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Evolution of force distribution in three-dimensional granular media
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Based on the discrete element method, the nature of normal contact force distribution and the effect of
microstructure(contact fabri¢ on stresses in granular media sheared under constant mean stress condition is
analyzed. The particles are tested in a periodic cell, having a nearly monodispersed system of spherical
particles(“hard” and “soft” ). The granular systems were initially isotropically compressed to have different
solid fractions in order to obtain “dense” and “loose” samples. To study the nature of the force distribution,
the granular medium was considered as Hotimoncohesive andi) with low values of interface energy. For
the granular systems considered here, the nature of force distribution is shown to be dependent on shear
history. The amount of interface energy introduced in the granular system does not seem to change the nature
of normal force distribution significantly. However, it improves the postpeak stability in agreement with
previous researcfC. Thornton, Geotechniqug0, 43 (2000]. The simulation of systems subjected to quasi-
static shearing, in general, reveals that in a hard systth dense and loogethe normal contact force
distribution (i) at “peak” shear strength is purely an exponential decay throughout the entire range of force
scale that is used, ar{d) at “isotropic” and “steady” states, the contact normal force distribution is bimodal
with forces greater than average decaying exponentially at both the states, while the forces less than average
tend to be half-Gaussian at the “isotropic” state and a second-order polynomial function at the “steady” state.
For the soft(dense system, the normal contact force distribution at “peak” shear strength is bimodal with
forces greater than average decaying exponentially while the forces less than average tend to be a second-order
polynomial function. However, for the soft system at both “isotropic” and “steady” states, the contact normal
force distribution is half-Gaussian throughout the entire range of force scale that is used. It has been pointed
out that in a granular system undergoing slow shearing, the shear strength of the system seems to depend on
the ability of the material to form strong fabric anisotropy of contacts carrying stfgregter than average
force.
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I. INTRODUCTION mean-field solution, has predicted an exponential decay over
the whole range of forces. This significant result has led to
Granular materials are composed of a large number othe possibility of finding a relatively higher probability for
solid particles that interact with each other at contact point®iormal forces greater than average. Behringer and Miller
when loaded at the boundary. The study of force and streg49] have conducted experiments to study the effect of fluc-
fluctuations in a bulk of granular media is a subject of cur-tuations in the normal stress in a relatively slow granular
rent interesf1—-13]. Attempts have been made to search forshear flow. Their predictions compare well with the results
a better understanding of the contact force distribution inobtained using the model. The improved) model, called
granular materials and to find its correlation to the macrothe « model, proposed recently by Socold@0], has pre-
scopic stres$4,8,13 or the bulk dynamic property, for ex- dicted that for a two-dimensional system of noncohesive par-
ample in the low-velocity regimgl]. ticles in a periodic cell, the force distribution is similar to the
In granular media, the transmission of forces from oneone obtained in the model. However, the “toy” model
boundary to another can occur only via the interparticle conproposed recently by Sextoet al. [10] has predicted the
tacts. Hence the distribution of contacts will determine theprobability distribution of forces as Gaussian at all stages of
distribution of forces within the system of particles. Thesecompression and shows no evidence of an exponential tail.
forces will not necessarily be distributed uniformly. This im- Using molecular-dynamics and contact-dynamics simula-
portant qualitative observation of stress distribution can bdions, Radjaiet al. [21-23 have shown that in a two-
seen in photoelastic studies of two-dimensional disks redimensional system, the normal contact forces less than av-
ported by many investigatofd4—17. The inhomogeneous erage follow a power-law distribution, while the normal
distribution of optical fringe patterns in these studies, evercontact forces greater than average follow an exponential
for a homogeneous applied load, reveals that the load idecay. The recent discrete element simulation by Thornton
transmitted by relatively rigid, heavily stressed chains of parand Antony[11] on a three-dimensional system of particles
ticles that form a relatively sparse network of larger thanhas predicted a similar behavior of power-law variation for
average contact forces. The groups of particles separating ttierces less than half the value of average and an exponential
strong force chains are only lightly loaded. There has been decay for forces greater than average. Although a single
surge of activities at present to identify the probability dis-model does not fit to their data for the entire range of forces,
tribution of contact normal forces in granular media. Thea model with the same form as that of themodel fits the
knowledge of this distribution would lead to a suitable physi-force distribution greater than the average well. However, a
cal model. For example, thg model[9,16,1§, based on a purely empirical model proposed by Mueét al. [7] pro-
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vides an excellent fit to their data as well as for the simula- Il. SIMULATIONS
tion on a three-dimensional packing performed by Radjai

et al. [8]. The experiments conducted by Mueshal. [7] The simulations are carried out using the discrete element

. . T method(DEM), which was originally developed by Cundall
have predicted a nearly uniform probability distribution for and Strack26]. The method models the interaction between
contact normal forces less than the average value.  qniiguous particles as a dynamic process and the time evo-
Although a consensus on thg nature of‘ the d|s,t,r|but|o_n ofution of the particles is advanced using an explicit finite
contact forces in granular media and a “perfect” physical gifference scheme. The interaction between the neighboring
model to capture the force distribution is far from having particles is modeled by algorithms based on theoretical con-
been achieved, recent numerical simulations on a twotgct mechanics provided by Thornton and Yi#7] and
dimensional[21-24 and three-dimensional system of par- Thornton [28]. For the detailed information about the nu-
ticles [8,11,24 under quasistatic shearing have revealednerical methodology, the reader should refer to Cundall and
some exciting features. It has been shown that the normairack[26]. The advantage of using the DEM with granular
force contribution is the major contribution to the total stressmaterials is its ability to give more information about what
tensor and the spatial distribution of normal contact forceappens inside the system. This enhances the understanding
can be divided into two subnetworks, viZi) the contacts of the physics of the granular media.
carrying less than the average forderming “weak force The simulations are carried out in a three-dimensional
chains”) and(ii) the contacts carrying greater than the aver-cynoidal periodic cell having a nearly monodispersed system
age force(forming “strong force chains). The contacts that  of particles. A large spherical particle with a diameter 0.05
slide are predominantly in the weak force chains and theynm was generated at the center of the periodic cell and was
contribute Only to the mean stress while their contribution tOsurrounded by 5000 monosized Spherical partic'es with a di-
the deviator strestshear strengthis negligible. The contri-  ameter 0.01 mm, initially randomly located within the acces-
bution of the strong force chains to the deviator stress is thgiple domain of the cell. These particles were generated in
dominant contribution. Hence, the weak force chains play @ne million trials. At this stage, the particles were having no
role similar to a fluid surrounding the solid backbone com-contacts. It is worth noting that the two ways to achieve a
posed of the strong force chains. A recent investigal®5}  |arge number of particles generated in a periodic cell are by
for hydrodynamic interactions on concentrated system alsghcreasing either the size of the periodic cell or the number
reveals that the distribution of stresses in flowing aggregategf trials. The former may be difficult and also time-
suspensions exhibits similarities with the stress distributiortonsummg during the isotropic compression stages, while
in granular systems, characterized by approximately expothe latter may take a considerably long time. Keeping the
nential decay at large stresses. _ right balance between these two methods could be sufficient
The present paper gives results based on discrete elemégigenerate the granular assembly of interest. All the particles
method simulations for the evolution of the contact normalyere given the following properties: Young's modulus,
force distribution in a nearly monodispersed system of par—7q GPa(*hard”) or 70 MPa(“soft” ), Poisson’s ratia
ticles. The particles were tested in a periodic cell having a- (.3, coefficient of interparticle frictiop.=0.3, and differ-
large solid spherical particle submerged in a bed of monoant values of interface energy, viZ,=0.6, 6, 12, and 20
dispersed spherical particles. The single large solid sphericajn?, after the particles were initially generated, the system
particle(whose diameter is five times greater than that of thg, 55 isotropically compressed until a mean stressl kPa

surrounding particlgss referred as a “submerged particle.” \yas obtained using a numerical algorithm of the following
It is of interest to analyze how the system of particles reqom:

sponds to the force transmission and the associated features

during slow shearing. The specific objectives of the present e=e+g(pa—ps). )
investigation are to study the evolution of normal contact

force distribution in granular system witfi) noncohesive |n the above equatiors is the strain ratepy is the desired
particles(interface energy" =0 J/nf) and(ii) low values of  jsotropic stress, ang, is the obtained isotropic stress at a
interface energyl(=0.6, 6, 12, and 20 J/t The effect of  particular stage. An initial strain rate of 19s * was speci-
the solid fraction(relatively “dense” and “loose’) and  fied that was progressively modified according to E.

modulus of elasticity of particlegrelatively “hard” and  using a value for the gain parametey calculated from
“soft” ) on the normal force distribution has been consid-

ered. It will be shown that for granular systems sheared un- g=[€e/(Pga— Po) linitial - 2

der the high constant mean stress condition, the nature of

normal force distribution for particles with low interface en- Equations(1) and(2) ensure that the strain rate decreases as
ergies(considered in this studys characteristically not very the stress difference decreases and that the strain rate tends to
different from that of noncohesive particles. Particular attenzero as the calculated value of the isotropic stress approaches
tion has been paid to study the shear resistance charactertbe desired value, thereby bringing the system to equilib-
tics of these granular systems during slow shearing. It hasum. In order to get a stable system at the desired stress
been pointed out that the shear resistance of quasistatievel, calculation cycles were continued until the solid frac-
granular systems seems to depend on the ability of the maion and coordination number had attained constant values.
terial to form a strong anisotropic fabric network of contactsThis procedure was used to progressively raise the isotropic
carrying strong(greater than averagéorce. stress to create different samples having an isotropic stress
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' cant deviation of they/p curve was observed with that of

I'=0.6 J/nf, except that the increase in interface energy
1 seems to improve the stability of tlygp curve. For the hard
& o =063’ Hard (loose (loose system, the results corresponding lf(;6_an_d_ 12
s &£ . T=0.6J/m’ Soft (dense) JInt are not presented here, as there was no significant de-
-.g o © I=0¥m’ Hard (dense) viation observed with that df =0 and 0.6 J/h To summa-
@ = = =20’ Hard (loosc) rize, it can be said that for granular systems sheared under
s & 0¥ Had@ooss) | the(high) constant mean stress condition, an increase in the
’ ST value of interface energy of particles does not seem to sig-
o nificantly affect the overall behavior of thg/p curve with
r % ° o o o > that of the noncohesive granular system, nevertheless it
02 could improve stability, especially during postpeak behavior.
deviator strain Hence for the further analysis carried out in this paper, the

samples with interface enerdy=0.6 J/nt are considered,
unless stated otherwise. In the following, we probe further
some features of thg/p curve and the evolution of the force

. . . . distribution. To evaluate the behavior of tlggp curve in
level of either 20 or 100 kPa. The sample with an |sotrop|:§/eta"’ the results corresponding to a séfense system

FIG. 1. Variation of stress ratiay/p, during shearindq=o0;
— 03, p:(0'1+0'2+0'3)/3]

stress of 100. kPa 1S refer(ed to as the “den;e” sample an ith interface energy =0.6 J/nf) are also incorporated in
the sample with an isotropic stress of 20 kPa is referred to ig. 1 for comparison.
the HIOOSS” sa,r’nple. In total, three samples were prepared, Although the normalized stress ratidp (Fig. 1) for both
viz., two hard” samples(dense a_nd loose with solid frac- cases of the hard systefense and looseattained fairly the
tions 0'633 and 9'618’ .respectlv)alyand a SOﬁ. samp_le same value at peak0.88, the dense system attained a peak
(dense, W.'th a solld.fracuon 0.59AL the end of ISOUrOPIC 3¢ earlier than that of the loose system during shearing. The
compression, the microstructure of the samples was isotrQy,,se system attained “peak” shear strength at deviator
pic. The mechanical coordination numbers at the isotropi(:strain 0.035, and the loose system attained peak shear
state for the two hard systenense and Ioos}e_and the soft strength at deviator strain 0.111. Both the dense and loose
;ystem were 5.689, 4'76Lfnd 7.70, respec.tlvely. F_or Shea§'ystems attained the “steady” state at deviator strahl15.
Ing, a strain rate of 10°s was employed n the smula- In the case of the soft system, the stress rafip curve
tlons..The samples were subjectgd to the ?X'Symmet“c COMncreases at a lower rate than that of the hard system. For the
pression test ¢,>0,=03). During shearing, the mean q,¢ oy stem, a well-defined peak in thép curve is not ob-
stressp= (o, + 0, + 03)/3 was maintained constant at 100 go\ 04 " ynlike in the hard system. However, after a consid-
an_d 20 kPa for _the dens_e and loose samples, respectivelgrable ’drop in the value af/p at deviator str’ain 0.15, the
using the numerical algorithm. soft system attained the maximum valuegip (~0.2) at
about a deviator strain 0.197. For the soft system, this state is
referred to as “peak” here. At this point in time, we are not
very aware of the reasons that control the behavior of the
Figure 1 shows the normalized shear strer(gtress ratio  shear strength curveg(p). However, later in this paper, an
q/p) for the granular systems during shearifdeviator  attempt will be made to look into this aspect, and a possible
strain e;—e€3). The stress ratio is defined as the ratio oflink with the nature of force distribution in the granular sys-
deviator stress)=(o;— 03) to the mean stresp. In this  tems during shearing is discussed. Let us now look into the
figure, the results for the case of particles with surface ennature of force distribution in the granular systefsslected
ergy I'=0.6J/n? are presented for har@llense and looge here subjected to slow shearing.
systems. The results corresponding to the noncohedive ( Recent numerical simulationgor example,[11]) have
=0 J/nf) hard(densé system are incorporated for compari- shown that the normal contact force contribution is the domi-
son. From this figure, it can be observed that the variation ohant contribution to the deviator stress tensor, whereas the
the stress ratio for the noncohesive haddnse system is not  tangential contact force contribution is very small during
significantly different from that of particles withl’ slow shearing. This behavior has also been observed in the
=0.6J/nf. Also, no significant further deviation was ob- present simulations. Hence it is of interest to look in detail at
served for the harddensé system of particles tested with the evolution of the probability distribution of the contact
I'=6, 12, and 20 J/fand hence it is not presented here.normal force in the system.
However, comparing the/p curves for the cases of hard
(densé systems withT =0 and 0.6 J/rhindicates that the
presence of interface energy of particles could improve the
stability of the systenfespecially postpeak behaviaheared Figure 2 shows the evolution of normal contact force dis-
under the high constant mean stress condition, as reported fribution for a typical noncohesive hatdensg granular sys-
another recent studj12]. In Fig. 1, for the hard(loose tem during shearing. Figures 3—5 show the evolution of the
system, the typical results correspondinglte=0 and 20 probability distribution of the contact normal force for the
JInt are also incorporated for comparison. Again, no signifi-hard and soft systems with interface enerdy=0.6 J/n)

Ill. RESULTS AND DISCUSSION

A. Nature of force distribution
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FIG. 2. Evolution of the probability distribution of contact normal forces for the noncohesive (Hars¢ granular system during
shearing. The numbers in the legend correspond to the deviator strain.

during shearing. From these figures, it is interesting to note For a further increase in deviator strain, the force distri-
that the probability distribution of contact normal force is bution gradually changes, and at “peak” state the probabil-
shear-state-dependent, even for a noncohesive granular sys distribution [Fig. 6(b)] for contact normal force decays
tem. The evolution of force distribution for the case of theexponentially with
noncohesive hardoose system is not presented as it was

not characteristically very different from that of the granular

system with interface energy=0.6 J/nt (as one would )
expect from Fig. L Although the intention is not to fit a and (3=1.100, remarkaply throughput the entire force scale
model for force distribution for all stages of shearing, it is that is u_sed. As the deviator str_aln increases further, th_e force
attempted to fit the present data for some selected states, viglistribution curve gradually swings ba¢kig. 2) and attains

isotropic (before shearing peak, and steady states: see Figs_a’bimodal distribution at the steady state. At steady state, a
6 and 7. good polynomial fit is obtained for the forces less than aver-

age in the following form:

P(f)xe ! ©6)

1. Noncohesive granular system 2

o _ P(f)=A+Bf+Cf 7
We analyze the nature of force distribution for a typical

case of the noncohesive hafdense granular system. It is  with A=0.171,B=0.194, andC= —0.223. At steady state,

observed that, for the isotropic stdféig. 6(@)], the probabil-  the probability distribution for contact normal force greater

ity distribution for contact normal forces fits reasonably well than average is exponential as defined in B, with 8

with the same form as that of themodel withk=2 as =1.480.

P(f)=[K(k—1)1]f* Te (©)) 2. Granular system with interface energy

Now, let us look into the nature of force distribution for
the hard(dense and loogend soft(dense granular systems
ith a typical interface energyl(=0.6 J/nf).

For the hard dense system at isotropic sthtg. 7(a)], the
probability distribution function for contact normal forces
less than average fits well with the half-Gaussian distribution
defined in Eq(4) with Y,=0.046,X.=0.520,w=0.845, and
A=0.126. For forces greater than average, the probability
distribution of contact normal force decays exponentially as
with Y,=0.103, X,=0.358, w=0.716, andA=0.057. For defined in Eq.5) with 3=1.410. For a further increase in
the forces greater than average, the probability distribution ofleviator strain, the force distribution gradually changes, and
contact normal force is exponential with at the “peak” state the probability distributidirig. 7(b)] for
the contact normal force decays exponentially as defined in
Eqg. (6) with 8=1.200, remarkably throughout the entire
force scale that is used. As the deviator strain increases fur-
ther, the force distribution curve gradually swings béelg.

wheref=N/{N) and(N) is the average contact normal force.
However, it can be noted that the probability distribution
function for contact normal forces less than average fits wellV
with the half-Gaussian distribution defined as

P(f)=Yo+ e 21-X0 W (@)

WA/ /2

P(f)ce AI7D 5
and 8=1.440.
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3) and attains a bimodal distribution at the steady state. Agood polynomial fit is obtained for forces less than average
steady state, a good polynomial fit is obtained for the forcesis defined by Eq(7) with A=0.214,B=—0.035, andC=
less than average as defined in K@ with A=0.189,B —0.052. For forces greater than average at steady state, the
=0.202, andC=—0.248. At steady state, the probability contact force distribution decays exponentially as defined in
distribution for contact normal force greater than averageEq. (5) with 3= 1.350.
decays exponentially as defined in Ef), with 8=1.420. For the soft system, the normal contact force distribution
For the hard loose system in the isotropic si&ig. 7(c)], is found to be entirely half-Gaussian at the “isotropic” and
the contact normal force distribution for forces less than av-‘steady” states[Fig. 7(e)], as defined by Eq(4). The fit
erage fits well with the half-Gaussian distribution as definedparameters used in E¢) for the isotropic state are as fol-
in Eq. (4) with Y;=0.024, X,=0.279, w=1.487, andA  lows: Y,=0.001,X,=0.548,w=1.559, andA=0.283. For
=0.318. For forces greater than average, the contact normttie steady state, the fit parameters are as follovg;
force distribution is exponential as defined in Ef) with =0.001,X.=0.498,w=1.666, andA=0.276. However, at
B=1.420. For a further increase in deviator strain, the forcghe “peak” state, the contact force distribution is bimodal,
distribution gradually changes, and at the “peak” state, as irunlike in the hard system where the contact force distribution
the hard dense system, the probability distribution for theat “peak™ shear strength tends to be an exponential decay
contact normal force$Fig. 7(d)] tends to decay exponen- throughout the entire force scale that is used. The contact
tially as defined by Eq.6) with 8=2.140, remarkably normal force distribution with forces less than average seems
throughout the entire force scale that is used. As the systeito fit well with a second-order polynomial function as de-
is sheared further, the force distribution swings back andined by Eg.(7) with A=0.207, B=0.274, C=—0.298,
fluctuates in a short range of deviator stréfiig. 4), before ~ whereas forces greater than average decay exponentially as
eventually attaining the steady state. At the steady state, defined by Eq(5) with B=1.510.
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FIG. 3. Evolution of the probability distribution of contact normal forces for the Hdehse granular system during shearing. The
numbers in the legend correspond to the deviator strain.
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FIG. 4. Evolution of the probability distribution of contact normal force for the h@mdse granular system during shearing. The
numbers in the legend correspond to the deviator strain.

B. Features of the contact force, contact fabric, and their ~ Does the nature of force distribution and the associated con-
possible correlation to shear strength(q/p) curves tact structurefabric) influence theg/p curves(Fig. 1) in any
In the previous sections we observed that the nature ofvay? Although one would intuitively expect that the nature
force distribution in granular media during slow shearingof force distribution and the contact fabric would have a
depends on the shear history. A natural question now arisestrong role to play in building up the shear strength, this
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FIG. 5. Evolution of the probability distribution of contact normal forces for the &dénse granular system during shearing. The
numbers in the legend correspond to the deviator strain.

aspect is not yet well understood. In this section, we probe ichains and they contribute only to the mean stress while the
detail the contribution of force chains and their structure tostrong force chains contribute to the deviator streswear
the shear strength. strength. Also, the normal contact force contribution is the
As presented earlier in Fig. 1, one could observe that thgiominant contribution to the deviator stress tensor, whereas
normalized stress ratig/p at “peak” for the soft system is  the tangential contact force contribution is very small during
far lower (~0.2) than that of the hard syste-0.88. Al-  giq\y shearing. Hence it would be of interest to evaluate the
thbough the SOE[ Zy?tengj preslfr)te_d here IS qense, we could " ntribution of the contacts having greater than average nor-
observe a well-defined peak in igp variation curve. Re—_ mal contact force coupled with their structure during shear-
cently, Thornton and Anton}?29] have carried out a numeri- ing
cal s_lmulatlon for _the slow shearlng O.f a scﬁtt_ense, SOI'd. Figure 8 shows, for the granular syste(mgth interface
fraction 0.685 particulate system. It is interesting to note in . .
&nergszO.G J/nt), the evolution of the maximum value

their simulation that the elastic properties of the particles ha . .
the same values as that of the one considésef) in the of contact normal force experienced by the systems during

present study. However, the only difference is that, in theirShearing''“T,hiS is presented in terms of plotting the maximum
simulation, they considered the particles as polydispefised value of _ f found_m the c_orrespondmg force d|§tr|but|on
size). They have reported a defined peak in tig@ curve graphs(Figs. 3__—5, irespective qf the number of times they
(g/p is ~0.75 occurring at deviator strair-0.15. Although occur(propabmty value; at this instance. From this figure,
one may expect a higher value of shear strength for a polythe following observations could be madg) for all the
dispersed system than that of a monodispersed system whéhistems considered here, the maximum value of the normal
other properties of the systems are identical, the sheagontact force observed at states corresponding to the “peak”
strength observed for the soft system in the present study ghear strength is far higher than that of their neighborhood
quite low, and this has motivated us to probe further. deviator strain leveld(ii) at “steady” state, interestingly for

As presented in the Introduction, one could recall that theall the systems considered here, the maximum value of the
contacts that slide are predominantly in the weak forcenormal contact force seems to have attained nearly the same
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FIG. 6. Best fits for the probability distribution of contact normal force for the noncohesive (daréé granular systems during
shearing.

value. We are aware that, at steady statanetimes referred 1 M

to as “critical state’), the granular system would attain a dij=(nin;)= MZ nin;, (8)
“critical density.” At the critical state, the system is ex- !

pected to attain a uniform variation in mechanical coordina- . ) .

tion number(average number of load-bearing contacBne whereM is the number of contacts in the representative vol-
may observe from Fig. 9 that, at steady state, the systen’réme element and; defines the components of the unit nor-
have attained a stable, nearly uniform value of the mechanimal vector ai a contact hetween two paricles.

S Figure 10 shows the variation @& the deviator fabric
cal coordination number. We have now observed that at th . . .
N . . . ¢1— ¢3) and(b) the deviator fabric of contacts with strong
critical state,” the systems seem to have attained a uniqu

value of the maximum normal contact force as well. From orces (>1), for the hard and soft systems during shearing.
' From this figure, it may be observed that the hard system is

Figs. ,3_5' 8, and 9, one could further observe .that dur'nQar more strongly anisotropic than the soft system. The maxi-
shearing, the contacts seems to undergo a continuous corgy degree of structural anisotroplig. 10a)] developed
pression and relaxation of the force chains, though the m&y, the hard dense and loose systems-&125 and~0.15,
chanical coordination number remains fairly uniform for respectively, whereas for the softense system it is
most of the shearing. ~0.022. At steady state, the maximum degree of structural
Now, let us focus our attention on coupling the group ofanjsotropy for the hard dense and loose systems(dsl05
contacts(in terms of structurethat are carrying the strong and 0.14, respectively, whereas for the soft system it is
forces and their evolution during shearing. To do this, the~0.02. It may be pointed out here that, for the polydispersed
structural anisotropy in the granular assembly is defined bgoft system simulated by Thornton and Antdrdg], it has
the distribution of contact orientations, which may be definecbeen shown that a maximum structural degree of anisotropy
by a “fabric tensor” ¢;; , suggested by Satak80] as is obtained at a value 0f0.065, reducing to 0.045 for the
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FIG. 7. Best fits for the probability distribution of contact normal force for the hard and soft granular systems during shearing.

steady state. These values clearly demonstrate that the ishows the evolution of the deviator fabric of strong contacts
duced structural anisotropy developed during shearing is sigf>1) within the overall system. It may be observed that

nificantly dependent on the elastic modulus of the particleshere is a strong anisotropic structure for contacts carrying
and the solid fraction of the granular system. Figurébl0 strong forces within the overall system. One can also observe
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FIG. 8. Variation of the maximum contact normal force during
shearing. FIG. 9. Variation of the mechanical coordination number during
shearing.

that fabric anisotropy of strong contacts for the soft system

considered in this study is far less anisotropic than the hardntony [29] (with the same elastic properties as in the
systems. It shall be pointed out here that the polydisperse@resent soft system, but polydispersetthe deviator stress
soft system simulated by Thornton and Antof89] has Was fairly equal to the fabric deviator stress due to contacts
shown a maximum structural degree of anisotropy value fowvith f>1. Figure 12 shows the variation of the fabric devia-
the strong contacts as-0.275, reducing to~0.25 in the tor stress due to contacts witf>1 during shearing. It is
steady state. This clearly demonstrates that the developé@teresting to note that the followingi) For both the dense
induced structural anisotropy of the strong contacts in thénd loose hard systems at steddyitical) state, the fabric
soft system considered in the present study is relativelfeviator stresses contributed by the strong contacts have av-

weak. eraged out and attained a critical val(e). In the case of the
The structural anisotropy tensef; may further be de- soft system, althOl_Jgh the_ maximum value of the normal con-
composed as followEL1]: tact force did attain a unique value on the force scale at the
critical stage(Fig. 8), the fabric deviator stress contribution
¢ij=(1—-v) ¢ +v i, (99  of the strong force chains could not attain this unique value

at the critical state. It is worth remembering here that the
where the superscriptsw’ and “ s” indicate the weak and probability distribution[Figs. 5 and )] of contacts for the
strong force subnetworks and)" is the proportion of con-  soft system at isotropic and steady states is entirely half-
tacts withf>1. As reported earlier, in the present simula- Gaussian throughout the entire force scale that is used and
tions the subnetwork of contacts with>1 develops a strong seems to differ very little during shearing, except in a few
anisotropic structure, and the weak subnetworks were nearkyistancestiii) In Fig. 12, there occurs two local peaks, at one
isotropic[11,21—24,29 though this is not presented here. In instance each for the dense and loose hard systems. One
order to examine the contribution of the subnetwork of con-could not observe a direct correlation of this with the me-
tacts with strong forces, it is useful to define the fabric stresshanical coordination numbdi.e., the average number of
gifj as[31] load-bearing contackswhich in fact remains nearly the same

(Fig. 9). However, Fig. 13 shows the typical variation of the

a'iszo'kkq')ij ) (10)  total number of contacts for the hard dense system, bifur-

cated into two classes, i.e., contacts with greater than
Thornton had assumed thE31] the deviator stres¢q) is  average andii) less than average normal contact force. It is
equal to the fabric deviator stress contribution of contactsnteresting to note that the fluctuations in Fig. 12 seem to tie
transmitting greater than average normal contact force. Figin with the fluctuations shown in Fig. 13. The local drop in
ure 11 shows the variation between the deviator stress artie number of strong contact$>1), without a noticeable
the fabric deviator stress due to contacts carrying forceshange in the coordination number of load-bearing contacts
greater than averagee., o (1 — ¢3)°]. From this figure it  (Fig. 10, could suggest a local redistribution of strong
can be observed that, for both the cases of hard systems, thaces.
deviator stress variation is nearly equal to the fabric deviator
stress due to contacts wift»>1. Although there is a linear
variation of this in the case of soft systems, the fabric stress
contribution of contacts withf>1 is only about half the To summarize, an attempt is made to search for a better
deviator stress, or in other words, the soft system considereghderstanding of the evolution of the contact normal force
here is unable to build up the strong>1) anisotropic distribution during shearing using a nearly monodispersed
structure to mobilize the shear strength. It is worth statingsystem of particles in a three-dimensional periodic cell. The
here that, for the soft system examined by Thornton angystems with different elastic propertiéglatively hard and

IV. CONCLUDING REMARKS
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FIG. 10. Variation of the deviator fabric of hard and soft systems during shedanfpr the overall system(b) for strong contacts only.

soft) and solid fraction(relatively dense and loosevere  presented in this paper, the power-law distribution was sat-
tested. It was observed that the contact normal stress contiisfactory only for~f<0.5 and hence is not presented here.

bution is the dominant contribution to the stress ratip. For the case of harddens¢ and soft systems considered

Simulations have been carried out for both cases of nonctere, one could observe a well-defined peak in the distribu-
hesive hard granular system and hard granular systems witfbn of weak forces, especially at isotropic and steady states.
low values of interface energy between the particles. Thet should also be remembered that the peak in the weak force
results seem to indicate that the amount of interface energyjstribution changes during shearing and is clearly sensitive
introduced between particles has not significantly changeg, the shear history. This is quite an important issue as pre-

the characteristic features of the force distribution compared, ;s researchers have reported different types of force dis-
with that of noncohesive particles sheared under(tigh) i ion, especially for weak forces, for example a uniform

o Wistribution [7], power law[21-23, exponential[9,16,1§
prove the stability of the shear strengtf¢) curve. It would and Gaussiafil0]. At this point in time, it is quite difficult to

be interesting to investigate in future the effect of interface . . .
. ... ._compare the present work with other researcher’s experi-

energy of the particles on the nature of the force distribution . .
ents, as their results are not related to the shear history of

sheared at low mean stress levels or with particles havin ; . . .
high values of interface energy, sheared under high mea gsysten(coupleq with the solid fraction and el‘?‘St'C prop-
stress levels. At low stress levels, the contribution of inter£rties of the particles However, the present simulations
face energy of particles could be more significant; this is yeSNOW that any of these distributions for weak forces is quite
to be confirmed. Also, the influence of interface energy o ossible, depending largely on the shear hlstor_y o.f thg granu-
soft granular systems has yet to be investigated. ar system. It has be_en shoyvn that the fo.rce d|str|b.ut|on also

The distribution of contact normal force in a granular sys-déPends on the solid fraction and elastic properties of the
tem during slow shearing, even for a noncohesive case, Rarticles. In both types of harttiense and loogesystem
sensitive to the shear history. The probability distribution forconsidered here, the probability distribution of the greater
the contact normal force is quantified for the isotropic, peakthan average contact normal forces is an exponential deca_ly
and steady states during shearing. It is interesting to note thigr both the isotropic and steady states, and the exponent is
the contact normal force distribution at peak shear strengtACt Very different. The central message of this paper is that
for both cases of hard systefdense and loosetends to

decay exponentially throughout the force scale that is used. I +60

is shown that, for the hard system, the probability distribu- ¢ 140 ® hard (dense) a

tion of the less than average contact normal force attains ¢ & 120 & hard (loose) -

different type of distribution during shearing, varying from a ' & e O soft (dense) o e
K .. . . . - o0 linear fit (hard) a®

half-Gaussian distribution at the isotropic state through ag & . - - linear fit (sofy

uniform distribution, before being part of a completely expo- 5 § - .

nential decay for the entire force scale at the peak state. Fog @ 60 el

further shearing, the system follows a reverse cycle befored g 40 /

eventually attaining a bimodal distribution at steady state, s 8 20

with forces less than average following a second-order poly-£ —-——@i’@ :

nomial distribution and forces greater than average following 20 20 40 80 8n 100

an exponential decay. It is worth mentioning here that an
attempt was made to use a power-law distribution to fit the
probability distribution of less than average contact normal FIG. 11. Variation of the fabric deviator stress contributed by
forces (for example, sed21-23). However, for the data contacts with strong force with the deviator stress.

deviator stress 'q’ (kPa)
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FIG. 12. Variation of the fabric deviator stress contributed bythus allowing statistically more accurate calculations. It is
contacts carrying strong force during shearing. worth mentioning here that an ongoing shear simulation for
an entirely monodispersed particulate systewth proper-

force fluctuation in a granular medium is very sensitive tolles identical to those reported hiteas shown all the char-

the shear history the system experiences. Hence a careit%l?te”.sm?s that are rept)ortgdtln th's pta;]per. _Furth]?fr Tves;lga—
observation of the shear strain levels when carrying out ex-'og IS md pro%_relss oth efermlned te S'ZZ. ?'S&@;ﬁo a
perimental measurements and their interpretation is require ubmerged particie on Ihe forcé and stress cistriby

his would give us an idea of the length scale in which the

It has been pointed out that the induced structural anisot- " th Id break d h tudving th
ropy developed during shearing is significantly dependent offoNtinuuM theory wou reax down wnen studying the

the elastic modulus and solid fraction of the granular Sysmacroscopic behavior of granular media subjected to shear-
tems. For a granular system undergoing slow shearing, th&9-
shear strength of the system seems to depend on the ability
of the system to build a strongly anisotropic fabric network

of contacts carrying greater than average force. The present This work has been supported by ICI Technology Ltd.,
simulations were carried out with a relatively small numberWilton, UK and EPSRC, UK Grant No. GR/M3390) The

of particles due to the limitations in computer power avail-author is grateful to Dr. C. Thornton for useful conversations
able. However, further work from researchers in other laboin the past. The author acknowledges the helpful comments
ratories is required to confirm the findings reported in thisfrom Professor M. Ghadiri, Dr. F. Radjai, Dr. C. Hodges,
paper with simulations having a large number of particlesand J. Suberto.
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