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We study the equilibrium energies of two-dimensiof@D) noncoarsening fluid foams, which consist of
bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present
a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly
distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extende@ Roges-
model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which
enables us tdi) find an approximate value of the global minimum perimeter, accountingsimal) area
disorder, the topological distribution, and physical boundary conditiinsiconjecture the corresponding
pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the
same signs “repel” while charges of the opposite signs “attradtii’) define local and global markers to
determine directly from an image how far a foam is from its ground s{atg¢;conjecture that, in a local
perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique.
Some results also apply to 3D foams.
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I. INTRODUCTION future rigorous mathematical proofs.
For physicists, foams are a model for a class of materials
Fluid foams or cellular fluids are a class of materials thatthat minimize surface energy: soap foams, emulsions, mag-
consist of a collection of bubbles surrounded by a continuousetic garnets, and even grain boundaries in polycrygtdls
phase which tends to minimize its surface energy under th&7]. They share many common features of a cellular struc-
volume constraint. The exact description of the ground stateure, including Plateau’s rule@ee below and empirically
is a deep mathematical problem, while the characterizationbserved topological and geometrical correlatifit®. Here
of all the metastable states provides insights into the physiofe derive more general consequences of the energy minimi-
of foams as well as industrial applications. Our motivationszation. Open questions we aim to answer include the follow-
to study fluid foams are thus threefold. ing: Given an image of a foam can we determine whether the
For mathematicians, foams have long been an importarfoam is stressed and deformed? How regular are bubble
tool to provide insights into the classic “isoperimetric prob- shapes at equilibrium? How do topologyumber of neigh-
lem”: how to determine the minimal perimeter enclosing abors of a bubblg pressure, and energy relate? What vari-
cluster of N bubbles with known areas. Hal¢$] recently  ables best describe the foam on a mesoscopic scale? Why do
proved the 2000-year-old honeycomb conjec{ a clus- pentagons and heptagons tend to cluster in pairs in 2D
ter of two-dimensional(2D) bubbles of the same area foams?
reaches its minimum perimeter when all bubbles are regular More practically, understanding foams has technological
hexagons. The conjecture is true only if the bubble clusteimportance. Industrial applications of foams, ranging from
has no boundaries, i.e., the cluster is either infinite or hatood and shaving cream to fire fighting and oil recovery
periodic boundary conditions. Besides this result, only thg12,16,17, depend on their mechanical properties, which are
caseN=2, i.e., the double-bubble problem, has been solvedot yet well understood. Foams support small stress like a
in 2D and 3D;N=3 and larger in 2D and higher dimensions solid, but flow under sufficiently large shear like a fluid,
have been partly studid@—10. Here we use the physics of when the bubbles rearrange from one metastable configura-
equilibrium energy to find the perimeter “minimizer” in tion to another. This solidlike to fluidlike transition depends
cases that have thus far escaped rigorous study, includirgensitively on the foam’s structuf@9]. Hence understand-
large N, real boundary conditions, area, and topological dising foam structure is an important step toward predicting its
order dispersity. We estimate the value of the perimetemechanical properties, e.g., the quasistatic stress-strain rela-
minimum, and conjecture the corresponding patterns to b&onship. Moreover, the structure of fluid foams determines
candidates for the minimizer. We hope to provide insight forthe structure of solid foams produced by solidification, in-
cluding: metallic foams in automobiles, pumice in volcanos,
polymeric foams in filling materials, and food foams. Our
*Corresponding author. Email address: graner@ujf-grenoble.fr present approach can potentially also provide a deeper un-
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FIG. 1. Ferrofluid foams with fixed area®) Annealed FFF image with free boundary, area dispe@#ty: 0.443A, and wall thickness
=0.126AY2 The only heptagon is indicated by a number 7. See Sec. IIl A for preparation méthed.Freshly formed FFF with highly
distorted bubbles. B. The same foam after an avalanche of relaxational bubble rearrangements. C. The same after forcing a few bubble
relaxations. Scale bar length is 20 mm.

derstanding of other more complex and heterogeneous mate- A. Formulation
rials which share one or more characteristics of fluid foam, We use the word “boundary” as the external limit of a

e.g., er and wet granular materials, aggregates of vefsicle%am, and “edge” as the thin fluid line between two
biological cells, fracture patterns, and convection cells in agy,ypjes. For a foam withl bubbles with given areaSh; i
. (]

gregates. =1,... N} [e.g., Fig. 18)], the energy of such a foam is

Our starting point is two-dimensional noncoarseningg;,y the sum of edge lengthg between bubblesandj:
foam. Such patterns result from surface energy minimization

and capture the essence of any foam at a given time. Foams

are almost always at quasiequilibrium because the bubble H=70<;<N lij 1)
walls equilibrate on a very short time scale after a mechani- ==

cal perturbation. The area distribution, of course, varies
However, the processes that cause area changes, such I-?t?rey, in 3 m 2, is the energy cost of a unit line of a wall,

coarsening, wall breakage, cell division, and cell nucleat|onthe “5D surface tension” or “line tension” of the foam. In

all act on a much slower time scalez and_thus can be N&n experimental foam, an edge contains two interfaces be-
glected in our current study of configuration energy. We

hope our understanding of 2D foams will clarify 3D foams. tween the edge fluid and the inner fluid. Equivalently, we can

We will indicate when our results apply to 3D. write
We first present our theoretical, experimental, and nu-
merical methods. Section Il estimates the global energy H=
minimum, and shows that experimental and simulated re-
laxed foams tend toward it. Sections IlI-V treat the energy
of a real foam as perturbations around the ground state in theherel; =0, L£;=X;l;; is the perimeter of bubble and
weak disorder limit: corrections from area disorder, topologi-y/2 is the usual surface tension between both fluids times the
cal disorder, and boundary conditions to the global mini-height of the bubble wall in the third dimension.
mum, respectively. Section VI summarizes the implications At equilibrium, i.e., in a local energy minimum, the foam
of our results. obeys the Plateau rulésee[12,14,17 for physical explana-

wherei=0 denotes the medium that surrounds the foam.
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tions and4,5,7,9 for mathematical demonstrationdubble B. Experiments

edges are circular arcs that meet in triples at2angleq5]. As an experimental model, we choose ferrofluid foams

According to Laplace’s law their algebraic curvatures;(  (FFF’s), which we can easily manipulate to produce large

= —«;i>0 when bubblé is convex compared with bubble distortions or to force relaxations. Good image contrast, cen-

j) are related to the 2D pressuig inside bubble: timeter length scales, and few second local relaxation times
facilitate observations.

Pi—P;j A detailed description of FFF’s has appeared2d]. A

:T' 3 FFF is an immiscible mixture of an ionic magnetic fluid
(aqueous black magnetic liquidnd oil (white spirid in frac-

Thus the algebraic curvatures of the three edges that meet #@ns ranging from 7%-93% to 13%-87%. The fluid mixture

Kij

the same vertex must add to zd8]; is trapped in the 1 mm space between two parallek 10
cm? Plexiglas plates. A homogeneous magnetic field of 9
Kij+ i+ ki =0. (4)  kA/m perpendicular to the plates induces the cellular struc-

ture and fixes the bubble edge thickness. Figure 1 shows an

Equation (4) holds for any closed contour crossing more equilibrium FFF pictu_re; the magnetig fluid forms dark lines.
edges. It is also valid in 3D, witlk the mean curvature of a We measure areas directly from the images and edge lengths
bubble face. from skeletonized imagedoam edges shrunk to lines with

Mathematically, for a given foam consisting Nfoubbles ~ Single pixel$. The same oil as that filling the bubbles sur-
of fixed areas, finding the global minimufiground state rounds them. Preparation conditions fix the bubble areas,
and local minima(equilibrium statesof the foam energ Wh'g? vary very slowly(time scale~10" s in an ac field,
is equivalent to minimizing the sum of all bubble perimeters.~10" S in a dc field.

: : . A FFF behaves like a 2D soap fod22]. For an oil-water
In this sense, the problem is purely geometrical. The surface ; . .
_I P 'S purely g ! . Y surface tension of 15 mN/m and a bubble size of 1 cm, as in
tension and average bubble aksscale out; the details of

oLalt | - Fig. 1, the magnetic dipolar interaction energy and the ther-
theE)am enter only through the distribution normalized areag energykgT are~2% and~ 10" 1 of the surface tension
A;/A. Moreover, if we draw a path from bubble 1 to bubble times a bubble diameter, respectively. As a consequence, the
i, the sum of the curvatures of all edges crossed determindsFF obeys the Plateau rules.

P; /v directly from the foam’s image, up to an additive con-

stantP; /y; Eq. (4) ensures that the resulting measurement of C. Simulations

P/v is unique. The problem is the same famy foam, and We use the extended largg-Potts model, which allows

more generally for any perimeter minimization, eveidifs  large numbers of bubblesy>1, no fluid fraction =0,

not proportional to the perimet¢20]. fixed bubble areas, a large range of area distributions, and
In the same spirit, we make the following assumptionslarge foam distortiongl9] [Fig. 2(a)]. The foam is simulated

(which we can relax later at zero temperature and bubble edges relax quickly upon

(1) We assume that each bubble encloses a fixed masggrturbation; i.e., the foam is almost always at equilibrium,
which relates its area to its pressure. We further assume idike soap froth. _ o
compressibility; thus each bubble’s area is constant. ~ The model treats a foam on a 2D lattice by assigning an

(2) We consider only isotropic surface tensions. Most reafnt€ger index to each lattice site. Domains of like index are
foams require corrections: microscopic or long-range interPubbles. Each pair of neighbors having unmatching indices
actions, external force fields, or surface tension anisotropyl€t€rmines a bubble wall and contributes to the bubble wall
We do not consider the Marangoni variations of surface ten%g:gcgyﬁ';ﬁ:%' r:nrir;llijriizegsrt?gbB?:enIprgrzi?nt:acigr;hrgﬂgEIeM;rgt:s
S|o(n3.) If the continuous phase occupies a fractigrof the are the number of lattice sites for each index; an area con-

) . straint keeps the bubble areas constant. To ensure that sur-
foam, the mathemancal |deall case corresponds:;ﬁt?o face tension and measurements are isotropic and insensitive
while actual materials have a finitg. We assume the “dry (4 the |attice[23], the energy for the Monte Carlo evolution
foam” limit ¢<1. We assume that the thickness of theis eyaluated with fourth nearest neighbor interactions. The
bubble walls is uniform throughout the foam and scales likeagge lengths and perimeters are determined using the
¢. We neglect drainage and Plateau borders. This restrictiofjejghted second nearest neighboils=(y2—1)N;+ (1
makes sense because all physically relevant quantities have_all\/g)Nz, with N, andN,, the number of nearest neighbors
regular limit when¢ tends to 0. and next nearest neighbors at the edge, respectively. This

(4) In a perfectly ordered foam,_l.e., the honeycomb struCinethod overestimates the edge length at most by, N
ture, all bubbles are hexagons with the same area. For regging the number of lattice sites at an edge. Thus the error is
sons that will soon become clear, we consider weakly disOrfess than a few percent in the simulations presented here.
dered foams “close to a honeycomb structure,” where both

the area and the edge number distributions have small vari- ||, ZEROTH-ORDER ESTIMATE OF THE GLOBAL

ances. Despite their weak disorder, such foams may lack MINIMUM

long-range orientational and translational order and thus may

be homogeneous and isotropic on large scales. We do not A. Lower bound Hy,

consider infinite foams, which can have an infinite variance If all the bubble areag,; are known but their topology is
of area distribution. free to vary, a minimum value mik{) for the foam energy
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FIG. 2. Simulated foams with fixed areas) A typical configuration of a polydispersed foam at equilibrium. The top and bottom
boundaries are fixed, the lateral boundaries periodic. The lattice X256 with 589 bubbles. Shades of gray encode the number of
neighbors each bubble has. The area dispersifAi\= 1.06. (b) A regular foam with equal area$f/A=0.4%) and periodic boundaries.

An artificially constructed pentagon-heptagon-pentagon-heptagon cluster forms a topological quadrupole, with the rest of the honeycomb
lattice undisturbed(c) Two dipoles(pentagon-heptagon paingsult in a curvature field in the hexagons around thghnA foam illustrating

the fixed boundary conditions: a circular obstacle in the center of a hexagonal foam induces a topological charge distribution in the bubbles
touching its boundary; all the edges are perpendicular to the solid boundary.

(i.e., the ground stajeexists[4]. However, its value, and the min(H) is close to, but larger thaH,,. This estimate of the
corresponding pattefs), is an open problem. Both the fol- global minimumH,, depends on only the area distribution,
lowing conjectures are discussed in the Appendixinotthe pattern. Thus, given an image, we can simultaneously
(1) min(H) admits a simple lower bound: measureH, through the actual edge lengths, ahg, through

the areas. The ratibl/H}, is a global marker of the energy
stored in the foam, or how far the foam is from its global
minimum at prescribed areas. We will now examine this ra-
tio in FFF experiments and simulations.

(2) The energy of a natural, polydisperse, random foam is at

least the energy of a collection of regular hexagons with the

N
min(H)>3.71% Zl VA, (5)

same areas. Equivalently, mi} admits a zeroth-order es- B. Applications of Hy,
timateHy: In FFF experiments, a metallic pin, when placed above
N the FFF, locally channels the magnetic field lines and attracts
Hh~3_721 E \/K (6) some ferrofluid. Thi_s enables_ us to !ocall)_/ perturb the ve_rti-
2= ces[22]. We use this magnetic manipulation to prepare five
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FIG. 3. Relaxed energy of a random fodRig. 2(a)]. The final
rescaled equilibrium energigd,/H,, after long relaxations (0
Monte Carlo steps MCSare plotted against the initial energy
H;/H, . Note the difference in horizontal and vertical scales.

FIG. 4. Relaxation of FFF's: Standard deviatié(l; /L;;) as a
function of rescaled energyi/Hy,. The five different symbols
(circles, triangles, squares, diamonds, and pentagamsespond to
five relaxation experiments similar to the process shown in Fig.
1(b). Highly distorted foamginitial foams in open symbolsrelax

0g-nrough avalanches of T1 procesgpartially relaxed foams in gray

foe}ms then, spontaneously relax ,V'a an avalanche ymbolg, and magnetic manipulationgompletely relaxed foams
neighbor-switching eventsor topological rearrangements, i closed symbols

often termedT1 processes their energies relax to a value
slightly higher thanH,,. By displacing each vertex one by area mismatche<1, and for bubbles far from the foam
one, we force all the T1 processes we ¢a@] to produce boundaries, each edge contributionHg is quadratic ine,
more regular bubbles: the energy decreases even cloBgy to i-€., proportional to~ ye? (the strain energy25]).
(data shown in the abscissa of Fig. 4 If the area disorder is small enough, the foam reduces its
In the extended Potts model, by biasing the Monte Carl&nergy when the topological disorder is also snjai.
lattice upate, we can apply a steady shd#i to prepare a When each bubble is surrounded by neighbors of nearly the
distorted foam: a higher shear rate results in more distorte§@me area and reaches a nearly regular shape, i.e., when
bubbles, and thus higher initial energy. We let the distortedPubbles sort according to their sizes, the energy minimum is
foams relax toward equilibrium, i.e., a local energy mini- reached. Most bubbles are hexagons and form a slightly dis-
mum. Figure 3 shows that, whatever their initial energy, thetorted honeycomb latticed , then corresponds to the strain
relaxed foams all have final energies 2% abble Initially ~ €nergy in growing a crystal with increasing lattice sj28].
more distorted foams seem to reach a final energy closer toor & foam with free boundaries and no external force field,

different foams with highly distorted bubblgsig. 1(b)]. The

Hy. we expect the bubbles to sort according to their sizes; and the
We now write the energy of the foam &, plus three smaller ones inward, the larger ones outward, as in crystals
corrections: 25 .
This is exactly what we observe in “annealed” FFF’s.
H=H,+H,+H+H,, (7)  We tilt the Plexiglas plates from the horizontal plane to an

angle of 0.1°, inducing a low effective gravity field. Large
where the subscripts stand, respectively, for hexagons, ardmubbles drift upward, small bubbles downward, resulting in
disorder, topological defects, and boundaries. For simplicityyertical sorting according to size. We can achieve the same
we want to treat these corrections separately, as perturbationgsult with a magnetic gradie[27]. We then bring the plates
around the ground statd,,. This applies to weakly disor- back to horizontal, and the bubbles slowly drift and settle.
dered foams with small area and topology variations. This procedure allows the bubbles to rearrange and explore
the energy space to find a lower energy configuration. The
final stable patterfFig. 1(a)] displays round bubbles and
radial sorting according to size, larger bubbles surrounding
A. Minimization of area mismatch smaller ones. Coming closer to the ground state would re-
quire individual bubble manipulations. We expect that the
same size sorting should occur in 3D foams as well.

Ill. AREA DISORDER

The edges of a regular hexagon of arehave lengthL
=3.72/A/6 [24]. If two bubbles of different aread>A,;
share a common edge, its lendth obviously cannot be si-
multaneously equal to both; andL;. There is thus an en-
ergy cost associated with the area mismatehs (A; The actual value of;; results from a minimization over
—Aj)/(Ai+Aj), which vanishes only fore=0. For small  the whole foam including the boundary conditions, which is

B. Optimal edge length
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(@) 0 0.5 1 L./L L5 2 FIG. 6. Different equilibrated foams. Each foam is simulated
o with periodic boundaries. They have the same topology, but differ-
ent area polydispersity and hence different energy rdtiod,, .
1.05 ' : ' ' 0.5 Average(l;; /L;;)~1 (circles, left ordinateand standard deviation
o(lj; /Lj;) <1 (stars, right ordinadeindicate that each; is close to
1.04f « 104 Li-
*
o* o ° the compression tend to be smaller than tiejr. Thus the
A 103} " o 103~ a}verage(lij ILij) and the variancé(l;; /L;;) intrinsically de-
5 008 & < fine a foam’s strairi28,29.
o © O &8 = To estimatel;;, if we stay close to a honeycomb lattice,

1.02f 102 we require that ;; depends o\ andA; only, and is sym-
metric in A; ,A;. L;; likely lies betweenL; andL; and, in
order to locally minimize the perimeter under the area con-

Loty 101 straints, L;; should be smaller thanL{+L;)/2. The geo-
metrical average is one of the most natural candidates:
1 : : ; . 0
1 1.01 1.02 1.03 1.04 1.05 3.72
(b) H/H, Lj=LiL;= T(AiAj)lM, (8)

FIG. 5. Relaxation of simulated foans) Rgtioli,- ILjj between \\nich we can test by measuring the distributior pfL; in
each edge’s actual and reference lengths. Histograms are shown fBE)th FEF’s and simulated foams !

the same foam beford MCS), during (2000 MCS, and at the end
(7000 MCS of the relaxation.(b) Average(l;; /L;;) (circles, left
ordinatg and standard deviatiod(l;; /L;;) (stars, right ordinate
during relaxation, plotted against the rescaled enétgyy, . We can measure botH, andL;; directly on a foam im-
age simply by measuring all bubble ar¢ad]. In a distorted

impossible to calculate analytically for lardé However, a FFF [Fig. 1(b)], the edge lengths, bubble elongation, and
“reference” length is useful. For bubbles far from the foam bubble topologies all vary widely. Figure 4 presents the stan-
boundaries and for a small area mismatch(A;—A;)/(A; dard deviation from the meaw(l;; /L;;) as a function of the
+A)<1, we will assume thad; andA; alone determine an rescaled energyi/Hy, for foam relaxations shown in Fig.
optimal edge length |, and that, when the foam is in its 1(b). The abscissa and ordinate, reflectigighal andlocal
ground statel;; is close tol;; . equilibration, show the same trend.

Statistically, in an equilibrium stat@ot the ground staje In simulated foams, we computég/L;; for a foam dur-
we expect that on averagg is close toL;;, i.e.,(l;;/L;;) is  ing a relaxation from a distorted high energy state: the lower
close to 1, wheré ) denotes averaging over the whole foam. the energy, the narrower the histograms;pfL;; [Fig. 5(@].
However, individuall;; could differ from the reference The mean valugl;; /L;;) decreases toward 1, and so does the
lengthL;;, namely, the variancé(l;; /L;;) is not zero(for ~ standard deviatio(l;; /L;;), as the foam equilibrate$-ig.
3D foams, we might define similarly a characteristic size5(b)]. At equilibrium, L;; is statistically a good reference for
scale for faces and edges; the variance may be very)largd;; . However, locally/;; differs fromL;;. The standard de-
Moreover, if under an extensional stress an incompressibleiation 5(1;; /L;;) reflects this local deviation, and thus the
foam is compressed in one direction and extended in theistance to the ground stat€ig. 5(b)].
perpendicular direction, the edges parallel to the extension We tested that the mean and the standard deviation of
tend to be larger than thelr;;, while the edges parallel to |;;/L;; are lower for equilibrated foamgFig. 6) than for

C. Testing optimal edge length
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relaxing foams(Fig. 5). By coarsening a foam from a hon-
eycomb structure, we gradually increase the area disorde
while keeping the topology the same, i.e., in the early stage
of coarsening. The area polydispersity affadid,, (sinceH

is roughly the same for all foami&80] and H,, decreases
when area polydispersity increagelsut has virtually no ef-
fect on(l;; /L;;) nor on &(l;; /L;;), except for allinean in-
crease smaller than 1%.

In the small-disorder limit, this treatment of area disorder
allows us to predict the minimal energy configuration: the
sorted pattern. The optimal edge length provides alocal
reference of how far the foam is from its equilibrium and
thus opens the possibility of defining local strain in foams.
We now consider the energy cost due to the topological dis-
order. Again, we consider only the weak disorder limit.

IV. TOPOLOGICAL DISORDER AND ELECTROSTATIC
ANALOGY

The “topological charge” quantifies the deviation from a
hexagonal lattice: am-sided bubble has a chargg<(6 \
—n). Charge is additive: the charge of a collection of
bubbles is the sum of their individual chargd&d]. A foam
with periodic boundary conditions has zero total charge and FIG. 7. A schematic of a 2D foam. The black cont@Lifollows
hence an average of six sides per buljBl. bubble edges and encloses a cha@éQ= w/3 due to the penta-
The proportionality constant in the definition gfis arbi- gon). Vertices with squares point inward ( =5) and vertices with
trary and cannot affect the physics. The literature employ§ireular disks point outwardu(, =10). The dashed contout
both + 1. For the convenience of the analogy with curvaturecrosses bubble edges transversely. Along the contours tahgadt
as well as the electrostatic analogy below, we require thatormaln vectors(arrows are defined by the right-hand rule.
[33]:
We now consider a contout that follows only bubble
nmw edges and encloses a few bubbles. Aste, Boasd Rivier
q=(6— n)——27r— 3 9 [31] define the number of vertices that originate an outward
(inward) pointing edge as™ (v ™) (Fig. 7);e.g.,v " =0if C
is the boundary of the total foans,” =0 if C encloses a
A. Geometrical Gauss-Bonnet theorem single bubble. Thaopological Gauss-Bonnet theorefi31]

. . . tates th ncl total topological char
Consider thath bubble of a foam, and circle once coun- states thaC encloses a total topological charge

terclockwise around it. The tangent vectaalong the bubble
edge, which travels around the bubble once counterclock-
wise, rotates by z. Each siddj is an arc of length;; and
of curvaturex;; , and thus contributes;;|;; to this rotation,
while each vertex rotates the tangent ve&t(hy /3. The
Gauss-Bonnet theorem links the average curvature of
bubble to its number of sidd84]:

Q(C)= 3, a=(6-v"+v )7, (11
keC

herek labels the bubbles enclosed By andQ(C) is their
otal charge.

Combining Eqgs(10) and(11), we can now write thgeo-

metrical Gauss-Bonnet theorem for a closed contGuthat

; kijlij=(6—n;) 7/3=q;, (100 follows the bubble edgeig :
displaying how the topology constrains the curvature: five- E kil =Q(C)= E e (12)
sided bubbles are convex and seven-sided concave. z i cC

TABLE |. Proposed analogy between foams and electrostatics in two dimensions.

Potential Field Charge
2D electrostatics potential electric field—VV electric chargee
2D foams pressur curvaturesx —V P topological charge (6 n) /3

011402-7



F. GRANER, Y. JIANG, E. JANIAUD, AND C. FLAMENT

PHYSICAL REVIEW B3 011402

This theorem establishes the relation between a foam’s td-or illustration, we consider a foam with all bubbles having

pology (charge$ and geometry(curvature. We now link

them with the energy through an analogy to electrostatics.

B. Electrostatic analogy

Sincek is the spatial gradient of the pressiitaplace’s

law, Eg.(3)], we can assimilate the pressure to an electro
static potential and the topological charge to an electrostati
charge. In this analogyTable l), each bubble represents a

conducting platelet bearing a charge- (6—n) /3 distrib-

uted along its edges, which is uniform at equilibrium becaus
the charge density is proportional to the the curvature. Th
edges are a thin layer of insulating material of thickness pro

portional to fluid fractiong, which bear a large gradient of
pressurdalmost a discontinuity Since we are not interested
in the actual pressure within these thin edges, we choose
interpolate the pressure in such a way th®=0 within

edges, and introduce the notatiBr= — VP:
E=eqxn (edges,

R (13

E=0 (bubbles,

whereey= ¢L/y is the edge’s dielectric constam,its cur-
vature, anch its outward normal.

This analogy holds if the fluid fractiogh is small enough
that we can interpolat® within the Plateau borders. All
physical quantities such & «, or the energy defined below
have a finite limit whenp— 0: only notional quantities such

ase, or E diverge. If the unit vectors, t are the normal
and the tangent t&€, respectively, as drawn in Fig. 7, Egs.
(4) and(12) become

$

ﬁgé.fon:o.

E-ﬁou:g,
€d

(14

These relations hold faany contour C(not necessarily par-
allel or perpendicular to edgem the ¢p<1 limit.

Equationg14) make the analogy to electrostatics obvious.

Although both equation$14) look similar, they are physi-

the same ared, as in Fig. 7. Take one single “defect”
bubble with a topological chargg=(6—n)#/3 as a germ
bubble (dislocatior), for instance, a regular pentagon. Con-
struct around it a shell structure made of hexagons only:
shell 0 is the germ bubble, bubbles of stsdlre neighbors of
bubbles of shels— 1. On Fig. 7, contou€ encloses the first
shell of bubbles. Since the pentagon is the single topological
Eharge in this schematic foam, the hexagons surrounding the
pentagon all have the same pressure. More generally, all
bubbles of the same shell have the same pressure, namely,

he pressure field is radial. All radial edges are straight, while

the nonradial edges have a curvature, which we can calculate
as follows.

Around the contouc that encloses the shed] the num-
bers of vertices pointing inward,”, and outwardp ™, are
T(f?qual to the numbend; andNg, ; of bubbles in shells and
s+1, respectively. Since the total charge withihis due
only to the central topological defea= 7/3, the Gauss-
Bonnet theorem yields a recursive relation ky [31]:

(15

Thus the number of bubble edges tizatuns along is equal
to v~ +v* =(2s+1)n, their lengths all close to that of a
regular hexagonl =3.72/A/6. All these edges have the
same curvature<(s)=[P(s)—P(s—1)]/y determined by
the pressure difference between the shells. Thus (E2).
yields approximately

Ns=Ng_;tn=sn.

(2s—1)nLk(s)=q,
(16)
vad

P(S) - P(S_ 1) = ’)/K(S)N m

When the foam is sufficiently larges>1, the asymptotic
limits of both k andP are easily determined:

q
K(S)* g
17)
P=y> K(S)Oc—yrqlns+ Po.
S

cally different, describing, respectively, an outward flux HerePy is a constant, the pressulRg at the foam’s bound-

throughC (which, in 2D, is a line integral instead of a sur-
face integral and a circulation alon@. Generalization to 3D

ary, andP grows logarithmically with the foam size as is
characteristic of 2D electrostatics. Note that the pressure de-

cannot be exact, since the pressure and topology correlapends on the topological distanseather than actual Euclid-
with mean and Gaussian curvatures, respectively, which iean distance.

general are independent quantities. However, numdr@&!
and experimenta]36,37 observations of a 3D growth law

D. Topological energy cost

suggest a correlation between the mean and Gaussian curva-

tures, which means that an approximate analogy may hold in

3D.

C. Pressure field created by a topological charge

In a honeycomb, when a topological defect induces a cur-
vature in the neighboring edges, the total foam perimeter
increases. To estimate this increase, consider two vertices
separated by a distanee An arc with curvature< connect-
ing them has a length=2a/k, where a=arcsinf«/2) is

A positive g corresponds to a local high pressure. In turnhalf of the subtended angle. The difference betwaeamd|
the pressure gradient correlates with the bubbles’ concavityis the length increase due to the curvature:
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K22 ma added by linear superposition. The pressure fields of multiple
g TO(x 1%)]. (18 charges are added linearly too. However, the present calcu-
lations assume equal areas; they become more difficult when

As expected] —a is positive and quadratic ir. By sum- the area disorder couples with the topological disorder.
ming over all edges of the foam, and keeping only the leadPhysically, H; is minimal when the foam is as neutral

ing order whenkl <1, we obtain the increase in energy due (charge-freg as possible, with the lowest concentration of
to curvature: isolated charges or dipoles compatible with its other topo-

logical constraints, such as boundary conditions.

|—a=lI

K212
- 1171

i1<j

(19 V. BOUNDARY CONDITIONS

The possible boundary conditions for foam are free if the
d foam is surrounded by a fluid medium, Figat periodic,
Afig. 2(b); fixed if it touches a solid box, Fig.(d); or some
combination of these three, Fig(@. As already mentioned

For instance, around the single topological chargfes)
decreases a¥/s [Eq. (17)]. The summation over all curve
edges vyields the energy cost due to this single topologic

defect: ' I
we use the word “boundary” strictly as the external limit of
9 a foam, while “edge” is the thin fluid line between two
H,~ (2s—1)nLX ————— bubbles.
‘ yEs 24(25—1)?n?
yLg? 1 A. Total charge of a foam

(20 Periodic boundary conditions guarantee that the total

chargeQ=0 [32]. For all other boundary conditions, we can
It grows logarithmically with the size of the foam, as ex- apply the topological Gauss-Bonnet theoréfil] to the
pected in analogy with the self-energy of a 2D electrostatiddoundary of the foam: the number of vertices pointing out-
charge. For a large foam, a single topological charge costs sward isv . =0 and the number of vertices pointing inward is

~ 24n 2 2s—1°

much energy that it never occurs in real foams. v_=Np [39]. The total charge of a foam is the@=(N,
+6)7/3. This is checked in Fig.(& by visual inspection:
E. Several topological charges there areN,=19 bubbles at the free boundary and a total

topological chargeQ=25%/3=26.2. Moreover, for this
foam kil oj=26.5+ 3.8, in good agreement with E¢L2)
despite a rather large imprecision in our curvature measure-
s ments.

)

Consider two chargeg,q’ separated by &opologica)
distances>L ; the interaction energy varies as

Hi~—aq yL In (21) Introducing a modified definitiorg for charges at the

boundary is more conveniefgee below

It decreases when charges of like sign separate or charges of
unlike sign aggregate. For instance, in Figa)1the heptagon q=(6—-n) qu (bulk), (22)
(indicated by a number)7has two pentagonal neighbors. 3
This “effective interaction” of topological origin, which
previous work has assumed or derived empiricpll¥], has
important consequences. For instance, this interaction ex-
plains the origin of the correlations between bubbles: the side
number distribution and the Aboav-Weaire 1488]. With this new definition, the total charge of a foam becomes
_ We can extend our electrostatics vocabulary. Tw_o OPPOgimply O =3,q;= 2.
site charges—qg+q [e.g., a pentagon-heptagon pair, Fig.
2(b)] a distanced~L apart constitute a dipole of moment
p=qd, which deforms neighboring bubbles and induces
curved edges in the hexagons around it. At a distaxd For a free foam, the outer fluid fixes the pressures at the
away from this dipole, the pressure varies as and the foam boundary. A fixed beoundary, on the other hand, re-
curvature as ¥, similar to the dipolar potential in 2D. A quires that the gradient E of P (perpendicular to each
dipole can pair with another dipolgFig. 2(b)] to form a  bubble edge, itself perpendicular to the bound@®,41]) is
topological quadrupol€Fig. 2(c)], which affects the honey- parallel to the boundary. Thus, in these two cases, the topo-
comb lattice over a much shorter range, the pressure varyinggical charges determine the pressure in the foam as a Di-
as 182 and the curvature as s/ Note that a T1 process richlet or a Neumann problem, respectively. Therefore, the
conserves not only the total charge but also the total dipolapressure field should probably baiquefor fixed topology.
moment, altering only the foam’s quadrupolar moment: it is The pressures and areas in turn fix the energy. We illus-
a current of dipoles. trate this for a foam with free boundaries, through the rela-
This description remains valid even for many charges, asion derived from the Laplace law which expresses the
long as the curvature fields they induce are small and can ieam’s mechanical equilibriurf42]:

a=(5—n)g (boundary. (23

B. Topology uniquely determines pressure and curvature
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The shape of the solid box determines the distribution of the

total chargeQ =27 among the bubbles touching the bound-

ary: thekglgi's act as a line distribution of charges along the

boundary. If the solid box has all corner angles a multiple of

w13, we can have the's be multiples of#/3, compatible

with all bubble edges being straight. In general, however, the

solid box imposesy's that are not multiples ofr/3, resulting

in curved bubble edges. The same applies to a concave

boundary, for instance, an obstacle placed in the middle of
B the foam, which introduces a total char@e= — 27, as can

be visually checked in Fig.(d).

FIG. 8. Difference between an infinite foam and a finite foam o
with free boundary conditionsa) Part of an infinite hexagonal D. Free boundary: Contribution to the energy

foam enclosed _by a contou¢b) Schematic _picture of the same The energy contribution from the boundary conditions,
bubble cluster Wlth a free boundary, the straight edges at the bouncil;'b, is a function of the number of bubbles at the boundary,
ary relaxed to circular arcs. N, . Take an infinite foam, and consider in it a contdTir
enclosing a finite number of bubbldk The perimeter of this
contour iS¢, contributingLc/2 to H. If we take the part of
the foam enclosed by and give it a free boundary, the
straight boundary edges relax and reach a new perindgter
where P, is the pressure of the outer fluid at the foam'sas Fig. 8 shows. The new perimeter is slightly smaller than
boundary. The energy reaches its minimum when the largegic, but Eq.(1) now counts it twice, contributing’L,, to H.
bubbles have as low a pressure as possible. Equé®i¢n The cost due to the free boundary is thus the difference be-
can be generalized © dimensionsH being now the hyper- tween the two terms:

surface energy, and the hypervolume:

N N
H=2> PA—-2P,> A, (24)
i=1 i=1

Lc
o N HbZY(Cb_ 7) (29
H=5=7 2 (Pi-PuA. (25
- Hy is always positive and grows like,: for a givenN, it
reaches its minimum foN,~ N, i.e., for a rather round
C. Fixed boundaries: Topological constraints boundaryHy, is of orderyLc /2 and is difficult to evaluate in
As mentioned above, for fixed boundary conditigfgy. ~ general, since the shape relaxation is nontrivial.
2(d)] bubble edges are perpendicular to the boundddes ~ We study a special case for insight: an “isobaric” foam
The Gauss-Bonnet theorem implies that the integrgl; of ~ in which all bubbles haveexactly or approximatelythe
edge curvatures, plus the/3 turn at each of the—2 verti- ~ Same pressurg; =P, with a large number of bubbld$ and

ces, p|us twomr/2 turns at the boundary’ p|us the Curvaturefree boundaries. In this case all internal edges are Straight
Ko; Of the boundary itself, add to2 Thisboundary Gauss- and all boundary edges have the same curvatye (P

Bonnet theorenis —Py)/y. Equation(24) gives the total foam energy
N T w N o
]2:‘,1 kil +(N—2) 3 +25 +kolg=2m.  (26) H=2(P—Pb)i:El A;=2yk,NA. (30)

To emphasize the physical meaninggpfwe rewrite itas  H has the same value as if all bubbles had the &eaA
[30]: for N large enough thal>N,, boundary effects are

N —
2 Kijlij:ai+Koi|Oi ) (277  much §mal|er tharH,- whlch varies asl—l—>3.72l\|(y/2)\/z;
j=1 hence in the larg& limit

At a straight boundary,; = 0; a pentagom; =0 can have 3.72 N,
all straight edges, while a hexaggp# 0 cannot, hence is kp~—=+10 N (32)
more relevant thag. A curved boundary has the same effect 4VA

as a small topological chargelg#0. By the Gauss-
Bonnet theorem along the boundary, the solid box imposes &hus «y, is about half the curvaturg/A of a single round
total charge bubble. The FFF in Fig.(®) obeys this relation with a 15%
error becausex,, is not uniform. This result generalizes to
(~?=2 Kol o =277 (28) any dimensiorD, with L and A the average hyperarea and
i hypervolume
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TABLE Il. Elongatione(n)=£/\/A of regular bubbles witm

Kb:% 1+o(&) , (32 curved edges meeting at23 angles.
2DA N
n e(n)
which determines the difference betwegp and £,, the
perimeters of the contour in the foam and the free boundary. 2 3.779410
The energy cost due to the boundak,, can be better 3 3.742190
estimated for a 2D honeycomb. In a honeycof@lzontains 4 3.730802
v,.+v_=2N,+6 straight edges of length=3.72/A/6; 5 3.725462
henceLc=(2N,+6)L. After the boundary is created, the 6 3.722420= 2%23'4
topological charge of the finite foam @= (N, +6)#/3, and 7 3.720471
Eq. (12) relatesy, to «y: 8 3.719130
9 3.718151
m 10 3.717409
KoLp=73 (NpT6). 33 20 3.714489
. 50 3.713052
Equationg29), (30), and(33) are now closed; we can calcu- o 3.712219= 2(m)¥23
late H,, «, and L, explicitly. They are particularly simple
in the limit of a large foamN>N,>1, where, up t@(1/Ny)
andO(N,/N) terms, tions: large number of bubbles, arbitrary area distributions,
N and various boundary conditions. It explains physically the
Hy,= 7(2 —b—NbL) different contributions to a foam’s enerdgrea mismatch,
3 Kp topology, and boundarigsnd predicts the foam configura-

- tions corresponding to their ground stdtexagons sort ac-
%beL(Z——1>. (34)  cording to their size; topological charges of the same sign
3.46 tend to separate and opposite signs tend to aggnegate
This analysis applies to any perimeter-minimizing mate-
I, where the energy is an increasing function of the total
bble perimeter. The analysis does not depend on the char-
acteristic size and energy scales. It is also valid for foams in
which bubble areas vary slowly. Deriving approximate re-

The factor 2 reflects the creation of a boundary; the ratioria
betweens and (3.72§/4=2./3=3.46 reflects the relaxation bu
of regular hexagons into circular arcs.

VI. SUMMARY sults for 3D seems possible.
Foam structures are the result of surface energy minimi-
zation. Most foam studies have focused on a few conse- ACKNOWLEDGMENTS
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the topology determines a foam’s energy; and explains the
origin of topological and geometrical correlations in foams. APPENDIX: CONJECTURES REGARDING THE MINIMAL

We have defined reference valuég andL for the foam’s PERIMETER PROBLEM
total energyH and edge length both can be directly mea-  \ye consider a foam with all bubbles aregggiven. Their

sured on an image. The zeroth-order estimate of the groungpmogy is free to varyeach bubble remains connected

energyHy, is a function of the area distribution only, inde- e shane is free to vary too; each bubble has an elongation
pendent of the topology. The estimate of the edge length ifafined as

the ground statel., is a function only of the areas of two
bubbles sharing the edge. The ratlégH,, andl/L provide
global and local markers, respectively, of how far a foam is e =—. (A1)
from its ground state, opening the way toward an intrinsic \/A—\.
definition of strain in a foanj29].

The present analysis also provides insight into the classi@he problem is to find the minimum value mijf the foam
minimum perimeter problem generalized to nontrivial situa-energy could reach, i.e., to find
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(A2)

| ) 3 o )

While this problem is still open, we make a few conjectures

and comments

a. Elongation of a regular bubble€Consider a bubble with
n equal sides. They meet atn23 angles. Thus, due to the
Gauss-Bonnet theorem, each edge turns an &ngle sub-
tends an angle2«a, where a=7(1/n—1/6). Some simple
algebra shows that the bubble elongatéfn) is

1 1 sin(a)sin(/6)
e(n)? 4na? sin(w/n)

b. The function én) is almost constanfTable Il shows a
few values ofe(n). The function diverges whem— 1, since
no arc of a circle can self-intersect at &/3 angle. There is
no limit whenn—0: a circle is qualitatively different from
all other bubbles. The function is regular at @it 1, includ-
ing atn=2 and 6; although it decreases withit is surpris-
ingly close to a constang(2) is only 2% aboves(«).

c. Lower bound for the total perimetein a foam, each

(A3)

bubble tends to be as round as possible, subject to the co

straints of its neighbors. Since all regular bubbles have
>e(»)=23.71, we conjecture a lower bound not only for the
elongation averaged over the foam,

e>e(®)~3.71, (A4)

but also for the total perimeter,

PHYSICAL REVIEW E53 011402

> Li>3.71 A,
(L)Y>3.7U\A).

d. Comments on this lower bounidle are not aware of any
foam pattern violating this lower bound. Morga3] finds
that an alternate tiling of eight-sided bubbles and 0.157 times
smaller four-sided bubbldgsake Fig. 2a) of Ref.[2] and let

curvatures relakhase=3.722418 and P;)=3.719JA)),
so Eqgs.(A4) and (A5) still hold.

e. Estimate for a natural foanin natural foams, bubbles
with five, six, and seven sides domindtks]. As a zeroth-
order estimate, we conjecture that

(A5)

e~e(6)~3.72, (AB)

and the minimum value ofP;)/(\/A,) is closer toe(6)
~3.72 than toe()~3.71:

th3.72§y2i VA,

where the subscrigt stands for hexagons.

n- f. Comments on this estimate.Morgan’s above example
[43], bothe and(P;)/(JA;) are lower than this value. On the
other hand, when all areas are equal, the minintboney-
comb lattice[1]) has of course=3,.;/3;\A;=e(6). For
convex bubbledi.e., with straight edgesit has been dem-
onstrated thae=e(6) [44]. Finally, note that it is compat-
ible with the fact that for convex hexagofi., with straight
edge$ with 27/3 angles,2;L; is a function of=;A; only
[30].
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