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Molecular-dynamics investigation of tracer diffusion in a simple liquid:
Test of the Stokes-Einstein law

F. Ould-Kaddour* and D. Levesque
Laboratoire de Physique The´orique, Universite´ de Paris–Sud, 91405 Orsay Ce´dex, France†

~Received 7 February 2000; published 21 December 2000!

In this work, we study the diffusion of solute particles in the limit of infinite dilution in a solvent. An
estimate is made of the solute concentration below which this limit is attained. We determine the range of the
size and mass values of the solute particles where the solute diffusion coefficient is well estimated from the
Stokes-Einstein formula. For these aims, extensive molecular-dynamics simulations are carried out for a model
tracer-solvent system made up of 5324 molecules including solvent and tracer molecules interacting through
Lennard-Jones potentials. The values of the viscosity coefficient, corrected for long time tail contributions, and
the diffusion coefficients are obtained with high precision. Positive deviations from the Stokes-Einstein for-
mula are observed as the size ratio or the mass ratio of the tracer to solvent molecules is lowered. For equal
solvent and tracer molecular masses, the crossover to the hydrodynamics regime is found to occur when the
size ratio is; 4. The results show a strong coupling between the size and mass effects on the tracer diffusivity,
with the latter being predominant. An analysis of the molecular-dynamics data in the hydrodynamic regime
shows that the Stokes-Einstein formula holds for this system withslip boundary conditions and the hydrody-
namic radius equal to the cross radius between the tracer-solvent molecules. The friction coefficient is evalu-
ated from the computed autocorrelation function of the force exerted by the fluid on the tracer molecule,
following a scheme proposed by Lagar’kov and Sergeev; it is found that the latter criterion gives the correct
diffusion coefficient only in the limits of high sizes and high masses.
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I. INTRODUCTION

Understanding diffusion and measuring diffusion co
stants of molecules in liquids are fundamental problems
statistical mechanics and the physics of the liquid state. T
are important for basic and applied problems in physi
chemistry and biology since many processes are diffus
limited. Most of the mixtures and solutions of these tw
domains are characterized by very large size and mass r
between the solute and solvent molecules. It is well es
lished that the diffusion coefficientD for a large and massive
solute molecule of radiuss in a solvent of much smaller an
lighter molecules is related to the solvent viscosityh by the
Stokes-Einstein~SE! formula

D5
kBT

f phs
, ~1!

whereT is the absolute temperature,kB the Boltzmann con-
stant, andf a numerical constant determined by the choice
stickor slip hydro-dynamic boundary conditions at the solu
surface. This relation has been verified experimentally
great detail@1# and is theoretically well understood throug
Brownian particle dynamics@2#. If, however, the solute size
and mass are comparable to those of the solvent molec
then Eq.~1! is not expected to be valid, and a microscop
approach becomes necessary. Such investigations have
made possible only due to computer simulations and theo

*Permanent address: Institut de Physique, Universite´ de Tlemcen,
BP119, Tlemcen 13000, Alge´ria.
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ical studies in which solute size and mass can be va
independently of each other. Alder, Alley, and Dymond@3#
investigated the mass and size dependence of the diffu
constant in moderately dense hard-sphere mixtures in o
to study the deviations from Enskog theory due to the
pearance of correlated motions in the fluid. An investigat
of diffusion in binary Lennard-Jones mixtures has also be
reported@4#.

However, for tracer diffusion, i.e., diffusion of one com
ponent at infinite dilution in a solvent, the existing data a
very limited @5#. One of us@6# has investigated small trace
diffusion in a dense Lennard-Jones~LJ! fluid by using
molecular-dynamics~MD! simulations but the calculation
were performed for a rather small system of 108 molecu
and a concentration of tracer molecules of 12%, wh
would be considered more as a binary system than as a
lution at infinite dilution. Recently, Bocquet, Hansen, a
Piasecki@7# have calculated the friction coefficient exerte
by a hard-sphere fluid on an infinitely massive Browni
sphere as a function of the size ratio between the Brown
particle and the fluid spheres, both analytically using mic
scopic kinetic theory and with molecular-dynamics simu
tions. They found that the SE formula holds with stic
boundary conditions in the range of size ratio between 1
4.5. The apparent validity of stick boundary conditions
rather surprising since the slip boundary condition is m
expected for a system of elastic hard spheres, which ha
attractive intermolecular interactions. Brey and Ordo´ñez @8#
have studied, by MD simulations, a system of particles int
acting through a LJ potential containing a heavy test parti
They have attempted to evaluate the friction coefficient
the test particle from a Green-Kubo formula by using
appropriate cutoff in the time integration of the autocorre
©2000 The American Physical Society05-1
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F. OULD-KADDOUR AND D. LEVESQUE PHYSICAL REVIEW E63 011205
tion function of the force acting on this particle. Their ana
sis of the validity of the SE formula is less conclusive sin
the viscosity value of the solvent is computed only within
error of 20%.

From an experimental point of view, it is clearly difficu
to find a set of mixtures that allows a systematic study of
dependence of the diffusion coefficient on the mass and
ratio without affecting the intermolecular interactions. Su
an experimental study has been reported for the diffusion
xenon inn-alkanes@9#, which has led to the conclusion tha
in order to maintain a simple relation between the xen
diffusion coefficient and the solvent viscosityh the experi-
mental data should be fitted empirically by a modified
formula by adding an exponent to the viscosity coefficie
appearing in Eq.~1!. More recently, the diffusion coefficient
of the molecule C60 in toluene, benzene, and carbon tet
chloride at 303.15 K have been reported by Castillo, Ga
and Ramos@10#. The value of the viscosity coefficient ha
also been measured, which has allowed a direct estimatio
the value of the hydrodynamic diameter of the C60 molecule
from the SE formula@Eq. ~1!#. This latter is compared to th
value extracted from x-ray studies. It is found that for t
stick boundary condition the hydrodynamic diameter
C60/toluene, C60/benzene, and C60/CCl4 has, respectively, a
value that deviates from the crystallographic value by 22.8
253.5%, and27.7%, and for the slip boundary condition th
deviation is, respectively, 84.2%,230.1%, and 38.87%. It is
important to note that benzene, toluene, and CCl4 have
mainly van der Waals type of interaction. Therefore the
systems would be similar to some of those investigated in
present work.

In order to overcome the limitations, already mention
above, of the work reported in Ref.@6#, which uses a rela-
tively small system, we have undertaken in the present pa
extensive MD simulations for a tracer-solvent system m
of 5324 molecules including solvent and tracer molecu
All the molecules interact through pair LJ potentials. In ord
to test the validity of the SE formula the value of the she
viscosity of the solvent is required. This latter is obtained
the appropriate Green-Kubo formula, taking carefully in
account the corrections due to the long time tail that exist
the time-stress autocorrelation functions. The knowledge
the viscosity coefficient with a high precision has allowed
to investigate the SE formula unambiguously, by asses
the influence of the size and mass ratios on the tracer d
sivity separately. We have investigated a range of size r
between 0.1 and 4, and a range of mass ratio between 0.1
120.

We have concentrated all along on the accurate appra
of the statistical uncertainty of the results, and therefore
tain a good location of the crossover to the hydrodynam
regime. For example, this crossover is located for eq
masses between solvent and solute molecules at a size
larger then 4. It occurs, for a fixed size ratio of 0.5, at a m
ratio more then 40. We also compute the autocorrela
function of the force acting on a tracer molecule in the
gime of high mass and size ratio; this latter is used to co
pute the friction coefficient. The tracer diffusion coefficie
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as calculated from the friction coefficient is compared to t
obtained from the mean square displacement.

The paper is organized as follows. Section II describ
our model and numerical procedures. The result for the sh
viscosity of the solvent is presented in Sec. III. In Sec. I
the value of the solute concentration is determined for wh
the infinite dilution is reached. In Sec. V, we present t
results on the the size and mass dependence of the t
diffusion coefficient, together with an analysis of the SE fo
mula in the high mass and/or the high size ratio regime. T
calculation of the diffusion coefficient from the friction co
efficient is discussed in Sec. VI. The paper ends with a d
cussion.

II. MODEL AND NUMERICAL PROCEDURE

The system consists of a numberN of molecules equal to
5324 including the tracer molecules. The index 1 refers
the solvent and 2 to the tracer. The pair intermolecular
tentials are taken to be LJ potentials, modified with a cu
spline @11#:

Ui j ~r !5e i j f S r

s i j
D , ~2!

with additive diameterss i j 5(s i1s j )/2. The functionf (x)
reads

f ~x!5H 4~x2122x26! for x,xc

6

610 009S 67248
x

xc
D 2

for xc,x,xm

0 for x.xm ,

~3!

wherexc5(26/7)1/6 is the inflection point of the LJ potentia
andxm567xc/48. The units of energy, length, and mass we
chosen to be, respectively,e11, s1 , andm1 . All molecules
have the same coupling constante125e225e11. The corre-
sponding microscopic time scale ist5(m1s1

2/e11)
1/2. There-

fore the state of our system is specified through the ove
reduced number density and temperaturer* 5rs1

3 and T*
5kBT/e11, the number concentration of tracer molecul
N2 /N, and the values of the size ratios2 /s1 and mass ratio
m2 /m1 . The values for the density and temperature for
present calculations arer* 50.85 andT* 51.0, specifying a
dense liquid state near the triple point of the LJ system.

The simulations were carried out at constant volume a
temperature using the standard Verlet algorithm a
Hoover’s thermostating method@12#, with the time stepDt
50.005t. Typical simulation runs are carried out for 10 00
to 20 000 equilibration time steps followed by 80 000
160 000 time steps during which the different time depend
correlation functions are computed. The diffusion coe
cients D1 and D2 of the solvent and tracer molecules a
obtained from the mean square displacement of the sol
and tracer molecules given by

Di5 lim
t→`

1

6tNi
(

j 51,Ni

^ur j
i ~ t !2r j

i ~0!u2&, i 51,2, ~4!
5-2
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MOLECULAR-DYNAMICS INVESTIGATION OF TRACER . . . PHYSICAL REVIEW E 63 011205
wherer j
i (t) are the positions of the particles at timet. The

shear viscosity coefficient for the pure solvent (N250) is
obtained through the Green-Kubo formula

h5E
0

`

h~ t !dt ~5!

with the shear viscosity autocorrelation function

h~ t !5
rs

3kBT (
^txy~0!txy~ t !&

N
. ~6!

Here the sum is to be made on the circular permutation of
indicesxy, rs is the solvent density, andtxy, the component
of the microscopic stress tensor, is given by

txy~ t !5(
i 51

N S miv i
xv i

y2
1

2 (
iÞ j

r i j
x r i j

y

r i j

]Ui j

]r i j
D , ~7!

wherevi are the solvent particle velocities. We also comp
the velocity autocorrelation function, and the different th
modynamic quantities and pair correlation functions.

III. SHEAR VISCOSITY OF THE SOLVENT

The shear viscosity autocorrelation functionh(t) of the
solvent as a function of timet relative to the time scalet is
given in Fig. 1. The final timet f reached is equal to 2, sig
nificantly longer than those reported in previous simulatio
@13,14#. The total number of integration steps is equal
260 000. The evaluation of the statistical error involved
the calculation of the viscosity is made by dividing the to
simulation into intervals of 20 000 integration steps, f
which the viscosity coefficient is calculated. From these v
ues, a mean square deviation is evaluated, and from the m
square deviation we obtain the estimated statistical error
the entire simulation. The value of the viscosity coefficie
found is

FIG. 1. Solvent shear viscosity autocorrelation functionh(t) as
a function of timet relative to the time scalet. The reduced density
is r* 50.85 and the reduced temperature isT* 51.
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h53.5660.04. ~8!

This amount of 1.2% in the statistical error is much low
than that reported in the literature@13–15#. This could be due
to the long time equilibration of the different starting co
figurations and to the use of a statistical ensemble differ
from that in previous work, the Hoover thermostatin
method, which suppresses thermal fluctuations.

It is well known that the time correlation functions fo
fluid transport coefficients decay algebraically at long tim
The long time tail behavior for the viscosity autocorrelati
function of a dense fluid has been discussed in great deta
the literature@16,17#. One first correction to this asymptoti
time behavior has been predicted by mode-coupling the
and is of an exponential form. The expressions for
asymptotic behavior and for this correction have been gi
in terms of the values of the transport coefficients@17#. The
first one is of the formt23/2 and reads for the viscosity au
tocorrelation function,

lim
t→`

h~ t !;at23/2, ~9!

with

a5
1

120p3/2b2 S 7

~2n!3/21
1

Gs
3/2D , ~10!

wheren5h/rsm1 , b51/kBT, and

Gs5
~g21!l

rsCp
1

4n

3
1

z

rsm1
, ~11!

in which l is the thermal conductivity,z is the bulk viscos-
ity, andg5Cp /Cv with Cp andCv the specific heat capaci
ties at constant pressure and volume, respectively. The e
nential correction given by the extended mode-coupl
theory of Kirkpatrick @18#, van Beijeren @19#, and de
Scheper, Haffmans, and van Beijeren@20# has a simple form
for a hard-sphere system. As the system we consider he
a highly dense fluid where hard-core effects are domina
we shall follow the suggestion made by Erpenbeck@14# to
use the simple form of a hard-sphere system to analyze
long time data. The extended mode-coupling contribut
reads for a hard-sphere system of diameterss @20#

hMC~ t !5~2hE /ts!A~r!exp@22Zh~KG!t#, ~12!

in which hE is the Enskog value of the viscosity,ts

5(bm1)1/2ss/2, A is an amplitude known in terms of th
structure factor, andZh(KG) is the extended hydrodynami
mode eigenvalue for the heat mode evaluated at the
Gennes minimum,’’ given approximately as a function
density by

Zh~KG!54.18~1.0562rs!/ts . ~13!

To estimate the order of magnitude of the coefficienta in
Eq. ~9!, which gives the amplitude of the long time tail, w
use the values for the transport coefficients and heat cap
ties given in Ref.@13#. The resulting value is found to b
5-3
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F. OULD-KADDOUR AND D. LEVESQUE PHYSICAL REVIEW E63 011205
equal to 4.931024. For the largest timet f where h(t) is
evaluated, the correction from the long time tail to the v
cosity coefficient is given by

dh5
2a

At f

. ~14!

For our simulationsdh.731024. This contribution to the
viscosity is negligible at the present level of statistical ac
racy.

By contrast, the contribution of the exponential term
significant. We use the LJ parameters1 for the hard-sphere
diameterss in ts and make a least squares fit to the data
long time from time 0.8 tot f , in order to get the amplitude
The result ishMC59.521 exp(23.444t/t). Figure 2 shows
the long time data of the shear viscosity autocorrelation fu
tion together with the fitted theoretical curve. We can s
that the fitted exponential decay joins the MD data smoot
within statistical error at timet51.6t. The resulting incre-
ment to the viscosity coefficient is

dhMC5E
t f

`

hMC~ t !dt50.0028, ~15!

yielding the final estimate for the viscosity coefficient as

h53.5760.04, ~16!

if we estimate the uncertainty on the correctiondhMC to be
around 30%. The coupling between the modes associ
with the shear waves and sound waves traversing the s
lation box should affect the decay ofh(t) only for times
larger thantc;L/c53.6.t f sinceL, the side of the simula-
tion box, is 18.4s1 and the sound velocityc is estimated to
be around 5 in reduced units@13#.

FIG. 2. Long time data of the solvent shear autocorrelation fu
tion as given in Fig. 1. The full curve is the fitted autocorrelati
function as computed by the extended mode-coupling theory.
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IV. INFINITE DILUTION LIMIT

In Table I, we give the solventD1 and tracerD2 diffusion
coefficients as a function of the number of tracer molecu
for a size ratio ofs2 /s150.5 and mass ratiom2 /m151. For
each computation, we give the number of time steps and
values of the internal energy, pressure, and specific hea
constant volume. The time autocorrelation functions of po
tions and velocities are evaluated over 400Dt. From partial
averages of these correlation functions performed every 2
time steps, the statistical error at a given time is estimated
evaluating the mean standard deviation of these average
typical graph for the mean square displacement as a func
of time is shown in Fig. 3. The diffusion coefficient is ob
tained from the slope at long time together with the statisti
error on the slope. In order to reach the same level of sta
tical error onD2 , the number of integration time steps in th
simulation runs is increased as the number of tracer m
ecules is lowered, as shown in Table I. The statistical er

-

TABLE I. Thermodynamic state properties and diffusion coe
ficients for the LJ system as a function of the number of tra
molecules. The reduced densityr* 50.85 and the reduced tempera
ture T* 51.0. The size ratios2 /s150.5 and mass ratiom2 /m1

51.0. N2 is the number of tracer molecules.nsteps is the total
number of time steps.Ui /e11 is the internal energy of the system
P/rkBT is the compressibility factor,Cv is the specific heat at con
stant volume, andD1 and D2 are the diffusion coefficients of the
solvent and solute molecules, respectively.

N2 nsteps Ui /e11 P* /r* T* Cv D1 D2

3 220 000 22.6067 4.2062 2.5703 0.047 05~6! 0.118~3!

6 160 000 22.6138 4.1785 2.6036 0.047 00~6! 0.113~2!

12 160 000 22.6149 4.1500 2.5899 0.047 03~7! 0.114~1!

24 100 000 22.6081 4.0987 2.5805 0.047 39~8! 0.119~1!

48 60 000 22.5925 4.0021 2.5677 0.048 1~1! 0.120~1!

96 40 000 22.6236 4.3459 2.5696 0.050 4~2! 0.125~2!

FIG. 3. Mean square displacement with error bars of the tra
molecule as a function of timet relative to the time scalet. The
ratioss2 /s150.5 andm2 /m151.0.
5-4
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obtained in the computation of the tracer diffusion coe
cient is about 1.2%, and that on the solvent diffusion coe
cient is 0.1%.

Figure 4 shows the tracer and solvent diffusion coe
cients as a function of number of tracer moleculesN2 for a
size ratio of 0.5 and a mass ratio of 1. We can see that
solvent diffusion coefficient goes to a constant value, wit
the statistical error, below a number of tracer molecu
equal to 20. Similar behavior is given forD2 within the
statistical error. We can state, from both figures, that
infinite dilution limit is reached below a concentration
0.3%, which is rather low for even such a noncharged s
tem. A similar analysis performed for other size ratios co
sidered in this work showed that the infinite dilution limit
obtained for a decreasing value ofN2 as the size ratio in-
creases. Therefore, we consider in the following studies
number of tracer moleculesN251, 2, 3, 6, and 12 for size
ratio respectively 4.0, 3.0, 2.0, 1.5, and 0.5.

TABLE II. Solvent and tracer diffusion coefficientsD1 andD2

as a function of the size ratios2 /s1 . The mass ratiom2 /m1

51.0. N2 is the the number of tracer molecules considered in e
case andr* is the reduced density. We also include the tracer d
fusion coefficient as given by the SE formula for the slip and st
boundary conditions.

s2 /s1 N2 r* D1 D2

D2slip

~SE!
D2stick

~SE!

0.1 12 0.85 0.047 20~9! 0.436~8! 0.040 0.026
0.3 12 0.85 0.047 10~8! 0.206~3! 0.034 0.022
0.5 12 0.85 0.047 03~7! 0.114~1! 0.029 0.019
0.7 12 0.85 0.047 05~8! 0.077~1! 0.026 0.017
1.0 solv 0.85 0.047 05~8! 0.047 05~8! 0.022 0.014
1.5 6 0.848 0.046 72~8! 0.028 3~8! 0.017 0.017
2.0 6 0.845 0.046 58~9! 0.018 6~4! 0.014 0.01
3.0 2 0.84 0.047 28~7! 0.11 8~3! 0.011 0.007
4.0 1 0.84 0.048 3~1! 0.008 4~4! 0.0088 0.0058

FIG. 4. Solvent and solute diffusion coefficientD1 and D2 as
functions of the number of solute molecules.
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V. SIZE AND MASS DEPENDENCE

A. Size dependence

The results for the size dependence of the tracer diffus
are given in Table II and Fig. 5, for the case of mass ra
equal to 1. For size ratios higher than 1, the pressure valu
the system increases, and, in order to maintain a cons
value of this latter, the volume of the box was slightly i
creased by an amount that corresponds to the excess vo
occupied by the big tracer molecule with respect to the v
ume occupied by a solvent molecule~cf. the density values
in Table II!.

It is the main interest of the present work to investiga
the SE formula given by Eq.~1!, which we write again for
D2 as

D25
T*

f ph* s12*
, ~17!

where the constantf 54 and 6 for the the slip and stic
hydrodynamic boundary conditions, respectively, ands12* is
the cross radius of the solvent-tracer molecules,s12*
50.5(s21s1)/s1 . The choice of the cross radiuss12* is
justified below. We plot in Fig. 5 the diffusion coefficient a
given by the SE formula with the value of the solvent v
cosity given in Eq.~16!. The SE formula is found to ap
proach the MD data with the slip~full curve! boundary con-
ditions when the size ratio approach the value of 3. Bel
this size the SE relation strongly underestimates the diffus
coefficient of the tracer. For example, the ratio of the diff
sion coefficient as obtained from the MD data to that giv
by the SE relation is

D2~MD! /D2~SE!54 for s2 /s150.5. ~18!

The slip boundary condition seems in the present work
hold better than the stick boundary condition, which is mo
expected for a LJ type of interaction between solute a
solvent molecules.

h
-
k

FIG. 5. Solute diffusion coefficientD2 as a function of the size
ratio s2 /s1 . The mass ratiom2 /m151.0. Full dots MD data; full
curve, SE formula with slip boundary condition; dotted curve,
formula with stick boundary condition. Statistical errors on M
data are smaller than symbol size.
5-5
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There is a change in the type of motion of the big tra
molecules as illustrated by the mean square displaceme
a function of time plotted in Fig. 6 fors2 /s154 as com-
pared to that shown in Fig. 3 fors2 /s150.5. We can see
that a big tracer molecule experiences many backscatte
effects, which indicates that its motion stays correlated o
relatively long time scale of the order of 1, and is not o
Brownian type over this interval of time.

B. Mass dependence

The dependence ofD2 on the mass ratiom2 /m1 has been
investigated for several size ratios of 0.5, 1.5, 3, and 4.
results are given in Tables III and IV. Figure 7 shows t
mass dependence for a size ratio of 0.5. We can see tha
hydrodynamical limit, i.e., mass independent behavior,

FIG. 6. Mean square displacement of the tracer molecule
function of time t relative to the time scalet. The ratioss2 /s1

54.0 andm2 /m151.0.

TABLE III. Tracer diffusion coefficient as a function of th
mass ratiom2 /m1 for a fixed size ratios2 /s1 .

s2 /s150.5 s2 /s151.5
m2 /m1 D2 m2 /m1 D2

0.1 0.179~3! 0.1 0.0292~8!

0.2 0.158~3! 0.5 0.0283~8!

0.5 0.137~2! 1 0.0283~8!

1 0.114~1! 2 0.0273~7!

2 0.103~1! 4 0.0271~7!

3 0.098~2! 8 0.0258~7!

6 0.087~1! 20 0.0253~6!

12 0.068~1! 40 0.0242~8!

15 0.063~1! 80 0.0205~5!

30 0.041~1! 120 0.0180~6!

40 0.0338~8!

60 0.0336~7!

90 0.0264~7!

120 0.0251~5!
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reached for a mass above 40. Positive deviation from the
formula appears as the value of the mass is decreased. F
Tables III and IV, we note that as the tracer size is increa
the hydrodynamic limit is reached for a lower mass. F
example, fors2 /s154 the value of this mass shifts down t
5. Our simulations show that the effects of size and m
ratios between the solvent and solute molecules are stro
coupled.

A justification of the choice of the hydrodynamic radiu
s12* is performed as follows. We consider the data lying
the hydrodynamic region of mass values for different siz
studied. In Fig. 8, a plot ofD2 versus the inverse ofs12*
shows a linear dependence. We define an effective radiu
ls12* and determinel from the SE formula written in the
form

D25
1

4ph* ls12*
, ~19!

a

TABLE IV. Tracer diffusion coefficientsD2 computed from the
mean square displacement andD2~frict! computed from the friction
coefficient, as a function of size and mass ratios.D is the relative
discrepancy between the two coefficients.

s2 /s1 m2 /m1 D2 D2~frict! D~%!

4.0 5 0.0075~4! 0.0154 106
10 0.0075~8! 0.0122 61.6
20 0.0075~5! 0.0101 35.1
40 0.0067~4! 0.0092 37.0
60 0.0077~5! 0.0084 8.6

3.0 40 0.0101~8! 0.0135 33.6
60 0.0097~7! 0.0117 19.6

1.5 4 0.0271~7! 0.0448 65.3
20 0.0253~6! 0.034 34.38
40 0.0242~8! 0.0325 34.29
80 0.0205~5! 0.0276 34.6

FIG. 7. Solute diffusion coefficientD2 as a function of the mass
ratio m2 /m1 . The size ratios2 /s150.5. Dots with error bars, MD
data; dotted line, value ofD2 from SE formula with slip boundary
condition.
5-6
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where use is made of the value for the viscosity we obtain
recalling thatT* 51.0. A linear fit gave a value forl51.1
60.1. This result justifies the use of a hydrodynamic rad
of s12* , which characterizes the range of repulsive interact
between solute and solvent molecules. This conclusion i
agreement with the result found by Bocquet and Barrat@21#
that, at the contact between fluid and plane solid walls,
hydrodynamic boundary conditions on the velocity field a
plied at a surface separated from the solid by about one l
of fluid atoms. This value ofs12 represents also the radius
a channel in the solvent through which a solute molecule
drift away. Clearly, from our MD data, the use of the sti
boundary condition would lead to a hydrodynamic radius
solute of 4s12/6, a value that does not represent any char
teristic length of the solute-solvent mixtures considered.

We plot in Fig. 9 the mean square displacement of a tra
molecule of a fixed size ratio of 1.5 and for mass ratios of
and 80. We can see that the increase in mass does not
the tracer type of motion at short time except for being mu
slower. This illustrates once more the dominant effect of
size on the tracer diffusivity.

VI. THE DIFFUSION AND FRICTION COEFFICIENTS

In the simple Langevin theory of Brownian dynamics t
diffusion coefficientD of a Brownian particle is related to
the friction coefficientj exerted by the fluid on the Brownia
particle by the Einstein relation@22#

D5
kBT

j
, ~20!

and a microscopic expression for the friction coefficient h
been obtained through a Green-Kubo formula by Kirkwo
@23# in the form

FIG. 8. D2 as a function of the inverse of the cross LJ parame
s12. Dots are fors2 /s154 and m2 /m1520,40,60. Filled dia-
monds are fors2 /s153 andm2 /m1540,60. Filled up triangles are
for s2 /s151.5 andm2 /m1580,120. Filled down triangles are fo
s2 /s150.5 andm2 /m1590,120. Full line is linear fit to Eq.~19!.
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j5
1

3kBT E
0

t0

^FW ~ t !FW ~0!&dt. ~21!

The expression in the integral is the autocorrelation funct
of the force exerted on the Brownian particle by the flu
This expression forj vanishes if the upper bound in th
integral is set to infinity@22#. The introduction of a cutoff
time t0 was the solution to this problem given by Kirkwood
who assumed that the integral of the force autocorrela
function versus the upper bound presented a plateau re
where it was almost independent of the precise value oft0 .
The friction coefficient could then be evaluated from th
plateau region. Lagar’kov and Sergeev@24# have proposed to
choose ast0 the first zero of the force autocorrelation fun
tion.

As in Ref. @8#, we propose to test the approach put fo
ward by Lagar’kov and Sergeev by comparing the diffusi
coefficients as obtained from Eqs.~20! and ~21! with those
determined from the mean square displacement@25#. The
force exerted by the solvent on the tracer molecule is gi
directly by the MD simulations. To render the comparis
significant, we consider data in the range of high size ra
and relatively high mass ratios.

In order to check the consistency of our computation
the force on the solute particle we have tested t

^FW (0)FW (0)& was equal, within statistical error, to the seco
time derivative of the tracer velocity autocorrelation functi
at time zero.

We give in Table IV the tracer diffusion coefficientD2
evaluated both from the mean square displacement and
the friction coefficient using the Lagar’kov and Sergeev c
terion. The relative discrepancies between these two
shown in Table IV. It is found that the Lagar’kov and Se
geev criterion leads to an overestimation of the diffusi
coefficient by about 30%. The best agreement, about 10%
obtained only in the limit of both high size and mass rati

r
FIG. 9. Mean square displacement of the tracer molecule a

function of time t relative to the time scalet. Dashed curve, the
ratios s2 /s151.5 andm2 /m1520; full curve, the ratioss2 /s1

51.5 andm2 /m1580.
5-7
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These discrepancies, which can reach 100% for the c
of a size ratio of 4 and a mass ratio of 5, are understood
looking at the decay behavior of the force autocorrelat
function. In Fig. 10 we plot the force autocorrelation fun
tions for a size ratio of 4 and mass ratios of 5 and 60. Clea
the force autocorrelation for the low mass case shows c
siderable temporal correlations, excluding the possibility o
plateau in the integral@Eq. ~21!# if considered as a function
of t0 . In the case of high mass we can see that the integra
the force autocorrelation function will be almost constant
the vicinity of a unique upper bound value corresponding
the first zero of̂ FW (t)FW (0)&, and only in this case could th
Lagar’kov and Sergeev criterion be used without ambigu

VII. DISCUSSION

At the level of accuracy of the present MD data and s
tem size, it seems that for a LJ system at constant pres
and temperature near the triple point, the tracer diffus
coefficients at high mass ratio and size ratio take value
agreement with the SE formula with a slip boundary con
tion between solute and solvent molecules, and with a hyd
dynamic radius equal to the range of repulsive interact
between solute and solvent molecules. Our simulations s
also that there is a strong coupling between the size and m

FIG. 10. Force autocorrelation function of solute particles a
function of time t relative to the time scalet. Full curve,s2 /s1

54 andm2 /m1560; dotted curve,s2 /s154 andm2 /m155.
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effects on the tracer diffusivity, in the domains of size a
mass ratio considered in this work. For stable suspension
solute particles in the solvent, our results are compatible w
a behavior of Brownian type as soon as the size ratio
higher than 3, for practically any mass ratio. Our resu
show that the use of Brownian dynamics for a size ratio
the order of unity is questionable as soon as the the m
ratio is smaller than 10.

We stress that the high accuracy of the data for both
solvent viscosity and the diffusion coefficients has allowe
convincing investigation of the crossover toward the hyd
dynamic behavior of solute particles and an evaluation of
shortcomings of the Lagar’kov and Sergeev proposal for
computation of the friction coefficient. Moreover, our resu
can partially explain the experimental data on the diffus
coefficient of C60 in toluene, benzene, and carbon tetrach
ride solutions. Our finding that the hydrodynamic radi
characterizes the range of interaction between solute and
vent molecules shows the strong dependence of this ra
on the solute-solvent interaction. It is expected that due
the change in the type of interaction between C60 and the
solvent molecules considered, the hydrodynamic rad
should vary strongly from one solvent to another.

Finally, we quote the work reported by Bhattacharyya a
Bagchi@26# on a microscopic and self-consistent calculati
of the diffusion coefficient of a tagged particle in a dense
liquid. In this calculation the solute motion is coupled to bo
the collective density fluctuation and the transverse curr
mode of the liquid. They found that in dense liquids t
relative importance of the hydrodynamic modes of the s
vent in the motion of a solute particle is determined larg
by the solute-solvent size ratio, and predicted that the cro
over from the microscopic to the hydrodynamic regim
should occur when the solute molecule is about 2–3 tim
larger than the solvent molecule for equal masses. Th
findings are in agreement with our results, and therefore
hope that the high accuracy of our MD data will allow
significant test of theoretical approaches to diffusion p
cesses in dense fluids.
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