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Parametric Bragg resonances in waves on a shallow fluid over a periodically drilled bottom
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Bragg resonances involving strong interactions among Fourier wave components of a periodically drilled
bottom and parametrically driven surface waves on a shallow liquid are experimentally shown to break down
the secular dispersion relation of surface waves. When the fluid is sufficiently shallow, wave components that
match reciprocal wave vectors of the bottom topography are dominant. Experimental evidence of band-gap
phenomena in these surface waves are also shown. Moreover, the prevalence of Bragg resonances is so strong
that one of them is excited anomalously within the band gap.
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I. INTRODUCTION of the vertical vibration[9,14,15. To ensure that we only
worked with such meniscus waves, vibration amplitudes of
Surface wave propagation on a shallow inviscid liquid inthe vessel were kept balanced just below the Faraday insta-
a vessel of variable depth is a classical hydrodynamic probbility threshold corresponding to the shallow liquid layer
lem [1,2]. If the bottom topography is periodic, Bragg reso- among hole$9,14,15. _ -
nances can generate strong scattered wiSpsWhen the Wave patterns were obtgmed by [Ilumlne}tlng the_ bo;tom
undulations of the periodic bathymetry have large relative?f the transparent vessel with optic-fiber-guided white light.
amplitudes and/or large slopes, nonlinearities appear and tHg1ages are focused by the undulating liquid itself at a length
so-called mild slope equation must be modifiédl In such a St from the liquid surf_ace, where a tra_nslucent paper screen
case, a variety of generalized high-order Bragg resonances placeq. Weivezampllztudesare apprommatgly given by the
can be observefb,6]. Powerful ideas from solid-state phys- expressiona=\°/[2m°s(n—1)], where A IS _the wave-
ics have also been elegantly used to study the band structul%ngth of the surfa_ce wave ands the refraction |_ndex of the
of liquid surface wave$7] and the existence of band-gap iquid [13]. E>.<per|ments were recorded on video tape for
phenomena has been theoretically predict8f Further- further analysis. - . .
more, an experiment of visualization of parametrically . The depthd of the cyllndrlpal dlmple_s '3.2 mm and the
driven surface waves over a periodically drilled bottom hasl'qu'd depth over thg cylindrical wells is given _Uy2=h_l
been reported recent(]. In this paper, we present experi- +d, where the c_ruc_lal_parameter of_ the experiment is the
mental findings based on strong interactions among surfac(ti,‘epthhl of the thin liquid layer covering the bottom of the

and bottom wave components. Such findings might be usefmessel among h°'e$- Th? liquid was .carefully dispen_sed .by
for the study of other physical systems, in which the stron eans of a measuring pipette and this allows the estimation

acousto-optical[10] or optical [11] structural coupling of of qlepthhl by takmgf:; into da;:count thel cove;e(: sgrfacg. Ex-
waves plays a major role. Current experiments of robust viP€riments were performed for two valuestgf of about 0.5

sualization of parametrically driven surface waves open gnd 0.2 mm. . 2112

broad scenario to study the propagation of waves in inhomo- | he drilled area fractiois given byf=mrg/1%, whererq
geneous structures, because they allow the observation & the radius of the cylindrical wells aridis the lattice pa-
frequency versus wave-number dispersion relations. Locaf@meter. Experiments for visualization of wave patterns were
ization and band-gap phenomena have been directly opbade with a drilled bottom with 81 holegy=1.75 mm and

namic systems here. study band-gap phenomena several drilled bottom patterns

were tested and a square arrangement of 196 cylindrical

wells with r;=0.75mm and =2.5 mm was chosen. Such a
Il. EXPERIMENT pattern only partially covered the middle bottom region of
st(?e square vessel and had a drilled area fractioh about

Experiments were made in a transparent vessel, who 3 Such lue has b . tallv checked i
bottom consisting of a square lattice of cylindrical wells. The ™~ uch a value has been experimentally checked as optl-
jnum to open larger band gaps.

vessel bottom was covered with a shallow layer of a specia
liquid [;3] and was forced to vibrate vertically by means of Il CALCULATION AND VISUALIZATION OF
an exciter coupled to a rod attached to the edge of the box.

. . WAVE PATTERNS
Moreover, the vessel was covered with a methacrylate lid to
prevent evaporation of the liquid. The liquid meniscus at the Surface wave amplitudes for a wave propagating on a
walls gives rise to a surface wave at the angular frequancy shallow liquid with uniform deptth can be expressed by
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n(r,H)=e“'y(xy), .Y

wherew is the angular frequency of the wave and the wave
amplitude fulfills the Helmholtz wave equation expressed
as

(V2+w—2 =0 (2)
c? ’

wherec= w/k is the phase velocity arid=2=/\ is the wave
number, the wavelength being>h. Moreover, the angular
frequencyw and the wave numbek are related by the dis-
persion relation for inviscid liquids, namely

w?= tanh(kh), (3)

gk

-
1+ —Kk2
P9

where g is the acceleration due to gravity, is the liquid
surface tension, ang is the liquid density{9,14,15.

In the present experiment with periodic bottom topogra-
phy, whenh, is about 0.5 mm, wave patterns can be inter-
preted in the light of standard wave propagation theory in o .
periodic structures, if we assume a perturbation of the wave FIG. 1. Wave patterns observed when the liquid defpihis
that propagates over the homogenous bottom. Such a pert20ut 0-5 mm at an excitation frequency(aff 22 Hz and(b) 30 Hz,
bation is introduced by the change of the phase velocity oft°nd With corresponding calculated pattems afterl6 and(d) 7
the wave that propagates over the dimplés]. To show '€rations. The lattice parameteis 7.5 mm.
such a feature, we have built a cellular automaton to solve a Thea grilled area fractioriis 0.17 and the phase velocity
system of Helmholtz wave equations over a periodic field
Such a field has two slightly different phase velocitieg,
= w/k, on the host background amg= w/k, on the wells,
which are calculated according to E@), for the two depths
h, andh,. Such equations are

ratio c,/c4 is 1.42. Two simulated wave patterns are shown
in Fig. 1 after 16 and 7 iterations starting from diagonal
wave seeds with wavelengths bf2/4 and 7,2/40 length
units, respectively. As shown in Fig. 1, calculated patterns
agree with experimental wave patterns with similarly drilled
area fractions and at excitation frequencies of 22 and 30 Hz
$=0, i=1,2, (4) ~ respectively. _ _ N
In the present numerical calculation, the phase velocities
¢c; vary in space periodically between two constants. There-
where ¢;<c,. Notice that Eq.(4) does not include the fore, the coupling of waves with the reciprocal wave vectors
V(c®)V(7) term, which Eq.(8) (see belowdoes. Equation G of the periodic bottom is partly included in the model.
(8) is expected to be more accurate wheis not negligible Nevertheless, anomalous wave patterns appear when the
compared to reciprocal wave-vector magnitu@esf the pe-  |iquid depthh, is as thin as 0.2 mm, and they cannot be
riodic bottom. From Eq(3), we see that for shallower and simulated with the method mentioned above. Two such pat-
Sha”owerh, and a fixed frequencw, k increases. Therefore, terns are shown in F|g 2. High-order Bragg resonances in-
we must expect that E¢4) becomes more accurate, justify- yolving stronger interactions among bottom and surface
ing its use for sufficiently shallow depths. wave components seem essential to understand experimental
The cellular automaton consists of a discrete square mesghservations under conditions of severe shallow regime.
of 20x 20 tlny square Ce”S, which mimics the unit cell of the The Fourier wave deve|opment of the square periodic ar-
periodic drilled bottom. The Laplace operator is discretizedrangement of cylindrical wells is
as a first-neighbor increment mean value according to the
expression

2
w
V2+—2
G

h(r)=§ Ace'®, (6)

1
Vz'pi,j:Z(wifl,j_F Pijert iyt i jo1— 44 p). (5 whereh(r) is the function which defines the bottom topog-
raphy andG=(G,,G,)=(2mp/l,2mq/l). p andq integers,
Periodic boundary conditions are imposed on the sides odire the vectors of the reciprocal lattice. Amplitudeg are
the unit cell and the maximum value @fis normalized at given by
each iteration. Calculations start with a seed with the shape

of a discretized standing plane wave along fb#&0] direc- _ 1 j 2 —iGr_ J1(Gro) _
tion. Then such a wave is disturbed by successive iterationsIAGI 12 ) unit Ce”d rhir)e 2fd Gryp dF(G),
of the automaton, so that the wave pattern is finally obtained. W)
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FIG. 2. Wave patterns observed when the liquid depthis
about 0.2 mm at excitation frequencies(af 22 Hz and(b) 35 Hz.
Modified calculated pattern ofa) is shown in(c). Free-surface
wave function of(b) is shown in(d) for a unit cell. The lattice
parametet is 7.5 mm.

wherelJ; is the Bessel function of the first kind and order one
andF(G) is the structure factor.

Geometric bottom wave vectofs with integer compo-
nents in the reciprocal space become resonant with surfa

tern at an excitation frequency of 22 Hz shown in Fi¢p)2

can be calculated now by means of the cellular automaton by
taking into account the control of the Bragg resonance. Each

iteration is reinforced then by heuristically introducing grow-
ing surface waves with wave vectdcscorresponding to the
resonance:

Gyt GuntGuotGu-ntko-ntk-1-1)

+k(,1’0)+ k(,1’1)=0,

where surface wave vectokshave opposite components to
the corresponding geometric bottom wave vectrdefined
above. The modified wave pattern is shown in Fig)2and
agrees with the experimental one.

On the other hand, the image of the wave pattern at a
excitation frequency of 35 Hz shown in Fig(t? has been

c
wave vectorsk. So, the anomalous experimental wave pat-
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FIG. 3. Complex wave pattern observed on a slightly tilted cir-
cular vessel. The vessel is tilted along the diagonal direction defined
from top left to bottom right. A clear and well-defined domain
appears localized in the shallow enough region, where a conspicu-
ous Bragg resonance is prevaléttp left corney.

sel is tilted, the depth ratid,/h; and the corresponding
phase velocity ratiac,/c; vary continuously, so that both
parameters become higher in the region where the liquid
depth h, is lower. When the depth ratio reaches certain
threshold values, the surface wave pattern changes its regime
aeoruptly. This behavior is shown in Fig. 3.

IV. CALCULATION AND VISUALIZATION
OF BAND-GAP PHENOMENA

In the standard context of band-structure theory, when the
wave vectork of a propagating wave in a periodic structure
fulfills the Bragg condition for constructive interference
among reflecting waves,k- G)2=k?, then a frequency
band gapA wy appears and the dispersion relation cure,
= w(k), splits[7,8,16,17. The main Bragg reflection occurs
whenk reaches the boundary of the first Brillouin zone along
the [100] direction, i.e..k= 7/l andG=2/l. Then the in-
cident wave is reflected by the periodic structure and the
propagating wave decays exponentially. The strengths of
both phenomena are proportional to the gap/midgap ratio
Awglog [17].

To study the band structure and the appearance of band

analyzed and the resulting free-surface wave function i§aPs, we use the propagation equation

drawn in Fig. 2d) over the unit cell. This wave function
corresponds to a high-order Bragg resonance involving up t
eight surface waves with their wave vectdsopposite to
reciprocal vectors:Gz), G2, G1y, G Gro)»
G(Z,—l) , G(l,— 1) and G(1’_2) .

The distorted dispersion relatioasversusk seem to fit to

0 Fn(r,H) =V Vy(r,], (®)
which is similar to the shallow water equatiph, 2,8 and to
that used to study acoustic band gaps in two-dimensional

periodic system$18].

the most compatible or nearby Bragg resonance and become By Fourier transforming Eq(8) and using Bloch'’s theo-

controlled by it.
An experiment with a slightly tilted vessel was performed

rem, one obtains the homogeneous equation system

to check the existence of both behaviors described above.

This would also show the prevalence of the Bragg resonance
regime when the phase velocity ratio is high. When the ves-

0 Pie=2 Ca (kG (K+G ) piars (9
GI
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FIG. 4. (a) First band-gap widths along tHd00] and [110]
directions for three phase velocities rati¢ls) Dispersion relations
along[100] and[110] directions with phase velocity ratio of 1.87.
Theoretical curves along with experimental results with their corre-

- ) ) - FIG. 5. Visualization of band-gap phenomena when the outer
sponding error bars are shown. Amplitudes needed to visualize thg,e that propagates over a flat bottom reaches the periodic bottom

wave pe_lttern at _frequencies lower than 14 Hz are so high_ that S_‘_’”V:égion at an angle d&) 15° and(b) 26°. A slight penetration of the
holes eject all liquid. On the other hand, the Faraday instability,,;\e into the periodic region can be observedtin(top left.
grows for amplitudes of the experiment at frequencies higher than

28 Hz and destroys the propagative wave pattern. fo1—f

—+—. 12
a2t 12

S e

where the Fourier amplitudesé_e, are calculated by an
expression similar to Eq(7). The above system has only _ o _
nontrivial solutions for amplitudes; when the secular equa-  AS it was expected, such an approximation matches with
tion more accurate calculations described by @€) only for the
lowest phase velocity ratio.
de[céfe,(kJr G)(k+G')— w28z ]1=0 (10) Robust band gaps can be easily observed for the phase
velocity ratioc,/c, of 1.87. Then the first-order perturbation
is fulfilled. Then amplitudes; are undetermined. In E¢L0), approximation becomes unrealistic and the band structure
S is the Kronecker symbol. Such secular Efj0) links an-  must be studied by using E¢L0). To study the band struc-
gular frequencieso to wave vectork that define the band ture experimentally, we use a partially drilled bottom with a
structure. Calculations in E¢10) have been carried out us- drilled area fractiorf of 0.3, as indicated in Sec. Il. Calcu-
ing 12 reciprocal vector&. lated and measured dispersion relations for the first two
Calculated first band gaps alofi$j00] and [110] direc-  bands of the propagative wave are shown in Fig)4in
tions are shown in Fig. (&) for three phase velocity ratios which 42 vectork have been used to calculate each band.
c,/c,:1.42, 1.87, and 2.8. The first two velocity ratios cor- The band-gap visualization is shown in Fig. 5, where the
respond to depthl; of about 0.5 and 0.2 mm, respectively, vessel walls are at an angle ranging from 15° to 26° with
whereas the third one corresponds to an extreme case n@spect to the periodic bottom structure. The pattern for an
studied experimentally. Anyway, no complete band gapsngle of about 15° is shown in Fig(& at an excitation
were found, as stated previoug$]. frequency of 16 Hz, and then calculated and measured band
The gap-midgap ratio for the lowest velocity ratio, can begaps agree within an error lower than 0.5 Hz. When the
approximately calculated as the first order of perturbation ofingle is about 26°, as it is shown in Figbh the gap/midgap
Eq. (4) as it was studied earligd6]. Such ratio is given by ratio decreases and the midgap increases, so the outer propa-
gating wave penetrates slightly into the periodic bottom re-
Awg (1 1 F(G) 11) gion, as it can be seen on the left side of Fit)5
wg ~Co c: ¢ (G), Experimental points at the edges of the band gaps corre-
spond to standing waves on the whole drilled bottom region.
where So, the group velocity of such waves is zero, what corre-
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sponds to a zero slope of the dispersion relation curve. Néation frequencies within the band gap. Such waves show no

wave that covers the whole drilled region can be observedependence on the propagation direction of the external

within the band gaps. Such features allow to determinavave. On the other hand, the phases of surface waves on

where the dispersion relation is broken down by the bandvells remain the same.

gap. Finally, the pattern observed in Fig. 3 is another good
The amplitudea of standing waves at the edges of the firstexample of visualization of the second band gap along the

band gap is estimated to be about 0.08 mm, what is comp4410] direction and has the same coupli@g-k mentioned

rable to deptth, . On the other hand, the wavelengths for theabove.

states at the edges of the band gaps are about 5 and 3.5 mm

and the depthh; corresponding to the very thin layer of

liqguid among holes is about 0.2 mm. Then one obtains 0.25 V. CONCLUSIONS

and 0.36, respectively, fdkh. This is compatible with the

shallow water approximation in whickh<1. The surface n

area among holes takes 70% of the total surface area, so tr@g

Eqg. (8) works adequately. Indeed, this is confirmed by the

good agreement between theory and experimental observ

tions. Anyway, the fitting is better in the first band, for fre-

Parametrically driven wave patterns and band-gap phe-
mena on a shallow fluid covering a periodically drilled

ttom have been studied. Experimental wave patterns have
been interpreted assuming a model of propagation where the
Bhase velocities vary in space periodically between two con-

stants. When the wave vector reaches the boundary of the

quenues_lom{[erl than Te tband.tgap, gvhere the g(rouzpl)”\]/_elomt}{rst Brillouin zone, wide band gaps break down the disper-
Is approximately constant, as it can be seen in Fig. 4his sion relation curve. For sufficiently shallow fluids, such

feature indi.cate's a low dispersion of the wave th"?lt impro.ve%and—gap phenomena are so robust that they can be directly
the approximation to the shallow water regime in the f'rStvisuaIized

band.

Nevertheless, the main feature in the snapshot shown in
Fig. 5 is the prevalent Bragg resonance cqntrglled by the ACKNOWLEDGMENTS
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