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Parametric Bragg resonances in waves on a shallow fluid over a periodically drilled bottom
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Bragg resonances involving strong interactions among Fourier wave components of a periodically drilled
bottom and parametrically driven surface waves on a shallow liquid are experimentally shown to break down
the secular dispersion relation of surface waves. When the fluid is sufficiently shallow, wave components that
match reciprocal wave vectors of the bottom topography are dominant. Experimental evidence of band-gap
phenomena in these surface waves are also shown. Moreover, the prevalence of Bragg resonances is so strong
that one of them is excited anomalously within the band gap.
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I. INTRODUCTION

Surface wave propagation on a shallow inviscid liquid
a vessel of variable depth is a classical hydrodynamic pr
lem @1,2#. If the bottom topography is periodic, Bragg res
nances can generate strong scattered waves@3#. When the
undulations of the periodic bathymetry have large relat
amplitudes and/or large slopes, nonlinearities appear and
so-called mild slope equation must be modified@4#. In such a
case, a variety of generalized high-order Bragg resonan
can be observed@5,6#. Powerful ideas from solid-state phys
ics have also been elegantly used to study the band stru
of liquid surface waves@7# and the existence of band-ga
phenomena has been theoretically predicted@8#. Further-
more, an experiment of visualization of parametrica
driven surface waves over a periodically drilled bottom h
been reported recently@9#. In this paper, we present exper
mental findings based on strong interactions among sur
and bottom wave components. Such findings might be us
for the study of other physical systems, in which the stro
acousto-optical@10# or optical @11# structural coupling of
waves plays a major role. Current experiments of robust
sualization of parametrically driven surface waves ope
broad scenario to study the propagation of waves in inho
geneous structures, because they allow the observatio
frequency versus wave-number dispersion relations. Lo
ization and band-gap phenomena have been directly
served in elastic waves@12# and, are observed in hydrody
namic systems here.

II. EXPERIMENT

Experiments were made in a transparent vessel, wh
bottom consisting of a square lattice of cylindrical wells. T
vessel bottom was covered with a shallow layer of a spe
liquid @13# and was forced to vibrate vertically by means
an exciter coupled to a rod attached to the edge of the b
Moreover, the vessel was covered with a methacrylate lid
prevent evaporation of the liquid. The liquid meniscus at
walls gives rise to a surface wave at the angular frequencv
1063-651X/2000/63~1!/011204~5!/$15.00 63 0112
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of the vertical vibration@9,14,15#. To ensure that we only
worked with such meniscus waves, vibration amplitudes
the vessel were kept balanced just below the Faraday in
bility threshold corresponding to the shallow liquid lay
among holes@9,14,15#.

Wave patterns were obtained by illuminating the botto
of the transparent vessel with optic-fiber-guided white lig
Images are focused by the undulating liquid itself at a len
sf from the liquid surface, where a translucent paper scr
is placed. Wave amplitudesa are approximately given by the
expressiona5l2/@2p2sf(n21)#, where l is the wave-
length of the surface wave andn is the refraction index of the
liquid @13#. Experiments were recorded on video tape
further analysis.

The depthd of the cylindrical dimples is 2 mm and th
liquid depth over the cylindrical wells is given byh25h1
1d, where the crucial parameter of the experiment is
depthh1 of the thin liquid layer covering the bottom of th
vessel among holes. The liquid was carefully dispensed
means of a measuring pipette and this allows the estima
of depthh1 by taking into account the covered surface. E
periments were performed for two values ofh1 of about 0.5
and 0.2 mm.

The drilled area fractionf is given byf 5pr 0
2/ l 2, wherer 0

is the radius of the cylindrical wells andl is the lattice pa-
rameter. Experiments for visualization of wave patterns w
made with a drilled bottom with 81 holes,r 051.75 mm and
l 57.5 mm, what results in a drilled area fraction of 0.17.
study band-gap phenomena several drilled bottom patt
were tested and a square arrangement of 196 cylindr
wells with r 050.75 mm andl 52.5 mm was chosen. Such
pattern only partially covered the middle bottom region
the square vessel and had a drilled area fractionf of about
0.3. Such a value has been experimentally checked as
mum to open larger band gaps.

III. CALCULATION AND VISUALIZATION OF
WAVE PATTERNS

Surface wave amplitudes for a wave propagating on
shallow liquid with uniform depthh can be expressed by
©2000 The American Physical Society04-1
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h~r ,t !5eivtc~x,y!, ~1!

wherev is the angular frequency of the wave and the wa
amplitudec fulfills the Helmholtz wave equation expresse
as

S ¹21
v2

c2 Dc50, ~2!

wherec5v/k is the phase velocity andk52p/l is the wave
number, the wavelength beingl@h. Moreover, the angula
frequencyv and the wave numberk are related by the dis
persion relation for inviscid liquids, namely

v25gkS 11
T

rg
k2D tanh~kh!, ~3!

where g is the acceleration due to gravity,T is the liquid
surface tension, andr is the liquid density@9,14,15#.

In the present experiment with periodic bottom topog
phy, whenh1 is about 0.5 mm, wave patterns can be int
preted in the light of standard wave propagation theory
periodic structures, if we assume a perturbation of the w
that propagates over the homogenous bottom. Such a pe
bation is introduced by the change of the phase velocity
the wave that propagates over the dimples@16#. To show
such a feature, we have built a cellular automaton to solv
system of Helmholtz wave equations over a periodic fie
Such a field has two slightly different phase velocities,c1
5v/k1 on the host background andc25v/k2 on the wells,
which are calculated according to Eq.~3!, for the two depths
h1 andh2 . Such equations are

S ¹21
v2

ci
2 Dc50, i 51,2, ~4!

where c1,c2 . Notice that Eq.~4! does not include the
¹(c2)¹(h) term, which Eq.~8! ~see below! does. Equation
~8! is expected to be more accurate whenk is not negligible
compared to reciprocal wave-vector magnitudesG of the pe-
riodic bottom. From Eq.~3!, we see that for shallower an
shallowerh, and a fixed frequencyv, k increases. Therefore
we must expect that Eq.~4! becomes more accurate, justify
ing its use for sufficiently shallow depths.

The cellular automaton consists of a discrete square m
of 20320 tiny square cells, which mimics the unit cell of th
periodic drilled bottom. The Laplace operator is discretiz
as a first-neighbor increment mean value according to
expression

¹2c i , j5
1

4
~c i 21,j1c i , j 111c i 11,j1c i , j 2124c i , j !. ~5!

Periodic boundary conditions are imposed on the side
the unit cell and the maximum value ofc is normalized at
each iteration. Calculations start with a seed with the sh
of a discretized standing plane wave along the@110# direc-
tion. Then such a wave is disturbed by successive iterat
of the automaton, so that the wave pattern is finally obtain
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The drilled area fractionf is 0.17 and the phase velocit
ratio c2 /c1 is 1.42. Two simulated wave patterns are sho
in Fig. 1 after 16 and 7 iterations starting from diagon
wave seeds with wavelengths ofl A2/4 and 7l A2/40 length
units, respectively. As shown in Fig. 1, calculated patte
agree with experimental wave patterns with similarly drill
area fractions and at excitation frequencies of 22 and 30
respectively.

In the present numerical calculation, the phase veloci
ci vary in space periodically between two constants. The
fore, the coupling of waves with the reciprocal wave vecto
G of the periodic bottom is partly included in the model.

Nevertheless, anomalous wave patterns appear when
liquid depth h1 is as thin as 0.2 mm, and they cannot
simulated with the method mentioned above. Two such p
terns are shown in Fig. 2. High-order Bragg resonances
volving stronger interactions among bottom and surfa
wave components seem essential to understand experim
observations under conditions of severe shallow regime.

The Fourier wave development of the square periodic
rangement of cylindrical wells is

h~r !5(
G

AGeiG•r, ~6!

whereh(r ) is the function which defines the bottom topo
raphy andG5(Gx ,Gy)5(2pp/ l ,2pq/ l ). p andq integers,
are the vectors of the reciprocal lattice. AmplitudesAG are
given by

uAGu5
1

l 2 E
unit cell

d2rh~r !e2 iG•r52 f d
J1~Gr0!

Gr0
5dF~G!,

~7!

FIG. 1. Wave patterns observed when the liquid depthh1 is
about 0.5 mm at an excitation frequency of~a! 22 Hz and~b! 30 Hz,
along with corresponding calculated patterns after~c! 16 and~d! 7
iterations. The lattice parameterl is 7.5 mm.
4-2
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whereJ1 is the Bessel function of the first kind and order o
andF(G) is the structure factor.

Geometric bottom wave vectorsG with integer compo-
nents in the reciprocal space become resonant with sur
wave vectorsk. So, the anomalous experimental wave p
tern at an excitation frequency of 22 Hz shown in Fig. 2~a!
can be calculated now by means of the cellular automaton
taking into account the control of the Bragg resonance. E
iteration is reinforced then by heuristically introducing gro
ing surface waves with wave vectorsk corresponding to the
resonance:

G~0,1!1G~1,1!1G~1,0!1G~1,21!1k~0,21!1k~21,21!

1k~21,0!1k~21,1!50,

where surface wave vectorsk have opposite components
the corresponding geometric bottom wave vectorsG defined
above. The modified wave pattern is shown in Fig. 2~c!, and
agrees with the experimental one.

On the other hand, the image of the wave pattern at
excitation frequency of 35 Hz shown in Fig. 2~b! has been
analyzed and the resulting free-surface wave function
drawn in Fig. 2~d! over the unit cell. This wave function
corresponds to a high-order Bragg resonance involving u
eight surface waves with their wave vectorsk opposite to
reciprocal vectors:G(0,2) , G(1,2) , G(1,1) , G(2,1) , G(2,0) ,
G(2,21) , G(1,21) , andG(1,22) .

The distorted dispersion relationsv versusk seem to fit to
the most compatible or nearby Bragg resonance and bec
controlled by it.

An experiment with a slightly tilted vessel was perform
to check the existence of both behaviors described ab
This would also show the prevalence of the Bragg resona
regime when the phase velocity ratio is high. When the v

FIG. 2. Wave patterns observed when the liquid depthh1 is
about 0.2 mm at excitation frequencies of~a! 22 Hz and~b! 35 Hz.
Modified calculated pattern of~a! is shown in ~c!. Free-surface
wave function of~b! is shown in ~d! for a unit cell. The lattice
parameterl is 7.5 mm.
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sel is tilted, the depth ratioh2 /h1 and the corresponding
phase velocity ratioc2 /c1 vary continuously, so that both
parameters become higher in the region where the liq
depth h1 is lower. When the depth ratio reaches certa
threshold values, the surface wave pattern changes its re
abruptly. This behavior is shown in Fig. 3.

IV. CALCULATION AND VISUALIZATION
OF BAND-GAP PHENOMENA

In the standard context of band-structure theory, when
wave vectork of a propagating wave in a periodic structu
fulfills the Bragg condition for constructive interferenc
among reflecting waves, (k2G)25k2, then a frequency
band gapDvg appears and the dispersion relation curve,v
5v(k), splits @7,8,16,17#. The main Bragg reflection occur
whenk reaches the boundary of the first Brillouin zone alo
the @100# direction, i.e.,k5p/ l andG52p/ l . Then the in-
cident wave is reflected by the periodic structure and
propagating wave decays exponentially. The strengths
both phenomena are proportional to the gap/midgap r
Dvg /vg @17#.

To study the band structure and the appearance of b
gaps, we use the propagation equation

] t
2h~r ,t !5¹@c2~r !¹h~r ,t !#, ~8!

which is similar to the shallow water equation@1,2,8# and to
that used to study acoustic band gaps in two-dimensio
periodic systems@18#.

By Fourier transforming Eq.~8! and using Bloch’s theo-
rem, one obtains the homogeneous equation system

v2hk1G5(
G8

cG2G8
2

~k1G!~k1G8!hk1G8 , ~9!

FIG. 3. Complex wave pattern observed on a slightly tilted c
cular vessel. The vessel is tilted along the diagonal direction defi
from top left to bottom right. A clear and well-defined doma
appears localized in the shallow enough region, where a consp
ous Bragg resonance is prevalent~top left corner!.
4-3
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where the Fourier amplitudescGÀG8
2 are calculated by an

expression similar to Eq.~7!. The above system has on
nontrivial solutions for amplitudesh when the secular equa
tion

det@cG2G8
2

~k1G!~k1G8!2v2dG,G8#50 ~10!

is fulfilled. Then amplitudesh are undetermined. In Eq.~10!,
d is the Kronecker symbol. Such secular Eq.~10! links an-
gular frequenciesv to wave vectorsk that define the band
structure. Calculations in Eq.~10! have been carried out us
ing 12 reciprocal vectorsG.

Calculated first band gaps along@100# and @110# direc-
tions are shown in Fig. 4~a! for three phase velocity ratio
c2 /c1 :1.42, 1.87, and 2.8. The first two velocity ratios co
respond to depthsh1 of about 0.5 and 0.2 mm, respectivel
whereas the third one corresponds to an extreme case
studied experimentally. Anyway, no complete band ga
were found, as stated previously@8#.

The gap-midgap ratio for the lowest velocity ratio, can
approximately calculated as the first order of perturbation
Eq. ~4! as it was studied earlier@16#. Such ratio is given by

Dvg

vg
5c0

2S 1

c1
22

1

c2
2DF~G!, ~11!

where

FIG. 4. ~a! First band-gap widths along the@100# and @110#
directions for three phase velocities ratios.~b! Dispersion relations
along @100# and @110# directions with phase velocity ratio of 1.87
Theoretical curves along with experimental results with their co
sponding error bars are shown. Amplitudes needed to visualize
wave pattern at frequencies lower than 14 Hz are so high that s
holes eject all liquid. On the other hand, the Faraday instab
grows for amplitudes of the experiment at frequencies higher t
28 Hz and destroys the propagative wave pattern.
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c1
2 . ~12!

As it was expected, such an approximation matches w
more accurate calculations described by Eq.~10! only for the
lowest phase velocity ratio.

Robust band gaps can be easily observed for the ph
velocity ratioc2 /c1 of 1.87. Then the first-order perturbatio
approximation becomes unrealistic and the band struc
must be studied by using Eq.~10!. To study the band struc
ture experimentally, we use a partially drilled bottom with
drilled area fractionf of 0.3, as indicated in Sec. II. Calcu
lated and measured dispersion relations for the first
bands of the propagative wave are shown in Fig. 4~b!, in
which 42 vectorsk have been used to calculate each ban

The band-gap visualization is shown in Fig. 5, where
vessel walls are at an angle ranging from 15° to 26° w
respect to the periodic bottom structure. The pattern for
angle of about 15° is shown in Fig. 5~a! at an excitation
frequency of 16 Hz, and then calculated and measured b
gaps agree within an error lower than 0.5 Hz. When
angle is about 26°, as it is shown in Fig. 5~b!, the gap/midgap
ratio decreases and the midgap increases, so the outer p
gating wave penetrates slightly into the periodic bottom
gion, as it can be seen on the left side of Fig. 5~b!.

Experimental points at the edges of the band gaps co
spond to standing waves on the whole drilled bottom regi
So, the group velocity of such waves is zero, what cor

-
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e
y
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FIG. 5. Visualization of band-gap phenomena when the ou
wave that propagates over a flat bottom reaches the periodic bo
region at an angle of~a! 15° and~b! 26°. A slight penetration of the
wave into the periodic region can be observed in~b! ~top left!.
4-4
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sponds to a zero slope of the dispersion relation curve.
wave that covers the whole drilled region can be obser
within the band gaps. Such features allow to determ
where the dispersion relation is broken down by the ba
gap.

The amplitudea of standing waves at the edges of the fi
band gap is estimated to be about 0.08 mm, what is com
rable to depthh1 . On the other hand, the wavelengths for t
states at the edges of the band gaps are about 5 and 3.5
and the depthh1 corresponding to the very thin layer o
liquid among holes is about 0.2 mm. Then one obtains 0
and 0.36, respectively, forkh. This is compatible with the
shallow water approximation in whichkh!1. The surface
area among holes takes 70% of the total surface area, so
Eq. ~8! works adequately. Indeed, this is confirmed by t
good agreement between theory and experimental obse
tions. Anyway, the fitting is better in the first band, for fr
quencies lower than the band gap, where the group velo
is approximately constant, as it can be seen in Fig. 4~b!. This
feature indicates a low dispersion of the wave that impro
the approximation to the shallow water regime in the fi
band.

Nevertheless, the main feature in the snapshot show
Fig. 5 is the prevalent Bragg resonance controlled by
conditionG(0,1)1G(1,0)1k(0,21)1k(21,0)50, which is patent
over the periodic bottom region. Two dominant perpendi
lar waves with the same orientation and wavelength as
periodic bottom topography run on the free surface at e
-

sa

i-
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tation frequencies within the band gap. Such waves show
dependence on the propagation direction of the exte
wave. On the other hand, the phases of surface wave
wells remain the same.

Finally, the pattern observed in Fig. 3 is another go
example of visualization of the second band gap along
@110# direction and has the same couplingG2k mentioned
above.

V. CONCLUSIONS

Parametrically driven wave patterns and band-gap p
nomena on a shallow fluid covering a periodically drille
bottom have been studied. Experimental wave patterns h
been interpreted assuming a model of propagation where
phase velocities vary in space periodically between two c
stants. When the wave vector reaches the boundary of
first Brillouin zone, wide band gaps break down the disp
sion relation curve. For sufficiently shallow fluids, suc
band-gap phenomena are so robust that they can be dir
visualized.
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