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Molecular-dynamics investigation of tracer diffusion in a simple liquid:
Test of the Stokes-Einstein law
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In this work, we study the diffusion of solute particles in the limit of infinite dilution in a solvent. An
estimate is made of the solute concentration below which this limit is attained. We determine the range of the
size and mass values of the solute particles where the solute diffusion coefficient is well estimated from the
Stokes-Einstein formula. For these aims, extensive molecular-dynamics simulations are carried out for a model
tracer-solvent system made up of 5324 molecules including solvent and tracer molecules interacting through
Lennard-Jones potentials. The values of the viscosity coefficient, corrected for long time tail contributions, and
the diffusion coefficients are obtained with high precision. Positive deviations from the Stokes-Einstein for-
mula are observed as the size ratio or the mass ratio of the tracer to solvent molecules is lowered. For equal
solvent and tracer molecular masses, the crossover to the hydrodynamics regime is found to occur when the
size ratio is~ 4. The results show a strong coupling between the size and mass effects on the tracer diffusivity,
with the latter being predominant. An analysis of the molecular-dynamics data in the hydrodynamic regime
shows that the Stokes-Einstein formula holds for this system slighboundary conditions and the hydrody-
namic radius equal to the cross radius between the tracer-solvent molecules. The friction coefficient is evalu-
ated from the computed autocorrelation function of the force exerted by the fluid on the tracer molecule,
following a scheme proposed by Lagar'’kov and Sergeeyv; it is found that the latter criterion gives the correct
diffusion coefficient only in the limits of high sizes and high masses.
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[. INTRODUCTION ical studies in which solute size and mass can be varied
independently of each other. Alder, Alley, and Dymdi3d
Understanding diffusion and measuring diffusion con-investigated the mass and size dependence of the diffusion
stants of molecules in liquids are fundamental problems irconstant in moderately dense hard-sphere mixtures in order
statistical mechanics and the physics of the liquid state. Theto study the deviations from Enskog theory due to the ap-
are important for basic and applied problems in physicapearance of correlated motions in the fluid. An investigation
chemistry and biology since many processes are diffusionf diffusion in binary Lennard-Jones mixtures has also been
limited. Most of the mixtures and solutions of these two reported[4].
domains are characterized by very large size and mass ratios However, for tracer diffusion, i.e., diffusion of one com-
between the solute and solvent molecules. It is well estabponent at infinite dilution in a solvent, the existing data are
lished that the diffusion coefficiem for a large and massive very limited [5]. One of ug[6] has investigated small tracer
solute molecule of radius in a solvent of much smaller and diffusion in a dense Lennard-JonékJ) fluid by using
lighter molecules is related to the solvent viscosjtpy the  molecular-dynamic§MD) simulations but the calculations

Stokes-EinsteifSE) formula were performed for a rather small system of 108 molecules
and a concentration of tracer molecules of 12%, which

_ ksT 1 would be considered more as a binary system than as a so-
 fano’ @ lution at infinite dilution. Recently, Bocquet, Hansen, and

Piasecki[7] have calculated the friction coefficient exerted
whereT is the absolute temperaturg; the Boltzmann con- by a hard-sphere fluid on an infinitely massive Brownian
stant, and a numerical constant determined by the choice ofsphere as a function of the size ratio between the Brownian
stickor slip hydro-dynamic boundary conditions at the soluteparticle and the fluid spheres, both analytically using micro-
surface. This relation has been verified experimentally inscopic kinetic theory and with molecular-dynamics simula-
great detail1] and is theoretically well understood through tions. They found that the SE formula holds with stick
Brownian particle dynamicp2]. If, however, the solute size boundary conditions in the range of size ratio between 1 and
and mass are comparable to those of the solvent moleculels5. The apparent validity of stick boundary conditions is
then Eq.(1) is not expected to be valid, and a microscopicrather surprising since the slip boundary condition is more
approach becomes necessary. Such investigations have besipected for a system of elastic hard spheres, which has no
made possible only due to computer simulations and theoretitractive intermolecular interactions. Brey and Ovelo[8]

have studied, by MD simulations, a system of particles inter-

acting through a LJ potential containing a heavy test particle.

*Permanent address: Institut de Physique, Univedsitélemcen, They have attempted to evaluate the friction coefficient of
BP119, Tlemcen 13000, Alge. the test particle from a Green-Kubo formula by using an
TUnite Mixte de Recherche, Universifearis—Sud, CNRS 8627.  appropriate cutoff in the time integration of the autocorrela-
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tion function of the force acting on this particle. Their analy- as calculated from the friction coefficient is compared to that
sis of the validity of the SE formula is less conclusive sinceobtained from the mean square displacement.
the viscosity value of the solvent is computed only within an  The paper is organized as follows. Section Il describes
error of 20%. our model and numerical procedures. The result for the shear
From an experimental point of view, it is clearly difficult viscosity of the solvent is presented in Sec. Ill. In Sec. IV,
to find a set of mixtures that allows a systematic study of thdhe value of the solute concentration is determined for which
dependence of the diffusion coefficient on the mass and siZ&€ infinite dilution is reached. In Sec. V, we present the
ratio without affecting the intermolecular interactions. Suchf€sults on the the size and mass dependence of the tracer
an experimental study has been reported for the diffusion ofiffusion coefficient, together with an analysis of the SE for-

xenon inn-alkaneg 9], which has led to the conclusion that mula in the high mass and/or the high size ratio regime. The

in order to maintain a simple relation between the Xenoncalculatlon of the diffusion coefficient from the friction co-

diffusion coefficient and the solvent viscositythe experi- ggfscslﬁor;]t is discussed in Sec. VI. The paper ends with a dis-
mental data should be fitted empirically by a modified SE '
formula by adding an exponent to the viscosity coefficient
appearing in Eq(1). More recently, the diffusion coefficients
of the molecule &, in toluene, benzene, and carbon tetra- The system consists of a numkéf molecules equal to
chloride at 303.15 K have been reported by Castillo, Garza5324 including the tracer molecules. The index 1 refers to
and Ramog10]. The value of the viscosity coefficient has the solvent and 2 to the tracer. The pair intermolecular po-
also been measured, which has allowed a direct estimation ¢éntials are taken to be LJ potentials, modified with a cubic
the value of the hydrodynamic diameter of thg, @olecule  spline[11]:
from the SE formuldEq. (1)]. This latter is compared to the
value extracted from x-ray studies. It is found that for the Ui (r)=e;f
stick boundary condition the hydrodynamic diameter of . Y
Ceoltoluene, Gy/benzene, and §/CCl, has, respectively, a . . ) )
value that deviates from the crystallographic value by 22.8%With additive diametersr;; = (o;+ ¢;)/2. The functionf(x)
—53.5%, and—7.7%, and for the slip boundary condition the "€2ds
deviation is, respectively, 84.2%;30.1%, and 38.87%. It is
important to note that benzene, toluene, and ,Clzdve
mainly van der Waals type of interaction. Therefore these
systems would be similar to some of those investigated in the
present work. 0
In order to overcome the limitations, already mentioned

above, of the work reported in Ref6], which uses a rela-  \yherex.= (26/7)¢ is the inflection point of the LJ potential

tively s_maII system, we have undertaken in the present Pap&indx,, = 67x./48. The units of energy, length, and mass were
extensive MD simulations for a tracer-solvent system madeposen to be respectively;,, o, andm,. All molecules

of 5324 molecules including solvent and tracer moleculesyave the same coupling constanb= e,,= €1, The corre-
All the molecules interact through pair LJ potentials. In Ordersponding microscopic time scales: (mlailfll) 12 There-

to test the validity of th_e SE f(_)rmula t_he Va'“?‘ of the Shearfore the state of our system is specified through the overall
viscosity of the solvent is required. This latter is obtained by

f 3 *
the appropriate Green-Kubo formula, taking carefully intoeruced number density and temperatafe=poy and T

. ; . ... =kgT/eqy;, the number concentration of tracer molecules
account the corrections due to the long time tail that exists i ) ) _
. . . >IN, and the values of the size ratig /o4 and mass ratio
the time-stress autocorrelation functions. The knowledge o .
m,/m,. The values for the density and temperature for the

the viscosity coefficient with a high precision has allowed us resent calculations aye* =0.85 andT* = 1.0, specifying a

to investigate the SE formula unambiguously, by assessin§ense liquid state near the triole point of the L.J svstem
the influence of the size and mass ratios on the tracer diffu: q ) iple p y )
The simulations were carried out at constant volume and

sivity separately. We have investigated a range of size ratiE?JTIperature using the standard Verlet algorithm and
A 4 f i 1 . . .
between 0.1 and 4, and arange of mass ratio between 0.1 & oover’s thermostating methdd 2], with the time stepAt

120. . ; . .
We have concentrated all along on the accurate aloprais’%0.005:-. Typical simulation runs are carried out for 10 000

‘g ; 20000 equilibration time steps followed by 80000 to
of the statistical uncertainty of the results, and therefore ob: : . . ; .
tain a good location of the crossover to the hydrodynami0160 000 time steps during which the different time dependent

regime. For example, this crossover is located for equa??”fla[t)'on fténlgnor}str?re clompiute%. tThe dlffulslonl coeffi-
masses between solvent and solute molecules at a size rafi tn 'S dl fan thz of the solven Z.n | racer n:o ]?(;’rl: es ?re ¢
larger then 4. It occurs, for a fixed size ratio of 0.5, at a mas$ daltne roml elmea_n sqL:)are ISplacement of the solven
ratio more then 40. We also compute the autocorrelatio?Nd@ racer moiecuies given by

function of the force acting on a tracer molecule in the re- 1

gime of high mass and size ratio; this latter is used to com- Di=lim —— 2 (|r}(t)—r}(0)|2), i=1,2, (4)

pute the friction coefficient. The tracer diffusion coefficient 1 OIN; 5T,

II. MODEL AND NUMERICAL PROCEDURE

r

aij

4(x P—x79) for x<x

6 x\?2
={ — — 48— for x.<x<
f(x) 610009(67 48X) Xc<X<Xp (3)

c

for x>x,,
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o ' ‘ ‘ 7=23.56+0.04. (8)

% This amount of 1.2% in the statistical error is much lower

than that reported in the literatuf&3—15. This could be due

to the long time equilibration of the different starting con-
figurations and to the use of a statistical ensemble different
from that in previous work, the Hoover thermostating
method, which suppresses thermal fluctuations.

It is well known that the time correlation functions for
fluid transport coefficients decay algebraically at long times.
The long time tail behavior for the viscosity autocorrelation
function of a dense fluid has been discussed in great detail in
the literatureg/16,17]. One first correction to this asymptotic
time behavior has been predicted by mode-coupling theory
. , , and is of an exponential form. The expressions for the
0 05 1 15 2 asymptotic behavior and for this correction have been given
in terms of the values of the transport coefficie[itg]. The
first one is of the formt~%?2 and reads for the viscosity au-
tocorrelation function,

26

22

nw

-2

FIG. 1. Solvent shear viscosity autocorrelation functigit) as
a function of timet relative to the time scale The reduced density
is p* =0.85 and the reduced temperaturd fs=1. lim 7(t)~ at=32 (9)
t—o
wherer'j(t) are the positions of the particles at timeThe
shear viscosity coefficient for the pure solveMt,0) is ~ With
obtained through the Green-Kubo formula

1 7 1
a= + , (10
% 120773/2ﬁ2 ( (21/)3/2 FW?)
n= fo n(t)dt 5 °
wherev=gn/psm;, B=1KkgT, and
with the shear viscosity autocorrelation function . (y= 1)\ N 4y N ¢ )
()= Ps z (7Y(0) 7(1)) ©6) s Pst 3 psmy’
T 3kgT N '

in which \ is the thermal conductivity is the bulk viscos-

Here the sum is to be made on the circular permutation of th8Y, and y=C,/C, with C, andC, the specific heat capaci-
indicesxy, ps is the solvent density, and”, the component ties gt constanp pressure and volume, respectively. The expo-
of the microscopic stress tensor, is given by nential correction given by the exFended mode-coupling
theory of Kirkpatrick [18], van Beijeren[19], and de
N 1 Py gu-s Scheper, Haffmans, and van Beijef@0] has a simple form
2=, [ moly—= > —=+ 1, (7)  for a hard-sphere system. As the system we consider here is
=1 217 Ty In a highly dense fluid where hard-core effects are dominant,

wherev; are the solvent particle velocities. We also computeWe shall follow the suggestion made by Erpenbgt] to

the velocity autocorrelation function, and the different ther-U5€ the simple form of a hard-sphere system to analyze our

: o . . : long time data. The extended mode-coupling contribution
modynamic quantities and pair correlation functions. reads for a hard-sphere system of diametgf20]

Il. SHEAR VISCOSITY OF THE SOLVENT uc(t) = (279e/t,)A(p)exd —2Z,(Kg)t], (12)

The shear viscosity autocorrelation functiexit) of the i, \wnich ne is the Enskog value of the viscosity
solvent as a function of timerelative to the time scale is =(Bmy) Y22, A is an amplitude known in terms ofvthe
155 1

given in Fig. 1. The final time; reached is equal t0 2, Sig- gy cture factor, and,(Kg) is the extended hydrodynamic
nificantly longer than those reported in previous simulations,, ;e eigenvalue for the heat mode evaluated at the “de

[13,14. The total number of integration steps is equal t0Gannes minimum,” given approximately as a function of
260000. The evaluation of the statistical error involved mdensity by

the calculation of the viscosity is made by dividing the total

simulation into intervals of 20000 integration steps, for Zn(Kg)=4.181.056- pJ)/t, . (13
which the viscosity coefficient is calculated. From these val-

ues, a mean square deviation is evaluated, and from the medio estimate the order of magnitude of the coefficianin
square deviation we obtain the estimated statistical error foEq. (9), which gives the amplitude of the long time tail, we
the entire simulation. The value of the viscosity coefficientuse the values for the transport coefficients and heat capaci-
found is ties given in Ref[13]. The resulting value is found to be
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5 ‘ ‘ ‘ ‘ TABLE I. Thermodynamic state properties and diffusion coef-
ficients for the LJ system as a function of the number of tracer
molecules. The reduced densit{ =0.85 and the reduced tempera-
ture T*=1.0. The size ratiar,/0,=0.5 and mass ration,/m;
=1.0. N; is the number of tracer moleculesn,is the total
number of time steps. U, /€4, is the internal energy of the system,
P/, kgT is the compressibility factoiC, is the specific heat at con-
stant volume, and, andD, are the diffusion coefficients of the
solvent and solute molecules, respectively.

n®

Ny Ngeps  Uileyn P*Ip*T*  C, D, D,

3 220000 —2.6067 4.2062 2.5703 0.047@) 0.1183)
6 160000 —2.6138 4.1785 2.6036 0.047@) 0.1132)
- 12 160000 —2.6149 4.1500 2.5899 0.047(@3 0.1141)
05, o6 ; ” 3 24 100000 —2.6081 4.0987 2.5805 0.047@9 0.1191)

vt ’ 48 60000 —2.5925 4.0021 2.5677 0.0481) 0.12Q1)

96 40000 —2.6236 4.3459 2.5696 0.0502 0.1252)

FIG. 2. Long time data of the solvent shear autocorrelation func
tion as given in Fig. 1. The full curve is the fitted autocorrelation

function as computed by the extended mode-coupling theory. IV. INFINITE DILUTION LIMIT

equal to 4.%X 10 *. For the largest time; where 7(t) is In Table I, we give the solverid; and traceD, diffusion
evaluated, the correction from the long time tail to the vis-Coefficients as a function of the number of tracer molecules
cosity coefficient is given by for a size ratio ofr, /o1 =0.5 and mass ratim, /m;=1. For

each computation, we give the number of time steps and the
values of the internal energy, pressure, and specific heat at
on=—. (14)  constant volume. The time autocorrelation functions of posi-
\/ﬁ tions and velocities are evaluated over ADOFrom partial
averages of these correlation functions performed every 2000
For our simulationsdn=7x10". This contribution to the time steps, the statistical error at a given time is estimated by
viscosity is negligible at the present level of statistical accu£valuating the mean standard deviation of these averages. A
racy. typical graph for the mean square displacement as a function
By contrast, the contribution of the exponential term isOf time is shown in Fig. 3. The diffusion coefficient is ob-
significant. We use the LJ parametey for the hard-sphere tained from the slope at long time together with the statistical
diameterc in t,, and make a least squares fit to the data afmor on the slope. In order to reach the same level of statis-
long time from time 0.8 td;, in order to get the amplitude. tical error onDy, the number of integration time steps in the
The result ispyc=9.521 exp(-3.444/7). Figure 2 shows Simulation runs is increased as the number of tracer mol-
the long time data of the shear viscosity autocorrelation funcecules is lowered, as shown in Table I. The statistical error-
tion together with the fitted theoretical curve. We can see
that the fitted exponential decay joins the MD data smoothly s h
within statistical error at timé=1.67. The resulting incre-
ment to the viscosity coefficient is

2a

57]MC:f ﬂMc(t)dt:00028, (15) tr
i

yielding the final estimate for the viscosity coefficient as

<IF()-F O)f>

05

7=3.57+0.04, (16)

if we estimate the uncertainty on the correctiényc to be
around 30%. The coupling between the modes associatec

with the shear waves and sound waves traversing the simu- % 05 1 15 2
lation box should affect the decay ojf(t) only for times v

larger thant.~L/c=3.6>t; sinceL, the side of the simula- FIG. 3. Mean square displacement with error bars of the tracer
tion box, is 18.4r; and the sound velocitg is estimated to  molecule as a function of timerelative to the time scale. The

be around 5 in reduced unif3]. ratios o, /o, =0.5 andm,/m;=1.0.
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FIG. 4. Solvent and solute diffusion coefficiebt; and D, as
functions of the number of solute molecules. FIG. 5. Solute diffusion coefficierD, as a function of the size
ratio o, /01. The mass ration, /m;=1.0. Full dots MD data; full

obtained in the computation of the tracer diffusion Coefﬁ_curve, SE formula with slip boundary condition; dotted curve, SE
formula with stick boundary condition. Statistical errors on MD

. X 0 A N
c!ent !s about 1.2%, and that on the solvent diffusion coeffi data are smaller than symbol size.
cient is 0.1%.

Figure 4 shows the tracer and solvent diffusion coeffi- V. SIZE AND MASS DEPENDENCE
cients as a function of number of tracer moleculgsfor a .
size ratio of 0.5 and a mass ratio of 1. We can see that the A. Size dependence

solvent diffusion coefficient goes to a constant value, within ~ The results for the size dependence of the tracer diffusion
the statistical error, below a number of tracer moleculesare given in Table Il and Fig. 5, for the case of mass ratio
equal to 20. Similar behavior is given fdd, within the  equalto 1. For size ratios higher than 1, the pressure value of
statistical error. We can state, from both figures, that thdéhe system increases, and, in order to maintain a constant
infinite dilution limit is reached below a concentration of Value of this latter, the volume of the box was slightly in-
0.3%, which is rather low for even such a noncharged sysS'€ased dbt))/ ar;]arE_ount that co:res?onQShto the excests1 volulme
N . . . occupied by the big tracer molecule with respect to the vol-
tem. A similar analysis performed for other size ratios con- d X
; L R 01 i Ivent mol . th nsity val
sidered in this work showed that the infinite dilution limit is Il;] _I_eaglcec“)p ed by a solvent molecu(ef. the density values
obtained for a decreasing value N as the size ratio in- It is the main interest of the present work to investigate
creases. Therefore, we consider in the following studies thghe SE formula given by Eq1), which we write again for
number of tracer moleculeN,=1, 2, 3, 6, and 12 for size D, as
ratio respectively 4.0, 3.0, 2.0, 1.5, and 0.5. T*

D, (17)

:fTrn* iy’
TABLE II. Solvent and tracer diffusion coefficien®®; andD, . . .
as a function of the size ratio,/o,. The mass ratian,/m; where the constanf=4 and 6 for the the slip and stick

=1.0. N, is the the number of tracer molecules considered in eaclpydrodynamlc *?Oundary conditions, respectively, aﬁg IS
case andy* is the reduced density. We also include the tracer dif-€ Cross radius of the solvent-tracer molecules;,
fusion coefficient as given by the SE formula for the slip and stick=0-5(c2+01)/o1. The choice of the cross radiusy, is
boundary conditions. justified below. We plot in Fig. 5 the diffusion coefficient as
given by the SE formula with the value of the solvent vis-
Dosip  Doastick cosity given in Eq.(16). The SE formula is found to ap-
olo; N,  p* D, D, (SE) (SB proach the MD data with the slifull curve) boundary con-
ditions when the size ratio approach the value of 3. Below
01 12 0.85 0.04729) 0.4368 0.040 0.026 this size the SE relation strongly underestimates the diffusion
03 12 0.85 0.04718) 0.2063) 0.034 0.022 coefficient of the tracer. For example, the ratio of the diffu-
0.5 12 0.85 0.0470G3) 0.1141) 0.029 0.019 sion coefficient as obtained from the MD data to that given
0.7 12 085 0.04708) 0.0741) 0.026 0017 by the SE relation is
1.0 solv 0.85 0.04708) 0.0470%8) 0.022 0.014 Do) /Dasp=4  for olay=0.5. (19)
1.5 6 0.848 0.04678) 0.02838) 0.017 0.017
2.0 6 0.845 0.04659) 0.01864) 0.014 0.01 The slip boundary condition seems in the present work to
3.0 2 0.84 0.04729) 0.1183) 0.011 0.007 hold better than the stick boundary condition, which is more
4.0 1 0.84 0.048@) 0.00844) 0.0088 0.0058 expected for a LJ type of interaction between solute and
solvent molecules.
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TABLE IV. Tracer diffusion coefficient®, computed from the

0.1

mean square displacement abglfrict) computed from the friction
. coefficient, as a function of size and mass ratioA.is the relative
discrepancy between the two coefficients.
oyloq m,/m; D, D ,(frict) A(%)
L 4.0 5 0.007#) 0.0154 106
= 10 0.007%8) 0.0122 61.6
AE'-; 20 0.007%5) 0.0101 35.1
v 40 0.00674) 0.0092 37.0
60 0.00775) 0.0084 8.6
3.0 40 0.01008) 0.0135 33.6
60 0.00977) 0.0117 19.6
15 4 0.02717) 0.0448 65.3
: i 20 0.025%6) 0.034 34.38
ve 40 0.02428) 0.0325 34.29
80 0.020%5) 0.0276 34.6

FIG. 6. Mean square displacement of the tracer molecule as a
function of timet relative to the time scale. The ratioso, /oy
=4.0 andm, /m, =1.0. reached for a mass above 40. Positive deviation from the SE

formula appears as the value of the mass is decreased. From

There is a change in the type of motion of the big tracertaples I1l and IV, we note that as the tracer size is increased
molecules as illustrated by the mean square displacement @ge hydrodynamic limit is reached for a lower mass. For
a function of time plotted in Fig. 6 for,/o1=4 as com-  example, foro, /o, =4 the value of this mass shifts down to
pared to that shown in Fig. 3 far,/0,=0.5. We can see 5. Our simulations show that the effects of size and mass
that a big tracer molecule experiences many backscatteringtios between the solvent and solute molecules are strongly
effects, which indicates that its motion stays correlated on goupled.
relatively long time scale of the order of 1, and is not of a A justification of the choice of the hydrodynamic radius

Brownian type over this interval of time. 0%, is performed as follows. We consider the data lying in
the hydrodynamic region of mass values for different sizes
B. Mass dependence studied. In Fig. 8, a plot oD, versus the inverse of7},

The d d & th tian /m. has b shows a linear dependence. We define an effective radius as
. € dependence @, on the mass ratim, /m, nas been Ao7, and determinex from the SE formula written in the
investigated for several size ratios of 0.5, 1.5, 3, and 4. Th?orm

results are given in Tables Il and IV. Figure 7 shows the
mass dependence for a size ratio of 0.5. We can see that the 1

hydrodynamical limit, i.e., mass independent behavior, is 2—47”]*)\0,{2, (19
TABLE Ill. Tracer diffusion coefficient as a function of the
mass ratiom, /m; for a fixed size ratior, /o . 014 §
o,l0,=0.5 oylo,=15
m,/m; D, m,/m; D, i
0.1 0.1793) 0.1 0.02928) 010 |5
0.2 0.1583) 0.5 0.02883) i} .
0.5 0.1372) 1 0.02838) a
1 0.1141) 2 0.02737) s
2 0.1031) 4 0.02717) oos L ®
3 0.0982) 8 0.02587)
6 0.0811) 20 0.02536) .
12 0.0681) 40 0.02428) = x
15 0.0631) 80 0.020%5) 00 ‘ ‘ ‘ o =
30 0.0411) 120 0.01806) 0 20 40 60 80 100 120
40 0.03388) e
60 0.03367) FIG. 7. Solute diffusion coefficierid, as a function of the mass
90 0.02647) ratiom,/m,. The size ratiar,/o;=0.5. Dots with error bars, MD
120 0.02515) data; dotted line, value db, from SE formula with slip boundary
condition.
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0.03 ‘ ‘ 0.3

tt

_ ) FIG. 9. Mean square displacement of the tracer molecule as a
FIG. 8. D, as a function of the inverse of the cross LJ parameteffynction of timet relative to the time scale. Dashed curve, the

o12. Dots are foro,/oy=4 and m,/m;=20,40,60. Filled dia-  ratios ¢,/0;=1.5 andm,/m;=20; full curve, the ratioss,/o;
monds are forr, /oy =3 andm,/m; =40,60. Filled up triangles are =1 5 andm, /m, = 80.

for o,/0y=1.5 andm,/m;=280,120. Filled down triangles are for
o,/01=0.5 andm,/m;=90,120. Full line is linear fit to Eq.19). 1
0 >

=— F(t)F(0))dt. 21
where use is made of the value for the viscosity we obtained, ¢ 3kgT Jo (FOF(0)) @)
recalling thatT* =1.0. A linear fit gave a value fox=1.1
+0.1. This result justifies the use of a hydrodynamic radius o . . ) .
of %, which characterizes the range of repulsive interactionl N€ expression in the integral is thg autocqrrelatlon funct_|on
between solute and solvent molecules. This conclusion is iff the force exerted on the Brownian particle by the fluid.
agreement with the result found by Bocquet and Bdi2aj | NiS expression fo vanishes if the upper bound in the
that, at the contact between fluid and plane solid walls, thdtegral is set to infinity{ 22]. The introduction of a cutoff
hydrodynamic boundary conditions on the velocity field ap-{Me 7o Was the solution to this problem given by Kirkwood,
plied at a surface separated from the solid by about one Iayétho _assumed that the integral of the force autocorrelathn
of fluid atoms. This value of-;, represents also the radius of function versus the upper bound presented a plateau region
a channel in the solvent through which a solute molecule cayhere it was almost independent of the precise valugyof
drift away. Clearly, from our MD data, the use of the stick The frlctlon_ coefficient could then be evaluated from this
boundary condition would lead to a hydrodynamic radius ofPlteau region. Lagarkov and Sergg@4] have proposed to
solute of 4r,,/6, a value that does not represent any characfjhoose asg the first zero of the force autocorrelation func-
teristic length of the solute-solvent mixtures considered. ~ toN-

We plot in Fig. 9 the mean square displacement of a tracer AS in Ref.[8], we propose to test the approach put for-
molecule of a fixed size ratio of 1.5 and for mass ratios of 20¥@rd by Lagarkov and Sergeev by comparing the diffusion
and 80. We can see that the increase in mass does not algqefficients as obtained from E¢®0) and (21) with those
the tracer type of motion at short time except for being muctfiétermined from the mean square displacenj@si. The

slower. This illustrates once more the dominant effect of thd©Tc€ exerted by the solvent on the tracer molecule is given
size on the tracer diffusivity. directly by the MD simulations. To render the comparison

significant, we consider data in the range of high size ratios
and relatively high mass ratios.
VI. THE DIFFUSION AND FRICTION COEFFICIENTS In order to check the consistency of our computation of

In the simple Langevin theory of Brownian dynamics theth»e fOJCE on the solut_e _partlc_le_ we have tested that
diffusion coefficientD of a Brownian particle is related to (F(0)F(0)) was equal, within statistical error, to the second
the friction coefficientt exerted by the fluid on the Brownian time derivative of the tracer velocity autocorrelation function

particle by the Einstein relatiof22] at time zero. o N
We give in Table IV the tracer diffusion coefficiei,

evaluated both from the mean square displacement and from
D=—o (20)  the friction coefficient using the Lagar'’kov and Sergeev cri-
3 terion. The relative discrepancies between these two are
shown in Table IV. It is found that the Lagar'’kov and Ser-
and a microscopic expression for the friction coefficient hagyeev criterion leads to an overestimation of the diffusion
been obtained through a Green-Kubo formula by Kirkwoodcoefficient by about 30%. The best agreement, about 10%, is
[23] in the form obtained only in the limit of both high size and mass ratio.
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4000 ‘ ‘ , effects on the tracer diffusivity, in the domains of size and

. mass ratio considered in this work. For stable suspensions of
solute particles in the solvent, our results are compatible with
a behavior of Brownian type as soon as the size ratio is
higher than 3, for practically any mass ratio. Our results
show that the use of Brownian dynamics for a size ratio of
the order of unity is questionable as soon as the the mass
-------------- S, ratio is smaller than 10.

We stress that the high accuracy of the data for both the
solvent viscosity and the diffusion coefficients has allowed a
convincing investigation of the crossover toward the hydro-
dynamic behavior of solute particles and an evaluation of the
shortcomings of the Lagar'’kov and Sergeev proposal for the
computation of the friction coefficient. Moreover, our results
‘ , ‘ can partially explain the experimental data on the diffusion
05 L 15 2 coefficient of G in toluene, benzene, and carbon tetrachlo-

ride solutions. Our finding that the hydrodynamic radius
characterizes the range of interaction between solute and sol-
&/ent molecules shows the strong dependence of this radius
on the solute-solvent interaction. It is expected that due to
the change in the type of interaction betweeg, @nd the
Sseglvent molecules considered, the hydrodynamic radius
ould vary strongly from one solvent to another.

2000 | |

<F(t) F0)>

-2000 -

-4000
0

FIG. 10. Force autocorrelation function of solute particles as
function of timet relative to the time scale. Full curve,o,/0;
=4 andm,/m;=60; dotted curveg,/o;=4 andm,/m;=5.

These discrepancies, which can reach 100% for the ca
of a size ratio of 4 and a mass ratio of 5, are understood b§ Finall e th K ted by Bhattach d
looking at the decay behavior of the force autocorrelationB |nha_1 %/éwe quote the wor re%or elf y bhattac alryyla an
function. In Fig. 10 we plot the force autocorrelation func- agchi[26] on a microscopic and self-consistent calculation

tions for a size ratio of 4 and mass ratios of 5 and 60. Clearl .f the diﬁu;ion coeffipient of a tagged partjcle in a dense LJ
the force autocorrelation for the low mass case shows co iquid. In this calculation the solute motion is coupled to both
siderable temporal correlations, excluding the possibility of ahe dcollefc:a/ N I(_JIer!thyT:I]uctufatlorgj ?rr]ldt t_he(;[ransvelz_rse_ dcurtrhent
plateau in the integrdlEq. (21)] if considered as a function mode ot the fiquid. They foun at in dense fiquids the

of 75. In the case of high mass we can see that the integral c{/lilg:'\i/rf tmp;gzgﬁeoggtzgl:édr(;%glaen?éc drgtc()a ?risinzfdtlhaer sec:I—
the force autocorrelation function will be almost constant in p gely

the vicinity of a unique upper bound value corresponding toby the solute-solvent size ratio, and predicted that the cross-

) - 2 o over from the microscopic to the hydrodynamic regime
the first zero ok F(t)F(0)), and only in this case could the ghqq occur when the solute molecule is about 2—3 times

Lagarkov and Sergeev criterion be used without ambiguityjarger than the solvent molecule for equal masses. These
findings are in agreement with our results, and therefore we

VII. DISCUSSION hope that the high accuracy of our MD data will allow a

significant test of theoretical approaches to diffusion pro-

At the level of accuracy of the present MD data and sys . :
pgsses in dense fluids.

tem size, it seems that for a LJ system at constant pressu
and temperature near the triple point, the tracer diffusion
coefficients at high mass ratio and size ratio take values in
agreement with the SE formula with a slip boundary condi- One of us(F.0.K) acknowledges financial support from
tion between solute and solvent molecules, and with a hydrothe International Center for Theoretical Physics, Trieste,
dynamic radius equal to the range of repulsive interactioritaly and La Socite des Amis de la Science, Paris, France.
between solute and solvent molecules. Our simulations shoWwhe authors would like to thank the University of Tlemcen
also that there is a strong coupling between the size and mafsr supporting this research.
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