We obtain the dependence of this exporenn the 0.05 — .
density as well as the wave vector. = -

0.03 — —_
IIl. IMPLICATIONS OF THE IDEAL TRANSITION L glass _

The ideal glassy state is characterized by the property thae 901 [ liquid 7
the density correlation function freezes to a nonzero value in B T
the asymptotic limit. We consider model equations in the  -0.01 |- -
long time limit over which the defect correlation is taken as L i
a constant. In order to identify the ideal transition from an
ergodic phase to a nonergodic phase, we consider the nor
zero solution for the density correlation function in this limit
for all g values. We use the definitiopi(q,t—>)=1f(q) as
the nonergodicity parameter. In the long timezes 0 limit,

0.03 — ]

-0.05
0.490 0.505 0.520 0.535 0.550 0.565

Eq. (1) reduces to @ Te
f(q) _f d3k i i
1-f(@) ) (2m)3 0.4 n

X[V (g, k) f(k)+ V(g k(K f(g=K1, (9) i liquid I
where vertices/!) and V() are given by Eqs(3) and (4). R
These set of coupled equations are solved self-consistentl™
for f(q) over aq grid starting from zero, to a maximum
cutoff using numerical integration. A set of critical param-
eters k.,Yc,7.) is identified below in which alf(q)’s con- L
verge to zero valuetergodic phasg and above that critical 01 -
point all f(q)’'s converge to nonzero valugsonergodic = —
phase. The solution off(qg)’s in the nonergodic phase can " . | l . . . l . L
then be used to study the scaling properties of the nonergod 0.51 0.53 0.55

icity parameter. We use the Perkus-Yevick solution, with the
Verlet-Wiess correction for the hard sphere structure factor
in the mode coupling integrals. The wave vector gNd FIG. 1. Phase diagram i@ -« space ay.=0.12, andb) 7-y
=300 and the upper cutoff for integratiodhio=50 was cho-  space ak.=0.0027.

sen. The critical value of the packing fraction that marks the

transition from an ergodic phase to a nonergodic phase is . .
calculated, keeping: andy fixed. The critical points ¥, Square root cusp, even after adding@g¥) correction to the

ke, 7¢) in k-7 phase space are located by fixigg and latter. Figures @) and 2c) show a variation off(q)

; - Ayt —f.(q) with respect to the coupling parametetsandy.
varying » and k, and those iry-z phase space by fixing, c s
and varyingy and 7. The phase diagrams for both cases aré 1€ €<= (k— )/ k¢, and so on. Bothc andy, which are
shown in Figs. (a) and 1b), respectively. The behavior of parameters_ related to _the metastable potential WeI_I for the
the long time limit of the density correlation function or the defect motion, scale amear dependences on the distance
so called nonergodicity parameter was very widely investifrom the transition. This is in contrast to the square root cusp
gated close to the ideal transition point. The set of integraln the samerelative distance from the transitionwith re-
equations(9) was solved for a number of densities in the Spect to the density. This holds within the range for the cor-
nonergodic phase, i.e., densities higher than the correspontesponding e<0.005, beyond which the addition of an
ing critical density 7.=0.525 for x,=0.0021 andy. O(e€?) correction gives a good fftsolid lines in Figs. 2b)
=0.05. Variation off(q)—f.(q) as a function of distance and 2c)]. The contribution from theD(e?) correction is
from the transition point, i.es,=(n— 7;)/7¢, is shown in  ~10-15 %. This linear behavior 6{q) with respect to the
Fig. 2(a) for a wave vector equal to the peak of the staticmetastabilty parameteksandy for the defect density, in the
structure factor. The dashed line shows the fit to a squarsamee range as that oé,,, is a new result from the present
root cusp law, model, to our knowledge. The stability matrix fery, and»
in the extended model for the memory function with the
f(q)=fc(q)+Ah1(q)e},’2, (10 linear term needs to be analyzed in order to ascertain the
relative strength of the different order terms with respect to
while the solid line shows the fit with an exponent dependenthese variables. The numerical results show here that the
on the wave numbag. In the range ok beyond 0.01, the fit linear term dominates in the range considered here with
with the q dependent exponent is better than that for therespect to the variables andy.
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FIG. 3. Variation of the time s,caler(Int)’l as a function of
wave numbeqo for a packing fractionn=0.561.

IV. POWER LAW RELAXATION

In Sec. Ill we studied the long time limit of the density
correlation function. In this section the dynamical behavior
of fluids at the initial stage for time scales larger than that for
the microscopic frequencies are considered. To study the dy-
namic properties we solve the mode coupling equation ob-
tained from Eq.(1) for the supercooled liquid dynamics:

(a1 + To(q)g(a,t) + Qgy(a,t)

+ftdrr(q,t—7)¢(q,7):o. (12)
0

The density correlation functiog/(q,t) is computed as a
solution of the extended mode coupling equatigrifq,t)

was evaluated over a mesh @fvalues for a particular den-
sity. For microscopic time scalets:Q;l, the dynamics is
governed by a bare transport coefficient. The present study is
in the so calledB relaxation regime. Results from mode cou-
pling models as well as experimental studies showed that the
density correlation function shows a power law relaxation. In
the MCT model that we study here, this behavior is valid for
time scales longer than the corresponding microscopic time
scale given by Qqtg) ~*. In Fig. 3 this time scale@,tg) ~*

is plotted as a function of wave vectqgrfor a packing frac-

tion »=0.561. All the calculations in this section correspond
to timesabove(Qqtg) L.

In the extended model that we consider, the density cor-
relation function does not freeze beyond the critical transi-
tion point »=0.525 of the ideal MCT, and fluid remains in

FIG. 2. (a) f(q) (circles as a function of distance from the
transition pointe,, at the peak of the structure factor for critical

parameters;.=0.525,y.=0.05, andk.=0.0021. The dashed line the ergodic phase. The equation for both ideaQ.0y

shows the fit to a square root cusp Igkq. (10)] (see the teyt the o .
solid line shows the fit with an exponent dependent on the wave 0.0) and extended mode coupling models=—0.04y

vector. (b) f(q) (circles as a function of distance from the transi- — 0-12) has been solved at packing fractign 0.561. In the
tion point e, for the same wave vector and critical parameters, addeal case, the system freezes such thaf(@l)'s converge
stated in(a). The solid line shows the linear dependen@.f(q)  tO @ nonzero valuénonergodic phageat this density. In Fig.
(circles as a function of distance from the transition paiptor the ~ 4 we show the evaluation af(q,t) with time (t/o) by a
same wave vector and critical parameters as statég).ifhe solid ~ dotted line for the simple model, while for the extended
line shows the linear dependence. model the solid line shows the behavior fq,t). The unit
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FIG. 4. Decay of the density correlation functigi{q,t) as a FIG. 6. Variation of the exponent as a function of density at

function of timet/ 7, at the wave vector peak of the structure factor the peak of the structure factags, (solid line) and 0.68),,, (dashed

for »=0.561. In the ideal modeldotted lineg, this freezes to a line). The horizontal dash-dotted line corresponds to the tempera-

constant valuéglassy statg while in the present modésolid line)  ture independent exponemt=0.301, as predicted from simple

it decays to a liquidlike state. MCT. Open and filled circles are power law exponents as obtained
from fitting the data from Ref20] at g, and 0.63),,, respectively.

of time is chosen as,=10tg . As seen in Fig. 4, the present Metastability parameters used for obtaining the theoretical curves

model predicts a liquidlikeergodic phaseat densities as (solid and dashed lingsire indicated by points in Fig.(4).

high as7=0.561. The liquidlike behavior is facilitated by

the motion of the defect densities in the metastable potentias seen, with a slow relaxation of the density correlation

well. The change in the shape of the defect's metastabl@nction due to the feedback effects.

potential well as a function of particle density is investigated As discussed earlier, in this model there is not just a

along the critical surface of Figs(d and 1b). In Fig. 5we  single transition point but a series of transition points in the

show the change in the shape of the potential well with thesg-y phase space. To study the relaxation dynamics as a func-

values ofy and«. As the packing fraction increasesy also  tion of density, we solve Eqi11) for (q,t) for 7 values

increases, making the potential well deeper. The barrieyery close to the points along the transition line shown in

height for the defects increases with increasingnd results  Fig. 1(a). The critical parametery and «, related to the

in a trapping of the defects in the potential well over longpotential for the defect density and its coupling to the density

time scales in the nonergodic state. In a way this demonfiuctuations along this line, are used for evaluating the mode

strates that, although the final ergodicity restoring processesoupling integrals. The potential well shapes for the defect

removes this sharp transition, some remnant of this transitiogensity wheray(q,t) is evaluated, in a few cases, are shown

in Fig. 5. From the solution of the mode coupling equation,

we directly obtain the exponemt as a function of packing

fraction 7 fitting to the form,

0BT T T T 1T T T T T [ T T T T [ T T]T1

- . #(a,)="fc(q)+Ch(q)(t/ty) ~® (12

7 whereC is a constant, ang, is the time scale over which the
power law relaxation persists. The density dependence of the
power law exponents calculated from the solution of ex-
tended MCT equations are shown in Fig. 6 for two different
wave vectors, namely, the peak of the static structure factor
4 (ay) (solid line) and at 0.68,, (dashed ling Metastability
- parameters andy, used for obtaining the theoretical curves
s (solid and dashed lingsare indicated by state points in Fig.
1(a). To investigate the agreement of these predictions for
the power law exponents shown in Fig. 6, we fit the light
scattering data reported in Figgaband 3b) of Ref.[20] to

FIG. 5. Variation of the depth of the potential witiin* for ».  EQ-(12), and obtain the exponent. In Fig. 6, we indicate that
0.525(solid line), 0.538 (dashed ling and 0.549(dotted ling. In  the exponents computed from our analysis of the experimen-
the figure, h*(n) represents the dimensionless quantity tal data for different densities at the corresponding wave vec-
h(n)Bend?. tors, show good agreement. In the same figure we also show

0.01

011505-5



SUDHA SRIVASTAVA AND SHANKAR P. DAS PHYSICAL REVIEW E63 011505

1.0 = T T T T OO T T T T T T T T [ T T T T [ T T T T T T 11
N L _
~. ° L ]

. o
.\‘\‘ 5\"’9., - ]
N S, 0.45 — —
~. e - .
. T
09 r “\_ Sa — 1
Sl o = 1
S e o...
= e A B 7]
g T o ©0.40 — -
= | el X L ]
o8F T i ]
0.35 [~ _
0.30 NI RN R I B AN RN AN BN S AR B SR
0.7 . . . . .
0.002 0.005 0.01 0.02 0.05 0.1 0 5 10 15 20 25
qc

(@) ‘

FIG. 8. Variation of the exponerd as a function of the wave
vector qo for a packing fractionp=0.561 and corresponding,
=—0.04 andy.=0.12.

09 rTTTTT] T T TTTT] T T T TTTT

L i (i) The theoretical exponents reported in Fig. 6 are indeed
P | predictions from the model equatioms the densitiesndi-
SN cated in the figure, in terms of the relevant transition point.
Unlike Ref.[21], we do not need to map to another equiva-
N lent densityto account for the discrepancy in the transition
| T e . point that exists between experimental and simple MCT re-
05 e e _ sults.
T, e | (i) fg for a fixed density depend on the metastability pa-
he rameters« andy on the transition surface. Thus variation of

fg with critical parameters follows naturally from the model

vi(g.t)
T
1

equations, and there is no need to adjustfﬁ*n'm any ad hoc

e Lttt L L1 LiFe way to compare with experimental data.
004 0.0 0.1 1

(b) !

V. DISCUSSION

FIG. 7. (a) Normalized intermediate scattering functighiq,t)
vs delay timet in seconds for the data obtained from R&0] at a
peak of the static structure factay,{) for »=0.529(filled circles

In the present work we consider the model proposed by
Yeo [12] using a fluctuating hydrodynamic description for
and 0.542open circleg Dashed lines show the power law fit. NEP the ﬂ.UId to include the defect .denSIMX) reflecting .the
values are obtained witk=0.008 for »=0.529, k= —0.01 for » freezmg of the local structures In the amorphous SO“.d' 'I_'he
=0.542, andy=0.12 for both densitiegb) Normalized intermedi- dynam_lcs of t_he_ defect density is Con_structed, assuming It 1o
ate scattering functiog(q,t) vs delay timet in seconds for the data P€ variable similar to the mass density as far as the micro-
obtained from Ref[20] at 0.63),, for 7=0.554(filled circleg and ~ SCOPIC dynamics is concerned. Following R@f2], we work
0.542 (open circles Dashed lines show the power law fie,=  With an effective Hamiltonian for the system that is compat-
—0.03 andy=0.12 are used for the NEP calculation;at0.554.  ible with the properties of the amorphous solid. Although the

defect densityn(x) field signifies freezing on a local length
the density independent exponent as predicted from simplscale, isotropy is assumed for the system for long length
MCT. The quality of the fit is presented in Figs(ay and  scales.
7(b). The fit atqg,, for two different densities;=0.529(filled The asymptotic behavior for the mode coupling equations
circles and 0.542(open circleg is shown in Fig. 7@ by  are considered to obtain the phase diagrams. Through cou-
dashed lines. The same fit for Ocg3is shown in Fig. ) pling to the defect density, the relaxation time can increase,
for »=0.554 (filled circles and 0.542(open circles We  although the liquid does not freeze into an ideal glassy phase
also consider the wave vector dependence of the expanent even for a much higher packing fraction than the critical
In Fig. 8, we show the exponemt as computed from the value of the transition as predicted from a simple mode cou-
solution of the model equations at=0.561 for different pling model with only density fluctuations. In the generic
wave vectors. The minimum occur at peak of the structurevicinity of the critical surface the NERnonergodicity pa-
factor showing the characteristic slow relaxation at this wavegametey exhibits a square root singularity in the ideal MCT.
vector. Before ending this section, we like to emphasize twdHowever, in the extended model with different vertex func-
points here. tions we focus on a range in the vicinity of the transition
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point that is typically used in experiments to study the be-one of the present authors in R¢23]. However, this will
havior of the NEP. What we show here is that in this rangejmply that _the nonperturbative soluyion. of the MCT equa-
which is quite relevant to the experiments, we do see a lineafons will violate the so-called factorization property, which
behavior with respect to the metastability paramejeesnd ~ demands that the density correlation function completely
x, while at thesamerelative distance from the transition Separates out its wave vector and time dependence—a result
with respect to the density a variable cusp behavior is validthat is even stronger than dynamic scaling. Indeed, if one
Next we turn to a discussion of the behavior of the power€SOrts to adding more and more correction terms, it is still
law exponent. In conventional MCT, the transition occurs af?©SSible to maintain g independent exponent, but we be-
a lower density {,=0.525) than predicted from the experi- 1€V this would mean imposing a strong condition while the
ments (7 =0565E20]) However, this was largely ignored actual model equations indicate a different behavior. The
and comparison between theoretical results with the experf-’resent extenS|on,' in terms of the d?fed 'delnS|ty, thus allows
ment have been done in terms of the “distance” from theMCré parameters in the theory. While this is a phenomeno-
transitione. In the ideal MCT there is a single power law logical approach, it accounts for the temperature dependence

exponent independent of temperature. The numerical sol@:(;ggnﬁov\y;rklevvé i);g/oengﬂéKﬁTthTLCéoer%?Iciicr)Tr];df?gr:qn t?g_
tion to the MCT equations indicate that the single scalingp P P

form fails as we move away from the transition. For this Oneposed model equations—without assuming fgctonzaﬂon
needs to add more and more correction tef2| to the property—do show good agreement with experimental re-
scaling form as the distance from the ideal transition in-SUI:EILSH h lidllik ¢ £ th led liquid
creases. On the other hand, here we have taken a different € amorphous solidlike nature ot the supercooied liquic

approach to the problem. Through the formulation of the'S e;_sentlal for conceiving the presence of dgfect density n
extended model we show that the system can avoid freezin ddition to the usual hydrodynamic modes. Since the transi-

at higher densities than predicted from the ideal MCT. A on points are shifted, one obtains a power law relaxation
. with a density (temperature dependence in the exponent.

power law exponent, which follows, is naturally dependen . .
on density. We have taken the data of R&0] and fitted the Ll'he mode| cpn3|dered in the present wor'k can be extended to
a1ihe a-relaxation regime, where the combined role of the den-

wer law exponent, and thi r well with the theoretical. . . . :
E?ed?ctignsevsg v&ou’I;IiEe tossatlrgessieri that unlﬁ<e teh(; iedg ity fluctuation and the defect fluctuation will be considered.
MCT. with .a temperature independent exponent, dgenot he diffusive mode which restores ergodicity in the super-
' ' H:ooled liquid, final decay can be linked with the motion of

need to adjust the transition point to obtain agreement wit . ! .
y P 9 yacancies or free volumes in the amorphous solids. Thus the

experimental data. Finally we discuss the wave vector depe foct densit d d densit tially beh .
dence of the power law exponent. Analyzing the solutions 01d.e ect densily mode and mass density essentially behave in a
similar way in their asymptotic relaxation regimes.

the MCT equations from our model here for differenval-
ues, we find the exponents of power law relaxation to be
dependent on the wave vector. This shows a good agreement
with data at two different wave vectors. Here we would like  S.S. acknowledges the support of SRF from UGC. S.P.D.
to mention that even solutions of ideal MCT equations willacknowledges the support of the NSF under Project No.
better fit aq dependenexponent, as was demonstrated byINT9615212.
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