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Evolution of force distribution in three-dimensional granular media

S. Joseph Antony
Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 5XH, England
~Received 1 December 1999; revised manuscript received 14 June 2000; published 18 December 2000!

Based on the discrete element method, the nature of normal contact force distribution and the effect of
microstructure~contact fabric! on stresses in granular media sheared under constant mean stress condition is
analyzed. The particles are tested in a periodic cell, having a nearly monodispersed system of spherical
particles~‘‘hard’’ and ‘‘soft’’ !. The granular systems were initially isotropically compressed to have different
solid fractions in order to obtain ‘‘dense’’ and ‘‘loose’’ samples. To study the nature of the force distribution,
the granular medium was considered as both~i! noncohesive and~ii ! with low values of interface energy. For
the granular systems considered here, the nature of force distribution is shown to be dependent on shear
history. The amount of interface energy introduced in the granular system does not seem to change the nature
of normal force distribution significantly. However, it improves the postpeak stability in agreement with
previous research@C. Thornton, Geotechnique50, 43 ~2000!#. The simulation of systems subjected to quasi-
static shearing, in general, reveals that in a hard system~both dense and loose!, the normal contact force
distribution ~i! at ‘‘peak’’ shear strength is purely an exponential decay throughout the entire range of force
scale that is used, and~ii ! at ‘‘isotropic’’ and ‘‘steady’’ states, the contact normal force distribution is bimodal
with forces greater than average decaying exponentially at both the states, while the forces less than average
tend to be half-Gaussian at the ‘‘isotropic’’ state and a second-order polynomial function at the ‘‘steady’’ state.
For the soft~dense! system, the normal contact force distribution at ‘‘peak’’ shear strength is bimodal with
forces greater than average decaying exponentially while the forces less than average tend to be a second-order
polynomial function. However, for the soft system at both ‘‘isotropic’’ and ‘‘steady’’ states, the contact normal
force distribution is half-Gaussian throughout the entire range of force scale that is used. It has been pointed
out that in a granular system undergoing slow shearing, the shear strength of the system seems to depend on
the ability of the material to form strong fabric anisotropy of contacts carrying strong~greater than average!
force.

DOI: 10.1103/PhysRevE.63.011302 PACS number~s!: 45.70.2n, 87.18.Bb, 87.64.Aa, 05.45.2a
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I. INTRODUCTION

Granular materials are composed of a large numbe
solid particles that interact with each other at contact po
when loaded at the boundary. The study of force and st
fluctuations in a bulk of granular media is a subject of c
rent interest@1–13#. Attempts have been made to search
a better understanding of the contact force distribution
granular materials and to find its correlation to the mac
scopic stress@4,8,13# or the bulk dynamic property, for ex
ample in the low-velocity regime@1#.

In granular media, the transmission of forces from o
boundary to another can occur only via the interparticle c
tacts. Hence the distribution of contacts will determine
distribution of forces within the system of particles. The
forces will not necessarily be distributed uniformly. This im
portant qualitative observation of stress distribution can
seen in photoelastic studies of two-dimensional disks
ported by many investigators@14–17#. The inhomogeneous
distribution of optical fringe patterns in these studies, ev
for a homogeneous applied load, reveals that the loa
transmitted by relatively rigid, heavily stressed chains of p
ticles that form a relatively sparse network of larger th
average contact forces. The groups of particles separatin
strong force chains are only lightly loaded. There has bee
surge of activities at present to identify the probability d
tribution of contact normal forces in granular media. T
knowledge of this distribution would lead to a suitable phy
cal model. For example, theq model @9,16,18#, based on a
1063-651X/2000/63~1!/011302~13!/$15.00 63 0113
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mean-field solution, has predicted an exponential decay o
the whole range of forces. This significant result has led
the possibility of finding a relatively higher probability fo
normal forces greater than average. Behringer and Mi
@19# have conducted experiments to study the effect of fl
tuations in the normal stress in a relatively slow granu
shear flow. Their predictions compare well with the resu
obtained using theq model. The improvedq model, called
the a model, proposed recently by Socolar@20#, has pre-
dicted that for a two-dimensional system of noncohesive p
ticles in a periodic cell, the force distribution is similar to th
one obtained in theq model. However, the ‘‘toy’’ model
proposed recently by Sextonet al. @10# has predicted the
probability distribution of forces as Gaussian at all stages
compression and shows no evidence of an exponential
Using molecular-dynamics and contact-dynamics simu
tions, Radjai et al. @21–23# have shown that in a two
dimensional system, the normal contact forces less than
erage follow a power-law distribution, while the norm
contact forces greater than average follow an exponen
decay. The recent discrete element simulation by Thorn
and Antony@11# on a three-dimensional system of particl
has predicted a similar behavior of power-law variation
forces less than half the value of average and an expone
decay for forces greater than average. Although a sin
model does not fit to their data for the entire range of forc
a model with the same form as that of theq model fits the
force distribution greater than the average well. Howeve
purely empirical model proposed by Muethet al. @7# pro-
©2000 The American Physical Society02-1



la
ja

or

o
a

ng
wo
r-
le
m
s

ce

er
t
he
t

th
y
m

ls
te
io
p

m
a
a

g
no
ric
th
’’
re
tu
e

ac

id
u
e
n-

en
te
ha
ta
m
cts

ent
ll
en
evo-
ite
ring
on-

-
nd

ar
at
ding

nal
tem
05
was
di-
s-
in

no
a
by

ber
-

hile
the
ient
les

m

ng

a

as
ds to
ches
lib-
ress
c-
es.

opic
ress

S. JOSEPH ANTONY PHYSICAL REVIEW E 63 011302
vides an excellent fit to their data as well as for the simu
tion on a three-dimensional packing performed by Rad
et al. @8#. The experiments conducted by Muethet al. @7#
have predicted a nearly uniform probability distribution f
contact normal forces less than the average value.

Although a consensus on the nature of the distribution
contact forces in granular media and a ‘‘perfect’’ physic
model to capture the force distribution is far from havi
been achieved, recent numerical simulations on a t
dimensional@21–24# and three-dimensional system of pa
ticles @8,11,24# under quasistatic shearing have revea
some exciting features. It has been shown that the nor
force contribution is the major contribution to the total stre
tensor and the spatial distribution of normal contact for
can be divided into two subnetworks, viz.,~i! the contacts
carrying less than the average force~forming ‘‘weak force
chains’’! and~ii ! the contacts carrying greater than the av
age force~forming ‘‘strong force chains’’!. The contacts tha
slide are predominantly in the weak force chains and t
contribute only to the mean stress while their contribution
the deviator stress~shear strength! is negligible. The contri-
bution of the strong force chains to the deviator stress is
dominant contribution. Hence, the weak force chains pla
role similar to a fluid surrounding the solid backbone co
posed of the strong force chains. A recent investigation@25#
for hydrodynamic interactions on concentrated system a
reveals that the distribution of stresses in flowing aggrega
suspensions exhibits similarities with the stress distribut
in granular systems, characterized by approximately ex
nential decay at large stresses.

The present paper gives results based on discrete ele
method simulations for the evolution of the contact norm
force distribution in a nearly monodispersed system of p
ticles. The particles were tested in a periodic cell havin
large solid spherical particle submerged in a bed of mo
dispersed spherical particles. The single large solid sphe
particle~whose diameter is five times greater than that of
surrounding particles! is referred as a ‘‘submerged particle.
It is of interest to analyze how the system of particles
sponds to the force transmission and the associated fea
during slow shearing. The specific objectives of the pres
investigation are to study the evolution of normal cont
force distribution in granular system with~i! noncohesive
particles~interface energyG50 J/m2) and~ii ! low values of
interface energy (G50.6, 6, 12, and 20 J/m2!. The effect of
the solid fraction ~relatively ‘‘dense’’ and ‘‘loose’’! and
modulus of elasticity of particles~relatively ‘‘hard’’ and
‘‘soft’’ ! on the normal force distribution has been cons
ered. It will be shown that for granular systems sheared
der the high constant mean stress condition, the natur
normal force distribution for particles with low interface e
ergies~considered in this study! is characteristically not very
different from that of noncohesive particles. Particular att
tion has been paid to study the shear resistance charac
tics of these granular systems during slow shearing. It
been pointed out that the shear resistance of quasis
granular systems seems to depend on the ability of the
terial to form a strong anisotropic fabric network of conta
carrying strong~greater than average! force.
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II. SIMULATIONS

The simulations are carried out using the discrete elem
method~DEM!, which was originally developed by Cunda
and Strack@26#. The method models the interaction betwe
contiguous particles as a dynamic process and the time
lution of the particles is advanced using an explicit fin
difference scheme. The interaction between the neighbo
particles is modeled by algorithms based on theoretical c
tact mechanics provided by Thornton and Yin@27# and
Thornton @28#. For the detailed information about the nu
merical methodology, the reader should refer to Cundall a
Strack@26#. The advantage of using the DEM with granul
materials is its ability to give more information about wh
happens inside the system. This enhances the understan
of the physics of the granular media.

The simulations are carried out in a three-dimensio
cuboidal periodic cell having a nearly monodispersed sys
of particles. A large spherical particle with a diameter 0.
mm was generated at the center of the periodic cell and
surrounded by 5000 monosized spherical particles with a
ameter 0.01 mm, initially randomly located within the acce
sible domain of the cell. These particles were generated
one million trials. At this stage, the particles were having
contacts. It is worth noting that the two ways to achieve
large number of particles generated in a periodic cell are
increasing either the size of the periodic cell or the num
of trials. The former may be difficult and also time
consuming during the isotropic compression stages, w
the latter may take a considerably long time. Keeping
right balance between these two methods could be suffic
to generate the granular assembly of interest. All the partic
were given the following properties: Young’s modulus,E
570 GPa~‘‘hard’’ ! or 70 MPa~‘‘soft’’ !, Poisson’s ratiov
50.3, coefficient of interparticle frictionm50.3, and differ-
ent values of interface energy, viz.,G50.6, 6, 12, and 20
J/m2. After the particles were initially generated, the syste
was isotropically compressed until a mean stressp51 kPa
was obtained using a numerical algorithm of the followi
form:

ė5 ė1g~pd̂2pô!. ~1!

In the above equation,ė is the strain rate,pd is the desired
isotropic stress, andp0 is the obtained isotropic stress at
particular stage. An initial strain rate of 1025 s21 was speci-
fied that was progressively modified according to Eq.~1!
using a value for the gain parameter~g! calculated from

g5@ ė/~pd2p0!# initial . ~2!

Equations~1! and~2! ensure that the strain rate decreases
the stress difference decreases and that the strain rate ten
zero as the calculated value of the isotropic stress approa
the desired value, thereby bringing the system to equi
rium. In order to get a stable system at the desired st
level, calculation cycles were continued until the solid fra
tion and coordination number had attained constant valu
This procedure was used to progressively raise the isotr
stress to create different samples having an isotropic st
2-2
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EVOLUTION OF FORCE DISTRIBUTION IN THREE- . . . PHYSICAL REVIEW E 63 011302
level of either 20 or 100 kPa. The sample with an isotro
stress of 100 kPa is referred to as the ‘‘dense’’ sample
the sample with an isotropic stress of 20 kPa is referred t
the ‘‘loose’’ sample. In total, three samples were prepar
viz., two ‘‘hard’’ samples~dense and loose with solid frac
tions 0.633 and 0.618, respectively! and a soft sample
~dense, with a solid fraction 0.69!. At the end of isotropic
compression, the microstructure of the samples was iso
pic. The mechanical coordination numbers at the isotro
state for the two hard systems~dense and loose! and the soft
system were 5.689, 4.76, and 7.70, respectively. For sh
ing, a strain rate of 1025 s21 was employed in the simula
tions. The samples were subjected to the axisymmetric c
pression test (s1.s25s3). During shearing, the mea
stressp5(s11s21s3)/3 was maintained constant at 10
and 20 kPa for the dense and loose samples, respecti
using the numerical algorithm.

III. RESULTS AND DISCUSSION

Figure 1 shows the normalized shear strength~stress ratio
q/p) for the granular systems during shearing~deviator
strain «12«3). The stress ratio is defined as the ratio
deviator stressq5(s12s3) to the mean stressp. In this
figure, the results for the case of particles with surface
ergy G50.6 J/m2 are presented for hard~dense and loose!
systems. The results corresponding to the noncohesiveG
50 J/m2) hard~dense! system are incorporated for compa
son. From this figure, it can be observed that the variation
the stress ratio for the noncohesive hard~dense! system is not
significantly different from that of particles withG
50.6 J/m2. Also, no significant further deviation was ob
served for the hard~dense! system of particles tested wit
G56, 12, and 20 J/m2 and hence it is not presented her
However, comparing theq/p curves for the cases of har
~dense! systems withG50 and 0.6 J/m2 indicates that the
presence of interface energy of particles could improve
stability of the system~especially postpeak behavior! sheared
under the high constant mean stress condition, as reporte
another recent study@12#. In Fig. 1, for the hard~loose!
system, the typical results corresponding toG50 and 20
J/m2 are also incorporated for comparison. Again, no sign

FIG. 1. Variation of stress ratio,q/p, during shearing@q5s1

2s3 , p5(s11s21s3)/3#.
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cant deviation of theq/p curve was observed with that o
G50.6 J/m2, except that the increase in interface ener
seems to improve the stability of theq/p curve. For the hard
~loose! system, the results corresponding toG56 and 12
J/m2 are not presented here, as there was no significant
viation observed with that ofG50 and 0.6 J/m2. To summa-
rize, it can be said that for granular systems sheared un
the ~high! constant mean stress condition, an increase in
value of interface energy of particles does not seem to
nificantly affect the overall behavior of theq/p curve with
that of the noncohesive granular system, nevertheles
could improve stability, especially during postpeak behav
Hence for the further analysis carried out in this paper,
samples with interface energyG50.6 J/m2 are considered,
unless stated otherwise. In the following, we probe furth
some features of theq/p curve and the evolution of the forc
distribution. To evaluate the behavior of theq/p curve in
detail, the results corresponding to a soft~dense! system
~with interface energyG50.6 J/m2) are also incorporated in
Fig. 1 for comparison.

Although the normalized stress ratioq/p ~Fig. 1! for both
cases of the hard system~dense and loose! attained fairly the
same value at peak;0.88, the dense system attained a pe
far earlier than that of the loose system during shearing.
dense system attained ‘‘peak’’ shear strength at devia
strain 0.035, and the loose system attained peak s
strength at deviator strain 0.111. Both the dense and lo
systems attained the ‘‘steady’’ state at deviator strain;0.15.
In the case of the soft system, the stress ratioq/p curve
increases at a lower rate than that of the hard system. Fo
soft system, a well-defined peak in theq/p curve is not ob-
served, unlike in the hard system. However, after a con
erable drop in the value ofq/p at deviator strain 0.15, the
soft system attained the maximum value ofq/p ~;0.2! at
about a deviator strain 0.197. For the soft system, this sta
referred to as ‘‘peak’’ here. At this point in time, we are n
very aware of the reasons that control the behavior of
shear strength curve (q/p). However, later in this paper, a
attempt will be made to look into this aspect, and a poss
link with the nature of force distribution in the granular sy
tems during shearing is discussed. Let us now look into
nature of force distribution in the granular systems~selected
here! subjected to slow shearing.

Recent numerical simulations~for example,@11#! have
shown that the normal contact force contribution is the do
nant contribution to the deviator stress tensor, whereas
tangential contact force contribution is very small duri
slow shearing. This behavior has also been observed in
present simulations. Hence it is of interest to look in detai
the evolution of the probability distribution of the conta
normal force in the system.

A. Nature of force distribution

Figure 2 shows the evolution of normal contact force d
tribution for a typical noncohesive hard~dense! granular sys-
tem during shearing. Figures 3–5 show the evolution of
probability distribution of the contact normal force for th
hard and soft systems with interface energy (G50.6 J/m2)
2-3



S. JOSEPH ANTONY PHYSICAL REVIEW E 63 011302
FIG. 2. Evolution of the probability distribution of contact normal forces for the noncohesive hard~dense! granular system during
shearing. The numbers in the legend correspond to the deviator strain.
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during shearing. From these figures, it is interesting to n
that the probability distribution of contact normal force
shear-state-dependent, even for a noncohesive granular
tem. The evolution of force distribution for the case of t
noncohesive hard~loose! system is not presented as it w
not characteristically very different from that of the granu
system with interface energyG50.6 J/m2 ~as one would
expect from Fig. 1!. Although the intention is not to fit a
model for force distribution for all stages of shearing, it
attempted to fit the present data for some selected states,
isotropic~before shearing!, peak, and steady states; see Fi
6 and 7.

1. Noncohesive granular system

We analyze the nature of force distribution for a typic
case of the noncohesive hard~dense! granular system. It is
observed that, for the isotropic state@Fig. 6~a!#, the probabil-
ity distribution for contact normal forces fits reasonably w
with the same form as that of theq model withk52 as

P~ f !5@kk/~k21!! # f k21e2k f, ~3!

wheref 5N/^N& and^N& is the average contact normal forc
However, it can be noted that the probability distributi
function for contact normal forces less than average fits w
with the half-Gaussian distribution defined as

P~ f !5Y01
A

wAp/2
e22~ f 2Xc!2/w2

~4!

with Y050.103, Xc50.358, w50.716, andA50.057. For
the forces greater than average, the probability distributio
contact normal force is exponential with

P~ f !}e2b~ f 21! ~5!

andb51.440.
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For a further increase in deviator strain, the force dis
bution gradually changes, and at ‘‘peak’’ state the proba
ity distribution @Fig. 6~b!# for contact normal force decay
exponentially with

P~ f !}e2b f ~6!

and b51.100, remarkably throughout the entire force sc
that is used. As the deviator strain increases further, the fo
distribution curve gradually swings back~Fig. 2! and attains
a bimodal distribution at the steady state. At steady stat
good polynomial fit is obtained for the forces less than av
age in the following form:

P~ f !5A1B f1C f2 ~7!

with A50.171,B50.194, andC520.223. At steady state
the probability distribution for contact normal force great
than average is exponential as defined in Eq.~5!, with b
51.480.

2. Granular system with interface energy

Now, let us look into the nature of force distribution fo
the hard~dense and loose! and soft~dense! granular systems
with a typical interface energy (G50.6 J/m2).

For the hard dense system at isotropic state@Fig. 7~a!#, the
probability distribution function for contact normal force
less than average fits well with the half-Gaussian distribut
defined in Eq.~4! with Y050.046,Xc50.520,w50.845, and
A50.126. For forces greater than average, the probab
distribution of contact normal force decays exponentially
defined in Eq.~5! with b51.410. For a further increase i
deviator strain, the force distribution gradually changes, a
at the ‘‘peak’’ state the probability distribution@Fig. 7~b!# for
the contact normal force decays exponentially as define
Eq. ~6! with b51.200, remarkably throughout the enti
force scale that is used. As the deviator strain increases
ther, the force distribution curve gradually swings back~Fig.
2-4
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EVOLUTION OF FORCE DISTRIBUTION IN THREE- . . . PHYSICAL REVIEW E 63 011302
3! and attains a bimodal distribution at the steady state.
steady state, a good polynomial fit is obtained for the for
less than average as defined in Eq.~7! with A50.189, B
50.202, andC520.248. At steady state, the probabili
distribution for contact normal force greater than avera
decays exponentially as defined in Eq.~5!, with b51.420.

For the hard loose system in the isotropic state@Fig. 7~c!#,
the contact normal force distribution for forces less than
erage fits well with the half-Gaussian distribution as defin
in Eq. ~4! with Y050.024, Xc50.279, w51.487, andA
50.318. For forces greater than average, the contact no
force distribution is exponential as defined in Eq.~5! with
b51.420. For a further increase in deviator strain, the fo
distribution gradually changes, and at the ‘‘peak’’ state, as
the hard dense system, the probability distribution for
contact normal forces@Fig. 7~d!# tends to decay exponen
tially as defined by Eq.~6! with b52.140, remarkably
throughout the entire force scale that is used. As the sys
is sheared further, the force distribution swings back a
fluctuates in a short range of deviator strain~Fig. 4!, before
eventually attaining the steady state. At the steady stat
01130
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good polynomial fit is obtained for forces less than avera
as defined by Eq.~7! with A50.214,B520.035, andC5
20.052. For forces greater than average at steady state
contact force distribution decays exponentially as defined
Eq. ~5! with b51.350.

For the soft system, the normal contact force distribut
is found to be entirely half-Gaussian at the ‘‘isotropic’’ an
‘‘steady’’ states@Fig. 7~e!#, as defined by Eq.~4!. The fit
parameters used in Eq.~4! for the isotropic state are as fo
lows: Y050.001,Xc50.548,w51.559, andA50.283. For
the steady state, the fit parameters are as follows:Y0
50.001,Xc50.498,w51.666, andA50.276. However, at
the ‘‘peak’’ state, the contact force distribution is bimoda
unlike in the hard system where the contact force distribut
at ‘‘peak’’ shear strength tends to be an exponential de
throughout the entire force scale that is used. The con
normal force distribution with forces less than average see
to fit well with a second-order polynomial function as d
fined by Eq. ~7! with A50.207, B50.274, C520.298,
whereas forces greater than average decay exponential
defined by Eq.~5! with b51.510.
e
FIG. 3. Evolution of the probability distribution of contact normal forces for the hard~dense! granular system during shearing. Th
numbers in the legend correspond to the deviator strain.
2-5
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FIG. 4. Evolution of the probability distribution of contact normal force for the hard~loose! granular system during shearing. Th
numbers in the legend correspond to the deviator strain.
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B. Features of the contact force, contact fabric, and their
possible correlation to shear strength„qÕp… curves

In the previous sections we observed that the nature
force distribution in granular media during slow sheari
depends on the shear history. A natural question now ari
01130
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Does the nature of force distribution and the associated c
tact structure~fabric! influence theq/p curves~Fig. 1! in any
way? Although one would intuitively expect that the natu
of force distribution and the contact fabric would have
strong role to play in building up the shear strength, t
2-6
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FIG. 5. Evolution of the probability distribution of contact normal forces for the soft~dense! granular system during shearing. Th
numbers in the legend correspond to the deviator strain.
e
t

th

d

-

in
ha

e

ol
h
e
y

th
rc

the

e
eas
ng
the
nor-
ar-

ring
um
n
y
,

mal
ak’’
od

the
ame
aspect is not yet well understood. In this section, we prob
detail the contribution of force chains and their structure
the shear strength.

As presented earlier in Fig. 1, one could observe that
normalized stress ratioq/p at ‘‘peak’’ for the soft system is
far lower ~;0.2! than that of the hard system~;0.88!. Al-
though the soft system presented here is dense, we coul
observe a well-defined peak in itsq/p variation curve. Re-
cently, Thornton and Antony@29# have carried out a numeri
cal simulation for the slow shearing of a soft~dense, solid
fraction 0.685! particulate system. It is interesting to note
their simulation that the elastic properties of the particles
the same values as that of the one considered~soft! in the
present study. However, the only difference is that, in th
simulation, they considered the particles as polydispersed~in
size!. They have reported a defined peak in theq/p curve
~q/p is ;0.75! occurring at deviator strain;0.15. Although
one may expect a higher value of shear strength for a p
dispersed system than that of a monodispersed system w
other properties of the systems are identical, the sh
strength observed for the soft system in the present stud
quite low, and this has motivated us to probe further.

As presented in the Introduction, one could recall that
contacts that slide are predominantly in the weak fo
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chains and they contribute only to the mean stress while
strong force chains contribute to the deviator stress~shear
strength!. Also, the normal contact force contribution is th
dominant contribution to the deviator stress tensor, wher
the tangential contact force contribution is very small duri
slow shearing. Hence it would be of interest to evaluate
contribution of the contacts having greater than average
mal contact force coupled with their structure during she
ing.

Figure 8 shows, for the granular systems~with interface
energyG50.6 J/m2), the evolution of the maximum value
of contact normal force experienced by the systems du
shearing. This is presented in terms of plotting the maxim
value of ‘‘f’’ found in the corresponding force distributio
graphs~Figs. 3–5!, irrespective of the number of times the
occur ~probability values! at this instance. From this figure
the following observations could be made:~i! for all the
systems considered here, the maximum value of the nor
contact force observed at states corresponding to the ‘‘pe
shear strength is far higher than that of their neighborho
deviator strain levels:~ii ! at ‘‘steady’’ state, interestingly for
all the systems considered here, the maximum value of
normal contact force seems to have attained nearly the s
2-7
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FIG. 6. Best fits for the probability distribution of contact normal force for the noncohesive hard~dense! granular systems during
shearing.
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value. We are aware that, at steady state~sometimes referred
to as ‘‘critical state’’!, the granular system would attain
‘‘critical density.’’ At the critical state, the system is ex
pected to attain a uniform variation in mechanical coordi
tion number~average number of load-bearing contacts!. One
may observe from Fig. 9 that, at steady state, the syst
have attained a stable, nearly uniform value of the mech
cal coordination number. We have now observed that at
‘‘critical state,’’ the systems seem to have attained a uniq
value of the maximum normal contact force as well. Fro
Figs. 3–5, 8, and 9, one could further observe that dur
shearing, the contacts seems to undergo a continuous
pression and relaxation of the force chains, though the
chanical coordination number remains fairly uniform f
most of the shearing.

Now, let us focus our attention on coupling the group
contacts~in terms of structure! that are carrying the stron
forces and their evolution during shearing. To do this,
structural anisotropy in the granular assembly is defined
the distribution of contact orientations, which may be defin
by a ‘‘fabric tensor’’ f i j , suggested by Satake@30# as
01130
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e
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g
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f i j 5^ninj&5
1

M (
1

M

ninj , ~8!

whereM is the number of contacts in the representative v
ume element andni defines the components of the unit no
mal vector at a contact between two particles.

Figure 10 shows the variation of~a! the deviator fabric
(f12f3) and~b! the deviator fabric of contacts with stron
forces (f .1), for the hard and soft systems during sheari
From this figure, it may be observed that the hard system
far more strongly anisotropic than the soft system. The ma
mum degree of structural anisotropy@Fig. 10~a!# developed
for the hard dense and loose systems is;0.125 and;0.15,
respectively, whereas for the soft~dense! system it is
;0.022. At steady state, the maximum degree of structu
anisotropy for the hard dense and loose systems is;0.105
and 0.14, respectively, whereas for the soft system it
;0.02. It may be pointed out here that, for the polydispers
soft system simulated by Thornton and Antony@29#, it has
been shown that a maximum structural degree of anisotr
is obtained at a value of;0.065, reducing to 0.045 for the
2-8
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FIG. 7. Best fits for the probability distribution of contact normal force for the hard and soft granular systems during shearing.
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steady state. These values clearly demonstrate that th
duced structural anisotropy developed during shearing is
nificantly dependent on the elastic modulus of the partic
and the solid fraction of the granular system. Figure 10~b!
01130
in-
g-
s

shows the evolution of the deviator fabric of strong conta
( f .1) within the overall system. It may be observed th
there is a strong anisotropic structure for contacts carry
strong forces within the overall system. One can also obse
2-9
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that fabric anisotropy of strong contacts for the soft syst
considered in this study is far less anisotropic than the h
systems. It shall be pointed out here that the polydisper
soft system simulated by Thornton and Antony@29# has
shown a maximum structural degree of anisotropy value
the strong contacts as;0.275, reducing to;0.25 in the
steady state. This clearly demonstrates that the develo
induced structural anisotropy of the strong contacts in
soft system considered in the present study is relativ
weak.

The structural anisotropy tensorf i j may further be de-
composed as follows@11#:

f i j 5~12v !f i j
w1vf i j

s , ~9!

where the superscripts ‘‘w’’ and ‘‘ s’’ indicate the weak and
strong force subnetworks and ‘‘v ’’ is the proportion of con-
tacts with f .1. As reported earlier, in the present simu
tions the subnetwork of contacts withf .1 develops a strong
anisotropic structure, and the weak subnetworks were ne
isotropic@11,21–24,29#, though this is not presented here.
order to examine the contribution of the subnetwork of co
tacts with strong forces, it is useful to define the fabric str
s i j

f as @31#

s i j
f 5skkf i j . ~10!

Thornton had assumed that@31# the deviator stress~q! is
equal to the fabric deviator stress contribution of conta
transmitting greater than average normal contact force.
ure 11 shows the variation between the deviator stress
the fabric deviator stress due to contacts carrying for
greater than average@i.e., skk(f12f3)s#. From this figure it
can be observed that, for both the cases of hard systems
deviator stress variation is nearly equal to the fabric devia
stress due to contacts withf .1. Although there is a linea
variation of this in the case of soft systems, the fabric str
contribution of contacts withf .1 is only about half the
deviator stress, or in other words, the soft system consid
here is unable to build up the strong (f .1) anisotropic
structure to mobilize the shear strength. It is worth stat
here that, for the soft system examined by Thornton a

FIG. 8. Variation of the maximum contact normal force duri
shearing.
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Antony @29# ~with the same elastic properties as in th
present soft system, but polydispersed!, the deviator stress
was fairly equal to the fabric deviator stress due to contac
with f .1. Figure 12 shows the variation of the fabric devia
tor stress due to contacts withf .1 during shearing. It is
interesting to note that the following.~i! For both the dense
and loose hard systems at steady~critical! state, the fabric
deviator stresses contributed by the strong contacts have
eraged out and attained a critical value.~ii ! In the case of the
soft system, although the maximum value of the normal co
tact force did attain a unique value on the force scale at t
critical stage~Fig. 8!, the fabric deviator stress contribution
of the strong force chains could not attain this unique valu
at the critical state. It is worth remembering here that th
probability distribution@Figs. 5 and 7~e!# of contacts for the
soft system at isotropic and steady states is entirely ha
Gaussian throughout the entire force scale that is used a
seems to differ very little during shearing, except in a few
instances.~iii ! In Fig. 12, there occurs two local peaks, at on
instance each for the dense and loose hard systems. O
could not observe a direct correlation of this with the me
chanical coordination number~i.e., the average number of
load-bearing contacts!, which in fact remains nearly the same
~Fig. 9!. However, Fig. 13 shows the typical variation of the
total number of contacts for the hard dense system, bifu
cated into two classes, i.e., contacts with~i! greater than
average and~ii ! less than average normal contact force. It i
interesting to note that the fluctuations in Fig. 12 seem to t
in with the fluctuations shown in Fig. 13. The local drop in
the number of strong contacts (f .1), without a noticeable
change in the coordination number of load-bearing contac
~Fig. 10!, could suggest a local redistribution of strong
forces.

IV. CONCLUDING REMARKS

To summarize, an attempt is made to search for a bet
understanding of the evolution of the contact normal forc
distribution during shearing using a nearly monodispers
system of particles in a three-dimensional periodic cell. Th
systems with different elastic properties~relatively hard and

FIG. 9. Variation of the mechanical coordination number durin
shearing.
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FIG. 10. Variation of the deviator fabric of hard and soft systems during shearing:~a! for the overall system;~b! for strong contacts only.
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soft! and solid fraction~relatively dense and loose! were
tested. It was observed that the contact normal stress co
bution is the dominant contribution to the stress ratioq/p.
Simulations have been carried out for both cases of non
hesive hard granular system and hard granular systems
low values of interface energy between the particles. T
results seem to indicate that the amount of interface ene
introduced between particles has not significantly chan
the characteristic features of the force distribution compa
with that of noncohesive particles sheared under the~high!
constant mean stress condition, it nevertheless seems to
prove the stability of the shear strength (q/p) curve. It would
be interesting to investigate in future the effect of interfa
energy of the particles on the nature of the force distribut
sheared at low mean stress levels or with particles hav
high values of interface energy, sheared under high m
stress levels. At low stress levels, the contribution of int
face energy of particles could be more significant; this is
to be confirmed. Also, the influence of interface energy
soft granular systems has yet to be investigated.

The distribution of contact normal force in a granular sy
tem during slow shearing, even for a noncohesive case
sensitive to the shear history. The probability distribution
the contact normal force is quantified for the isotropic, pe
and steady states during shearing. It is interesting to note
the contact normal force distribution at peak shear stren
for both cases of hard system~dense and loose! tends to
decay exponentially throughout the force scale that is use
is shown that, for the hard system, the probability distrib
tion of the less than average contact normal force attain
different type of distribution during shearing, varying from
half-Gaussian distribution at the isotropic state through
uniform distribution, before being part of a completely exp
nential decay for the entire force scale at the peak state.
further shearing, the system follows a reverse cycle be
eventually attaining a bimodal distribution at steady sta
with forces less than average following a second-order p
nomial distribution and forces greater than average follow
an exponential decay. It is worth mentioning here that
attempt was made to use a power-law distribution to fit
probability distribution of less than average contact norm
forces ~for example, see@21–23#!. However, for the data
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presented in this paper, the power-law distribution was s
isfactory only for; f ,0.5 and hence is not presented he
For the case of hard~dense! and soft systems considere
here, one could observe a well-defined peak in the distri
tion of weak forces, especially at isotropic and steady sta
It should also be remembered that the peak in the weak fo
distribution changes during shearing and is clearly sensi
to the shear history. This is quite an important issue as p
vious researchers have reported different types of force
tribution, especially for weak forces, for example a unifor
distribution @7#, power law @21–23#, exponential@9,16,18#
and Gaussian@10#. At this point in time, it is quite difficult to
compare the present work with other researcher’s exp
ments, as their results are not related to the shear histor
the system~coupled with the solid fraction and elastic pro
erties of the particles!. However, the present simulation
show that any of these distributions for weak forces is qu
possible, depending largely on the shear history of the gra
lar system. It has been shown that the force distribution a
depends on the solid fraction and elastic properties of
particles. In both types of hard~dense and loose! system
considered here, the probability distribution of the grea
than average contact normal forces is an exponential de
for both the isotropic and steady states, and the expone
not very different. The central message of this paper is t

FIG. 11. Variation of the fabric deviator stress contributed
contacts with strong force with the deviator stress.
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force fluctuation in a granular medium is very sensitive
the shear history the system experiences. Hence a ca
observation of the shear strain levels when carrying out
perimental measurements and their interpretation is requ

It has been pointed out that the induced structural ani
ropy developed during shearing is significantly dependen
the elastic modulus and solid fraction of the granular s
tems. For a granular system undergoing slow shearing,
shear strength of the system seems to depend on the a
of the system to build a strongly anisotropic fabric netwo
of contacts carrying greater than average force. The pre
simulations were carried out with a relatively small numb
of particles due to the limitations in computer power ava
able. However, further work from researchers in other la
ratories is required to confirm the findings reported in t
paper with simulations having a large number of particl

FIG. 12. Variation of the fabric deviator stress contributed
contacts carrying strong force during shearing.
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thus allowing statistically more accurate calculations. It
worth mentioning here that an ongoing shear simulation
an entirely monodispersed particulate system~with proper-
ties identical to those reported here! has shown all the char-
acteristics that are reported in this paper. Further investi
tion is in progress to determine the size effects of
submerged particle on the force and stress distribution@32#.
This would give us an idea of the length scale in which t
continuum theory would break down when studying t
macroscopic behavior of granular media subjected to sh
ing.
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FIG. 13. Variation of the number of contacts during shearing
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