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Metastable state dynamics and power law relaxation in a supercooled liquid

Sudha Srivastava and Shankar P. Das
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
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We consider glassy relaxation by using a model for supercooled liquid where the usual set of hydrodynamic
variables is extended to include the presence of very slowly decaying defect densities. The long time limit of
the density correlation function, the nonergodicity parameter, is studied in the vicinity of the dynamic transi-
tion point, and scaling exponents with respect to the distance from the critical point are obtained. In addition
to the usual square root cusp, we also see a linear dependence on distance from transition with respect to the
metastability parameters. We analyze the power law relaxation of the density correlation function at the initial
stage of the dynamics, and obtain an exponent dependent on temperature. Results are compared with data
obtained from light scattering experiments.

DOI: 10.1103/PhysRevE.63.011505 PACS number~s!: 64.70.Pf, 64.60.Cn
d
w

e
xp

io
e

in
in
re
o
s

of
th
t

pe
u
m
id
ic
m

in
re
. A
m

en
ic
i

ve
cr

in
t

in
th
on

om
tin,
n

a

b-
in-

ate
ity,

gle
is
he
ef.
ten-
ect
h is
e
we
of
ext

re-
e-
ing
as
c-

.
he
de-
law

fly
re-
tic
the
vior
. IV
uc-
e

ith a
I. INTRODUCTION

The self-consistent mode-coupling@1–3# approximation
for the memory function is particularly useful in understan
ing cooperative effects in a dense liquid. It predicts a t
step relaxation process for glassy dynamics involving
power law decay of the dynamic density correlation ov
intermediate time scales crossing over to the stretched e
nential behavior in the long time, termed thea relaxation. In
an extended version of mode coupling theory@4,5#, there is a
final exponential relaxation mode of the density correlat
function, restoring the ergodicity over the longest tim
scales. The mechanism restoring the ergodicity was obta
as a result of coupling of density fluctuations with currents
a compressible liquid. This final decay mode presumably
lates to the presence of defects or free volumes in the am
phous system. In the present paper we describe an exten
of a simple mode coupling formalism with the inclusion
the extra slow mode of defect density that develops in
amorphous state. We consider the coupled dynamics of
defect mode and the density fluctuations with the pro
wave vector dependence. Modeling of a supercooled liq
in terms of vacancies was first done in the free volu
theory of Cohen and Grest. The idea of liquidlike and sol
like clusters was introduced from a phenomenological p
ture of a supercooled liquid, to model the transport pheno
ena in an amorphous system@6#. This mainly involved
associating some free volume or void with individual units
the cluster structure of the liquids. The movement of the f
volumes was considered crucial for transport in the liquid
dynamic percolation theory was used to predict that at so
critical density the transport process is completely froz
giving rise to very long relaxation times. In a hydrodynam
approach, the transport properties of the isotropic fluid
considered through dynamical equations for the conser
modes which arise as a direct consequence of the mi
scopic conservation laws in the system@7#. The hydrody-
namic description for crystals as well as liquid crystals
volved extending the set of slow variables in the system
include Nambu-Goldstone modes due to symmetry break
The additional slow variable that was introduced was
displacement vector for the different lattice sites. The c
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sideration of the dynamics of the vacancies in a crystal fr
a unified hydrodynamic approach was proposed by Mar
Parodi, and Pershan@8#, and was further developed by Cohe
et al. to describe linear transport in a crystal@9# and also an
amorphous solid@10#.

In the present work we consider the defect mode in
spirit similar to that introduced in Refs.@11,12#. The mode
coupling contributions to the transport coefficients are o
tained from the extended set of hydrodynamic equations,
cluding the dynamics of the defect mode. The liquidlike st
persists up to densities much higher than the critical dens
where simple mode coupling theory~MCT! will predict a
sharp transition. In the extended model, instead of a sin
dynamic transition at a critical density, a line of transition
obtained as a function of the packing fraction and t
strength of the coupling to the defect density. Following R
@11# we assume that the defects move in a metastable po
tial, and we assume a simple two level model for the def
potential. We consider the nonergodicity parameter, whic
the long time limit of the density correlation function for th
supercooled liquid beyond the ideal transition point, and
obtain scaling laws corresponding to a different choice
thermodynamic parameters, very close to the transition. N
we study the dynamics to consider the initial power law
laxation of the density correlation function over an interm
diate time range in the presence of a very slowly decay
defect mode. Thus the role of the structure of the liquid
well as the coupling of the defect mode to the density flu
tuations over the so calledb-relaxation regime is probed
From the solution of the mode coupling equations for t
density correlation function, we obtain the temperature
pendence and the wave vector dependence of the power
exponents of the relaxation.

The paper is organized as follows. In Sec. II we brie
describe the model considered. In Sec. III we consider p
dictions from the mode coupling equations in the asympto
limit, and the consequent phase diagram with respect to
coupling constants. Here we also show the scaling beha
of the nonergodicity parameter near the transition. In Sec
we obtain solutions to the dynamical equations for the str
ture factor in the initial power law regime, and obtain th
temperature dependent exponents. We end the paper w
short discussion of the results.
©2000 The American Physical Society05-1
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II. THE MODEL STUDIED

The Laplace transform of the density correlation functi
normalized with respect to its equal time value is represen
in terms of the generalized transport coefficientG(q,z) as

c~q,z!5
z1 iG~q,z!

z22Vq
21 izG~q,z!

, ~1!

where Vq5q/AbmS(q) is the characteristic microscopi
frequency of liquid dynamics, andS(q) is the static structure
factor. In simple mode coupling theoryG(q,z) is expressed
self consistently in terms of slowly decaying density cor
lation functions, resulting in a feedback mechanism on
transport properties. The enhancement of the transport c
ficient depends on the strength of the mode coupling con
butions expressed in terms of the structure factor of the
uid. If the Percus-Yevick solution for a hard sphere syst
with a Verlet-Weiss correction is used for the structure f
tor, the dynamic transition occurs ath50.524. This simple
mode coupling model for the supercooled liquid dynam
can be obtained from an analysis of the equations of flu
ating nonlinear hydrodynamics. Here one takes into acco
the nonlinear equations for the conserved modes, and re
malizations of the transport coefficients are computed. Th
models were further extended@13,14,11,12# to include the
extra slow mode of the defect density, to describe the so
like nature of the supercooled liquid. In the present work
approach in Ref.@12# is followed to obtain a coupled set o
equations for the dynamics. The defect densityn(xW ,t) is
taken to be similar to the mass density in its Poisson brac
@15# with other hydrodynamic variables. The resulting co
rections to the transport coefficient are given in terms of
mode coupling integrals@12#

Gmc~q,t !5
1

bmE dkW

~2p!3
@V(1)~q,k!c~k,t !

1V(2)~q,k!c~k,t !c~q2k,t !#, ~2!

where the mode coupling vertices as obtained by Yeo w
full wave vector dependence are given by

V(1)~q,k!5
1

n0
@2yqU~q,k!s~k!s~q2k!1q2kn0c~k!s~k!#

1O~m! ~3!

and

V(2)~q,k!5
1

2n0
@U2~q,k!22yqU~q,k!#s~k!s~q2k!

1O~m!. ~4!

Here the vertex functionU(q,k) is given by

U~q,k!5n0@ q̂•kc~k!1q̂•~q2k!c~q2k!#, ~5!
01150
d

-
e
ef-
i-
-

-

s
-

nt
or-
se

-
e

ts
-
e

h

with n0 as the particle number density. These results
obtained with a free energy functional which has a typi
kinetic part@16#, followed by a ‘‘potential’’ part given by

bmF5E dxW r$ ln~r/r0!21%

2
1

2mE dxW dxW8 dr~x!c~x2x8!dr~x8!

1E dxW h@n~x!#1F int . ~6!

The functionalh@n(x)# corresponds to the defect potentia
andF int is the defect-mass density interaction term. Follo
ing Ref.@12# we take this to have a form with the paramete
m and n characterizing the shape of the potential well
terms of second and third derivatives, respectively;m

5n̄2h9(n̄) and n5n̄3h-(n̄). The extrema of the potentia
occur atn5n̄, such thath8(n̄)50. The potential well is
characterized in terms of two dimensionless parametersy and
k,

y[
n

n0kBT
, k[

n2x

m2
, ~7!

where n0 is particle number density. The defect and ma
density interaction part of the effective HamiltonianF int is
given as

F int5BE dxW dxW8dn~x!c~x2x8!dr~x8!. ~8!

Here we have treated the defect density as if it is sim
to the mass density variable.B is a constant giving the
strength of the coupling between the defects and the par
density. We define a dimensionless quantityx
5Br0n̄/n0kBT as a measure of this coupling. In the mod
considered here, the defect densityn is weakly interacting
with the mass density (n0). The above result,@Eq. ~2!# re-
duces to the standard result@17# for the one component sys
tem if the defect density mode is ignored. The presence
linear term in the mode coupling vertex comes about throu
this coupling with a very slowly varying defect correlatio
@18#. A wave vector independent schematic model conta
ing a linear density correlation function term—the so call
f12 @19# model—was originally proposed to obtai
stretched exponential behavior in the long time relaxation
supercooled liquids. In this formulation of the MCT, the e
godicity restoring mechanism that finally takes over for t
final relaxation in the system is ignored. However, even
the idealized model, instead of a dynamic transition at a c
cal density, a line of transition is obtained as a result of
coupling to the defect density. In Sec. III, we will consid
the behavior of the nonergodicity parameter in the vicinity
the dynamic transition. In the present formulation we co
pute the scaling behavior close to the transition in terms
the different parameters for the defect well potential. Fina
we consider a dynamical equation for the density correlat
5-2
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METASTABLE STATE DYNAMICS AND POWER LAW . . . PHYSICAL REVIEW E63 011505
function, and compute the exponent of the power law rel
ation. We obtain the dependence of this exponenta on the
density as well as the wave vector.

III. IMPLICATIONS OF THE IDEAL TRANSITION

The ideal glassy state is characterized by the property
the density correlation function freezes to a nonzero valu
the asymptotic limit. We consider model equations in t
long time limit over which the defect correlation is taken
a constant. In order to identify the ideal transition from
ergodic phase to a nonergodic phase, we consider the
zero solution for the density correlation function in this lim
for all q values. We use the definitionc(q,t→`)5 f (q) as
the nonergodicity parameter. In the long time orz→0 limit,
Eq. ~1! reduces to

f ~q!

12 f ~q!
5E d3k

~2p!3

3@V(1)~q,k! f ~k!1V(2)~q,k! f ~k! f ~q2k!#, ~9!

where verticesV(1) and V(2) are given by Eqs.~3! and ~4!.
These set of coupled equations are solved self-consiste
for f (q) over a q grid starting from zero, to a maximum
cutoff using numerical integration. A set of critical param
eters (kc ,yc ,hc) is identified below in which allf (q)’s con-
verge to zero values~ergodic phase!, and above that critica
point all f (q)’s converge to nonzero values~nonergodic
phase!. The solution off (q)’s in the nonergodic phase ca
then be used to study the scaling properties of the noner
icity parameter. We use the Perkus-Yevick solution, with
Verlet-Wiess correction for the hard sphere structure fac
in the mode coupling integrals. The wave vector gridN
5300 and the upper cutoff for integrationLs550 was cho-
sen. The critical value of the packing fraction that marks
transition from an ergodic phase to a nonergodic phas
calculated, keepingk and y fixed. The critical points (yc ,
kc , hc) in k-h phase space are located by fixingyc and
varying h andk, and those iny-h phase space by fixingkc
and varyingy andh. The phase diagrams for both cases
shown in Figs. 1~a! and 1~b!, respectively. The behavior o
the long time limit of the density correlation function or th
so called nonergodicity parameter was very widely inve
gated close to the ideal transition point. The set of integ
equations~9! was solved for a number of densities in th
nonergodic phase, i.e., densities higher than the corresp
ing critical density hc50.525 for kc50.0021 and yc
50.05. Variation off (q)2 f c(q) as a function of distance
from the transition point, i.e.,eh5(h2hc)/hc , is shown in
Fig. 2~a! for a wave vector equal to the peak of the sta
structure factor. The dashed line shows the fit to a squ
root cusp law,

f ~q!5 f c~q!1Ah1~q!eh
1/2, ~10!

while the solid line shows the fit with an exponent depend
on the wave numberq. In the range ofe beyond 0.01, the fit
with the q dependent exponent is better than that for
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square root cusp, even after adding anO(e) correction to the
latter. Figures 2~b! and 2~c! show a variation of f (q)
2 f c(q) with respect to the coupling parametersk and y.
Here ek5(k2kc)/kc , and so on. Bothk andy, which are
parameters related to the metastable potential well for
defect motion, scale aslinear dependences on the distan
from the transition. This is in contrast to the square root cu
in the samerelative distance from the transitione with re-
spect to the density. This holds within the range for the c
responding e<0.005, beyond which the addition of a
O(e2) correction gives a good fit@solid lines in Figs. 2~b!
and 2~c!#. The contribution from theO(e2) correction is
'10–15 %. This linear behavior off (q) with respect to the
metastabilty parametersk andy for the defect density, in the
samee range as that ofeh , is a new result from the presen
model, to our knowledge. The stability matrix fork, y, andh
in the extended model for the memory function with t
linear term needs to be analyzed in order to ascertain
relative strength of the different order terms with respect
these variables. The numerical results show here that
linear term dominates in thee range considered here wit
respect to the variablesk andy.

FIG. 1. Phase diagram in~a! h-k space atyc50.12, and~b! h-y
space atkc50.0027.
5-3
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SUDHA SRIVASTAVA AND SHANKAR P. DAS PHYSICAL REVIEW E63 011505
FIG. 2. ~a! f (q) ~circles! as a function of distance from th
transition pointeh at the peak of the structure factor for critic
parametershc50.525,yc50.05, andkc50.0021. The dashed line
shows the fit to a square root cusp law@Eq. ~10!# ~see the text!; the
solid line shows the fit with an exponent dependent on the w
vector.~b! f (q) ~circles! as a function of distance from the trans
tion point ek for the same wave vector and critical parameters,
stated in~a!. The solid line shows the linear dependence.~c! f (q)
~circles! as a function of distance from the transition pointey for the
same wave vector and critical parameters as stated in~a!. The solid
line shows the linear dependence.
01150
IV. POWER LAW RELAXATION

In Sec. III we studied the long time limit of the densit
correlation function. In this section the dynamical behav
of fluids at the initial stage for time scales larger than that
the microscopic frequencies are considered. To study the
namic properties we solve the mode coupling equation
tained from Eq.~1! for the supercooled liquid dynamics:

c̈~q,t !1G0~q!ċ~q,t !1Vq
2c~q,t !

1E
0

t

dt G~q,t2t!ċ~q,t!50. ~11!

The density correlation functionc(q,t) is computed as a
solution of the extended mode coupling equation.c(q,t)
was evaluated over a mesh ofq values for a particular den
sity. For microscopic time scalest,Vq

21 , the dynamics is
governed by a bare transport coefficient. The present stud
in the so calledb relaxation regime. Results from mode co
pling models as well as experimental studies showed that
density correlation function shows a power law relaxation.
the MCT model that we study here, this behavior is valid
time scales longer than the corresponding microscopic t
scale given by (VqtE)21. In Fig. 3 this time scale (VqtE)21

is plotted as a function of wave vectorq for a packing frac-
tion h50.561. All the calculations in this section correspo
to timesabove(VqtE)21.

In the extended model that we consider, the density c
relation function does not freeze beyond the critical tran
tion point h50.525 of the ideal MCT, and fluid remains i
the ergodic phase. The equation for both ideal (k50.0,y
50.0) and extended mode coupling models (k520.04,y
50.12) has been solved at packing fractionh50.561. In the
ideal case, the system freezes such that allf (q)’s converge
to a nonzero value~nonergodic phase! at this density. In Fig.
4 we show the evaluation ofc(q,t) with time (t/t0) by a
dotted line for the simple model, while for the extend
model the solid line shows the behavior ofc(q,t). The unit

e

s

FIG. 3. Variation of the time scale (VqtE)21 as a function of
wave numberqs for a packing fractionh50.561.
5-4
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METASTABLE STATE DYNAMICS AND POWER LAW . . . PHYSICAL REVIEW E63 011505
of time is chosen asto510tE . As seen in Fig. 4, the presen
model predicts a liquidlike~ergodic phase! at densities as
high ash50.561. The liquidlike behavior is facilitated b
the motion of the defect densities in the metastable poten
well. The change in the shape of the defect’s metasta
potential well as a function of particle density is investigat
along the critical surface of Figs. 1~a! and 1~b!. In Fig. 5 we
show the change in the shape of the potential well with th
values ofy andk. As the packing fractionh increases,y also
increases, making the potential well deeper. The bar
height for the defects increases with increasingh, and results
in a trapping of the defects in the potential well over lo
time scales in the nonergodic state. In a way this dem
strates that, although the final ergodicity restoring proces
removes this sharp transition, some remnant of this transi

FIG. 4. Decay of the density correlation functionc(q,t) as a
function of timet/t0 at the wave vector peak of the structure fac
for h50.561. In the ideal model~dotted lines!, this freezes to a
constant value~glassy state!, while in the present model~solid line!
it decays to a liquidlike state.

FIG. 5. Variation of the depth of the potential withn/n* for hc

0.525 ~solid line!, 0.538 ~dashed line!, and 0.549~dotted line!. In
the figure, h* (n) represents the dimensionless quant
h(n)bens3.
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is seen, with a slow relaxation of the density correlati
function due to the feedback effects.

As discussed earlier, in this model there is not jus
single transition point but a series of transition points in t
k-y phase space. To study the relaxation dynamics as a f
tion of density, we solve Eq.~11! for c(q,t) for h values
very close to the points along the transition line shown
Fig. 1~a!. The critical parametersy and k, related to the
potential for the defect density and its coupling to the dens
fluctuations along this line, are used for evaluating the mo
coupling integrals. The potential well shapes for the def
density wherec(q,t) is evaluated, in a few cases, are show
in Fig. 5. From the solution of the mode coupling equatio
we directly obtain the exponenta as a function of packing
fraction h fitting to the form,

c~q,t !5 f c~q!1Ch~q!~ t/to!2a ~12!

whereC is a constant, andto is the time scale over which th
power law relaxation persists. The density dependence of
power law exponents calculated from the solution of e
tended MCT equations are shown in Fig. 6 for two differe
wave vectors, namely, the peak of the static structure fa
(qm) ~solid line! and at 0.63qm ~dashed line!. Metastability
parametersk andy, used for obtaining the theoretical curve
~solid and dashed lines!, are indicated by state points in Fig
1~a!. To investigate the agreement of these predictions
the power law exponents shown in Fig. 6, we fit the lig
scattering data reported in Figs. 5~a! and 5~b! of Ref. @20# to
Eq. ~12!, and obtain the exponent. In Fig. 6, we indicate th
the exponents computed from our analysis of the experim
tal data for different densities at the corresponding wave v
tors, show good agreement. In the same figure we also s

FIG. 6. Variation of the exponenta as a function of density a
the peak of the structure factorsqm ~solid line! and 0.63qm ~dashed
line!. The horizontal dash-dotted line corresponds to the temp
ture independent exponenta50.301, as predicted from simpl
MCT. Open and filled circles are power law exponents as obtai
from fitting the data from Ref.@20# at qm and 0.63qm respectively.
Metastability parameters used for obtaining the theoretical cur
~solid and dashed lines! are indicated by points in Fig. 1~a!.
5-5
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the density independent exponent as predicted from sim
MCT. The quality of the fit is presented in Figs. 7~a! and
7~b!. The fit atqm for two different densitiesh50.529~filled
circles! and 0.542~open circles! is shown in Fig. 7~a! by
dashed lines. The same fit for 0.63qm is shown in Fig. 7~b!
for h50.554 ~filled circles! and 0.542~open circles!. We
also consider the wave vector dependence of the exponea.
In Fig. 8, we show the exponenta as computed from the
solution of the model equations ath50.561 for different
wave vectors. The minimum occur at peak of the struct
factor showing the characteristic slow relaxation at this wa
vector. Before ending this section, we like to emphasize
points here.

FIG. 7. ~a! Normalized intermediate scattering functionc(q,t)
vs delay timet in seconds for the data obtained from Ref.@20# at a
peak of the static structure factor (qm) for h50.529~filled circles!
and 0.542~open circles!. Dashed lines show the power law fit. NE
values are obtained withk50.008 forh50.529, k520.01 for h
50.542, andy50.12 for both densities.~b! Normalized intermedi-
ate scattering functionc(q,t) vs delay timet in seconds for the data
obtained from Ref.@20# at 0.63qm for h50.554~filled circles! and
0.542 ~open circles!. Dashed lines show the power law fit.k5
20.03 andy50.12 are used for the NEP calculation ath50.554.
01150
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~i! The theoretical exponents reported in Fig. 6 are inde
predictions from the model equationsat the densitiesindi-
cated in the figure, in terms of the relevant transition po
Unlike Ref. @21#, we do not need to map to another equiv
lent densityto account for the discrepancy in the transitio
point that exists between experimental and simple MCT
sults.

~ii ! f q
c for a fixed density depend on the metastability p

rametersk andy on the transition surface. Thus variation
f q

c with critical parameters follows naturally from the mod
equations, and there is no need to adjust thef q

c in any ad hoc
way to compare with experimental data.

V. DISCUSSION

In the present work we consider the model proposed
Yeo @12# using a fluctuating hydrodynamic description f
the fluid to include the defect densityn(x) reflecting the
freezing of the local structures in the amorphous solid. T
dynamics of the defect density is constructed, assuming
be variable similar to the mass density as far as the mic
scopic dynamics is concerned. Following Ref.@12#, we work
with an effective Hamiltonian for the system that is comp
ible with the properties of the amorphous solid. Although t
defect densityn(x) field signifies freezing on a local lengt
scale, isotropy is assumed for the system for long len
scales.

The asymptotic behavior for the mode coupling equatio
are considered to obtain the phase diagrams. Through
pling to the defect density, the relaxation time can increa
although the liquid does not freeze into an ideal glassy ph
even for a much higher packing fraction than the critic
value of the transition as predicted from a simple mode c
pling model with only density fluctuations. In the gener
vicinity of the critical surface the NEP~nonergodicity pa-
rameter! exhibits a square root singularity in the ideal MC
However, in the extended model with different vertex fun
tions we focus on a range in the vicinity of the transitio

FIG. 8. Variation of the exponenta as a function of the wave
vector qs for a packing fractionh50.561 and correspondingkc

520.04 andyc50.12.
5-6
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METASTABLE STATE DYNAMICS AND POWER LAW . . . PHYSICAL REVIEW E63 011505
point that is typically used in experiments to study the b
havior of the NEP. What we show here is that in this ran
which is quite relevant to the experiments, we do see a lin
behavior with respect to the metastability parametersy and
k, while at thesamerelative distance from the transitio
with respect to the density a variable cusp behavior is va

Next we turn to a discussion of the behavior of the pow
law exponent. In conventional MCT, the transition occurs
a lower density (hc50.525) than predicted from the exper
ments (hc50.565@20#!. However, this was largely ignored
and comparison between theoretical results with the exp
ment have been done in terms of the ‘‘distance’’ from t
transitione. In the ideal MCT there is a single power la
exponent independent of temperature. The numerical s
tion to the MCT equations indicate that the single scal
form fails as we move away from the transition. For this o
needs to add more and more correction terms@22# to the
scaling form as the distance from the ideal transition
creases. On the other hand, here we have taken a diffe
approach to the problem. Through the formulation of t
extended model we show that the system can avoid free
at higher densities than predicted from the ideal MCT.
power law exponent, which follows, is naturally depende
on density. We have taken the data of Ref.@20# and fitted the
power law exponent, and this agrees well with the theoret
predictions. We would like to stress here that unlike the id
MCT, with a temperature independent exponent, wedo not
need to adjust the transition point to obtain agreement w
experimental data. Finally we discuss the wave vector dep
dence of the power law exponent. Analyzing the solutions
the MCT equations from our model here for differentq val-
ues, we find the exponents of power law relaxation to
dependent on the wave vector. This shows a good agree
with data at two different wave vectors. Here we would li
to mention that even solutions of ideal MCT equations w
better fit aq dependentexponent, as was demonstrated
nd
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one of the present authors in Ref.@23#. However, this will
imply that the nonperturbative solution of the MCT equ
tions will violate the so-called factorization property, whic
demands that the density correlation function complet
separates out its wave vector and time dependence—a r
that is even stronger than dynamic scaling. Indeed, if o
resorts to adding more and more correction terms, it is s
possible to maintain aq independent exponent, but we b
lieve this would mean imposing a strong condition while t
actual model equations indicate a different behavior. T
present extension, in terms of the defect density, thus all
more parameters in the theory. While this is a phenome
logical approach, it accounts for the temperature depende
of the power law exponent from a microscopic model. In t
present work we have shown that the predictions from p
posed model equations—without assuming factorizat
property—do show good agreement with experimental
sults.

The amorphous solidlike nature of the supercooled liq
is essential for conceiving the presence of defect densit
addition to the usual hydrodynamic modes. Since the tra
tion points are shifted, one obtains a power law relaxat
with a density~temperature! dependence in the exponen
The model considered in the present work can be extende
thea-relaxation regime, where the combined role of the de
sity fluctuation and the defect fluctuation will be considere
The diffusive mode which restores ergodicity in the sup
cooled liquid, final decay can be linked with the motion
vacancies or free volumes in the amorphous solids. Thus
defect density mode and mass density essentially behave
similar way in their asymptotic relaxation regimes.
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