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Critical properties of a branched polymer growth model
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We study the branched polymer growth mo@@PGM) introduced by Lucenat al. [Phys. Rev. Lett72,
230(1994)] in two dimensions. First the BPGM was simulated in very large lattices with concentrations of
impuritiesq=0 andg=0.2. The scaling of the mass in chemical space gives accurate estimates of the critical
branching probabilitie®, and of the chemical dimensioiiy, at criticality, improving previous results. Esti-
mates of the fractal dimensidd at criticality are consistent with a universal value along the critical line. Our
results forg=0 suggest small deviations &f. and D from the percolation values. We also simulated the
BPGM in finite lattices of lengths betweén=32 andL =512 for the same concentratiogsUsing finite-size
scaling techniques, we confirm the previous estimateS ofind the universality along the critical line, and
obtain the correlation exponent=1.43+0.06. It proves that the BPGM is not in the same universality class
of percolation in two dimensions. Finally, we simulate random walks on the critical polymers grown in very
large lattices withg=0 andg= 0.2, and obtain the random walk dimensid and the spectral dimensi@y .

D,, is larger andD; is smaller than the corresponding values in critical percolation clusters, due to the lower
connectivity of the polymers. The scaling relatibR=2D¢ /D,, is not satisfied, as observed in other tree-like
structures.

DOI: 10.1103/PhysRevE.63.011108 PACS nun®er05.40—a, 05.50+q

[. INTRODUCTION site, one monomer is added with probability 1 and a second
monomer is added with probability provided that there are

Various statistical models of polymers’ growth in free sufficient empty neighbors. If an active site has no empty
space and in disordered media have been studied in the lasgighbor, it stops growing and a dangling end is created. If
decadeg1-4]. The simplest model to represent the confor-there are no active sites with empty neighbors, the polymer
mational properties of linear polymers in diluted solutionsstops growing.
and good solvent conditions is the self-avoiding wEk\W) In two dimensions, it was show|8] that, at a certain
[1], where the interactions between the monomers are repreritical branching probabilityp., there is a transition be-
sented only by the excluded volume condition. The kinetictween a finite growth regimeb&b.), where the polymer
growth walk(KGW) has also been introduced to describe thestructure is asymptotically equivalent to the KGWft the
growth of a linear polymer under the excluded volume con-SAW), and an infinite growth regimeb(b.), where the
dition [5,6]. In the KGW, at each time step, a monomer ispolymer is compact. In a diluted lattice, the valuebgfde-
added to the end of theigid) chain in a randomly chosen pends on the concentration of impuritigswhich is the frac-
direction. These problems are not identical because differeriton of nonavailable lattice sites.

SAW configurations with the same number of monomers Since the universality class of branched polymgener-
have the same statistical weight, but this is not true in thalization of the SAW including branchings believed to be
KGW model, although the ensemble elements are the saméhe same of lattice animal42,13], the question of the uni-
Despite this important difference, it was shown that theversality class of the BPGM at criticality attracted some in-
SAW and the KGW have the same critical exponds terest. Estimates of the chemical dimensién ) of the criti-

In 1994, Luceneet al. [8] introduced the branched poly- cal BPGM in two dimensiong9,10] were consistent with the
mer growth mode(BPGM), which is a generalization of the percolation value and led to the proposal that, at the critical
KGW that includes branching. It was originally proposed asline b.(q), this model belongs to the same universality class
a realistic model for the kinetic growth of ramified polymers of percolation. On the Cayley tree, this equivalence was rig-
in dirty media. Since then, the BPGM was studied in free andrously proved[10]. However, previous estimates of the
diluted two- and three-dimensional lattices by several aufractal dimensionDg of the critical BPGM in the square
thors[8-11], and also in the Cayley trd@0]. In this model, lattice differed from the percolation valueDP*=91/48
the center of the lattice dt=0 is occupied by a seed. At  ~1.896): Lucenaet al. obtainedDg~ 1.8 at some points of
=1, one monomer is added in a random direction with probthe critical line, while Neves and Onodyt1] obtainedD ¢
ability 1, and a second monomer is added in another direc=1.963+0.006 forq=0 andD(=1.946+0.002 forq=0.1.
tion with probabilityb. Thus,b is called the bifurcation prob- Moreover, the estimate of the exponentor =0 of Neves
ability. This process is continued so that, at tiliel, the  and Onody{11] differed from the percolation value. Conse-
polymer can grow from each of the sites added at the previquently further analysis of the BPGM is important, particu-
ous timet, which are named active sites. From each activearly at criticality, not only for its theoretical relevance but

also for its possible applications to real systdi@ks
The first aim of this work is to improve previous results
*Electronic address: reis@if.uff.br on the conformational properties of critical branched poly-
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mers in two dimensions, in order to determine critical expo- ST s L9 e
nents and discuss tlipossible equivalence to percolation at T~ —d T 18 2 \
criticality. Then, forg=0 andg=0.2, we will simulate very S 1712fF ~——~ ¢ 3 3
large polymers near the critical line. The study of the BPGM g 17 - ﬁ g L7 3 >
in chemical space will provide estimatesinf andD,. The o168 3 LleE /:
value of D, seems to decrease @s$ncreases, and is slightly 168 B, 1.5 Bl il d
different from the percolation value fay=0. The estimates 0 210:'1 tfl 8 0 2102 tfl 8

of D¢ are consistent with a universal value along the critical

line, but the more accurate result fgr=0 is slightly larger (a) (b)

than DE*'°. Subsequently, we will simulate the polymers in _ _ _ _

finite lattices and study the scaling of the average radius of FIG. 1. Estimates of the chemical dimension of the BPGM for

gyration and of the correlation length. We will obtain esti- (8 4=0: from bottom to topp=0.0572,b=0.0573,b=0.0574,

mates of the exponent of the BPGM that are definitely not 3:822255@()?@32. from bottom to toph=0.164, b=0.165,

consistent with the percolation value=4/3. Then, our re- U U

sults show that the critical BPGM is not in the same univer- _ ) ) )

sality class of percolation in two dimensions, although somé  Shell is grown at the time stepfrom the active sites at

dimensions that characterize the critical polyméaed are time t—1. Consequently, that shell is the set of sites with

intimate'y related to its topo'ogy’ such m) are near'y the Chem|Ca| dIStanCEZt from the 0r|g|n. The Chem|Ca| d|men'

same. sionD, relates the mass inside thtié shell(i.e., the mass of
We will also study random walks in two-dimensional the set with chemical distant¢est from the origin, M(t), to

branched polymers grown at criticality, in order to estimatethe chemical distance

the random walk dimensioD,, and the spectral dimension b

Ds. We will show thatD,, and D are different from the M(t)~t"e. @)

corresponding values in critical percolation clusters, and ) ) i )

these differences are related to the different topologies of "€ Maximum chemical distance of the polymers in our

those fractals. This study is also relevant in the context ofimulations _WaStMA_X=6X1§ for branching probabilities

diffusion in disordered media, since we will show that theN€&r the critical points. _

scaling relationD = 2D /D,, fails, even when strong cor- The f_ractal dimensiom ¢ reéates th_e mean square radius

rections to scaling are considered in the calculatiobgf ~ Of gyration of the polymerR;) and its massv, i.e., the
This paper is organized as follows. In Sec. Il we will "umber of monomers:

present results of simulations of the BPGM (imfinitely ) oD

large square lattices near the critical points fip=0 andq <Rg>NM F. @)

=0.2, and we will estimaté., D. andDg. In Sec. Ill, we . .
will simulate the BPGM in finite square lattices near the S observed in previous worKS, 10, the convergence of

critical points and obtain the exponentusing finite-size e estimates oD, to the asymptotic value is more rapid
scaling techniques. In Sec. IV we will present results ofthan the convergence 8fg . Consequently, it will be used to
simulations of random walks on critical polymers and esti-eStimatede.

mateD,, andDs. In Sec. IV we will summarize our concly- [N order to study the asymptotic behavior b(t), we
sions. analyzed the evolution of the declivities of Ibf(t)X logt

plots. The sequence of estimates

Il. CHEMICAL AND FRACTAL DIMENSIONS
OF THE CRITICAL BPGM Dg’j)(t)z

We simulated the BPGM in the square lattice fpe0
and q=0.2: Several values dﬁ_around the critical points \ya¢ calculated, where the average migs,j) is defined as
were considered. At each poing,p), we generated 1.5
X 10° polymers with a maximum number of monomers rang- 1 i
ing from Myax=1X10 to Myax=2x10. The largest M(t,j)= = >, M(t+k). (4)
polymers were generated in free lattices ngar During the (2] +1) =
simulations, many polymers stopped growing due to steric i o )
hindrance effects, but their data were not considered in thé Ed- (4), M(t) is the average mass inside _tﬂ@ chemical
calculation of average quantities. The sizes of the lattice§hell. Ast—o, D{'(t)— D¢, for fixedi andj. The use of
used in the simulations are sufficiently large so that less thafe average mass in E) (with j =100) and large values of

log(M(t,j)/M(t—i,j))
log(t/(t—i))

()

0.1% of the generated polymers touch its bordsush poly- i (i=500) is suitable to reduce the effect of statistical fluc-
mers are also discarded from the calculation of averagélations of the data with consecutive valuest.of
quantities. In Figs. Xa) and Xb) we showD %1% t) versus 1t for

The chemical distandebetween two given sites of a frac- polymers in the square lattice witi=0 andq=0.2, respec-
tal is defined as the length of the shortest path on the strudively, considering several values of the bifurcation probabil-
ture that connects those sites. In the case of the BPGM, thigy b. For b<b., we expect thang"')(t)—>l (the SAW
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TABLE I. Concentration of impuritiesd), estimates of critical branching probabilitibs and estimates
at the critical points oD, D¢, D,, andDg.

q bc Dc DF DW Ds

0 0.05735-0.00005 1.7%0.02 1.9%0.01 3.16:0.02 1.27#0.02

0.2 0.1655-0.0005 1.67#0.05 1.9%0.02 3.12:0.03 1.265-0.015
value, while for b>b, we expect thab{"¥)(t)—2 (compact IIl. FINITE-SIZE SCALING
clusters. The final estimates ob. and D, are shown in

The correlation function of this problera(r), is defined
as the probability that a lattice site at distarrcéom the
origin is occupied. Fob>b only finite polymers must be
considered. We expect that

Table I.

Those estimates improve previous res[84.0] and agree
with them within error bars. Howevel . seems to decrease
slowly whengq increases along the critical line, although the
possibility of a universal value cannot be excluded. For g(r)~e "¢ 7
=0, D. is slightly larger than the estimate in critical perco-
lation clustersD§®"=1.675+0.003[14]. The simulation of ~where¢ is the correlation length of the problem. The expo-
very large polymers was crucial to notice this difference benentv governs the divergence d@fnear the critical point:
cause it was possible to find the critical point with high ac-
curacy. On the other hand, tiiless accurateestimate oD, é~[b.—b|™". (8)
for g=0.2 does not exclude the percolation value.

However, in order to discuss the question of the univer- Apart from a constant factor, the average squared corre-
sality class of the critical BPGM, the calculation of static lation length of the BPGM is given by
exponents such d3¢ and v is necessary. At this point it is

relevant to stress that any differenceln can be related to f r2g(r)d®r

the different topologies of those structures, while the static &= (9)
exponents may be the same, and vice-versa. For instance, o,

recall that both a random walk and a SAW habg=1, fg(r)d '

while their critical exponents are very different in one, two

or three dimensions. where the integrals are taken over the D-dimensional space

In order to study the asymptotic behavior (RZ) and ~ Where the polymers are generated. Equat@ris an average
calculateD , we adopted a procedure similar to the previoussquare radius where the statistical weight of each polymer is

one. We constructed the sequence of estimates its number of monomers. At this point, it is important to
notice that, in the previous calculation of the average radius

log(M/(M—1i)) of gyration(Sec. ), each polymer was taken with the same

DEI(M)=2 ——~—" (5  weight, since our aim was to study the geometry of infinitely

log(ﬁ('\jl)/ﬁ('\;l)—i) 7 large polymers.

= . Alternatively, in the averaging process where any poly-
where the averagesquared radiusRy is defined as mer has the same statistical weight, the denominator in Eq.
(9) is the average number of monomers of finite polymers

. ) (average magsand the numerator is the average moment of

Ry =— > (R?) : 6)  inertia ([12 : -

M7 2j+1) & N9 (M+k) inertia (fredm). The above averaging process differs from
the percolation problem, where the average correlation

In Eq. (6), <Rg2;>M is the average squared radius of gyration OfIength is obtained by taking all sites as origins for calculating
polymers withM monomers. AV — o, DU)(M)— D¢ for

fixed i andj. =198 S P
In Figs. 2@ and 2b) we show D&%%0500M) versus g 1o4Ff g 1esf g_
1/M for polymers in the square lattice withq=0 andq S 192 s P g
- i - oH . 8 g g 19fF r—~— 3
=0.2, respectively, considering some values of the bifurca- g 19F 8 3 //
tion probabilityb around the critical points shown in Table I. A 1.88 o188 F ~
Our estimates oD for the critical BPGM are also shown in 0 05 1 15 2 0 05 1 15 2
Table 1. Within error bars, they are consistent wii 105 M-! 10% M-!

=91/48=1.8% ... [15] of two-dimensional critical perco-
lation clusters, although the central estimates are slightly (a) ®)

larger than that value. Previous estimateDef[8,11], ob- FIG. 2. Estimates of the fractal dimension of the BPGM (ar
tained with polymers confined in finite lattices and with dif- q=0: from bottom to top,b=0.0570, b=0.0573, b=0.0574, b
ferent methods, were not universal along the critical line and=0.0580; (b) q=0.2: from bottom to toph=0.1625, b=0.165,
do not agree with our estimates. b=0.166,b=0.170.
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g(r) [15]. This difference is related to the presence of a R g 2.04 [T
well-defined origin in the BPGM. 195 F E 202 3 E
Reliable estimates of cannot be obtained directly from 2 19 Ex= 3 2 Lk 3
Eg. (8) due to the error bars df. and because Ed8) is a T 213 3 E . T ]
valid only in a narrow critical region. On the other hand, the 1.85 | " ol T
exponentr appears in the finite-size scaling relations of all 1.8 bl b o, 98 B
quantities calculated in finite lattices. Then, the average ra- 0 0?021 Ll‘? 2 0 °'i’og Ll‘? 2
dius of gyration and the correlation length of confined poly-
mers, as well as theb-derivatives, will be used to estimate (a) (b)
that exponent.
It is expected that, in a finite lattice of lengthand near FIG. 3. (a) Finite-size scaling estimates of the fractal dimension

the critical point, the average squared radius of gyratiorPf the BPGM forq=0 (squarepandq=0.2 (triangles; (b) finite-
<R2>L (as calculated in Sec.)Ibf confined polymers scales size scaling estimates of the squared correlation length dimension
9 .

as[16] for =0 (squaresandqg=0.2 (triangles.
R2) ~LPrf(|b—b/LY"). 10 log( . /
( g>L (| L) (10 Ap(L)= g(f;;;uz)’ (16

In Eqg. (10), f is a scaling function of the variable=|b
—b|LY". The squared correlation leng#f of confined

polymers scales as with (RS)L, pL and u, calculated ab=b.. The scaling of

the correlation lengthEg. (11)] suggests the calculation of

£2~12g(|b—b|L1"), (11) the finite-size estimates
whereg is another scaling function of the variabte _ |Og(§f/§f/2)
The b-derivative of(RS)L atb=b, scales as oib)= log2 (17)
d(R2), 1 : : .
pL(by)= N o ~LM, A =Dg+-, (12 Since w(L)—2 asL—x, the extrapolation ofw(L) is a
db b=b, 4 useful test to our methods.
In Fig. 3(@ we showDg(L) versus 1L and in Fig. 3b)
and theb-derivative offf atb= bC scales as we ShOWw(L) versus 1, for g=0 andq=0.2. It is clear

from Fig. 3b) that w(L)—2 with an accuracy better than
dgﬁ 1 1%, which also confirmst? as the (squared correlation
mi(be)= %) ~LM2, \,=2+ o (13)  length of the problem. The universality at the critical line is
b=b, suggested by the convergencel(L) to the same region
) ) ) for g=0 andg=0.2 in Fig. 3a). The estimate oD from
We simulated the BPGM in square lattices of lengths  finjte-size scaling is shown in Table Il and is consistent with
ranging fromL=32 to L=512, atb=b, and at two other the previous onéTable |).
values ofb, typically 0.5% below and abovb. (b_ and In Fig. 4@ we show\ (L) versus 1 and in Fig. 4b)
b,). Lattices withg=0 andq=0.2 were considered. The \ye show\,(L) versus 1L, for g=0 andg=0.2. Universal-
polymers are grown until there is no growth site with anijty along the critical line is confirmed once again. The final
available empty neighbdif the polymer touches a border of estimates of\; and \, are shown in Table Il. The same
the lattice, it continues growingFor eachL, the total nUm-  estimater=1.43+0.06 is obtained from the exponents rela-
ber of polymers grown & andb, varied from 16to 10/, tions in Eqgs.(12) and (13) (see Table )i, which shows the
in five different runs.p (b)) (Eq. 12 and . (bc) (EQ. 13 reliability of the method. That estimate is different from the
were calculated numerically from the differences in the avpercolation valueP=4/3=1.333 . .. [15], even if the er-
erage radii of gyration and in the correlation lengthdat  ror bar is considered. It proves that the critical BPGM in two
andb. . The error bars were estimated from the dispersiongjimensions is not in the universality class of percolation. It is

of the results in the different runs. . important to mention that our estimate is also very different
Finite-size estimates oDg, Xy and X, were obtained from the lattice animals exponent-“=0.6408+0.0003
from [17].
2 2
De(L)= |09(<R9>L/<R9>L/2) (14) TABLE II. Estimates from finite-size scaling @, \; andX,
F log2 ' and the estimates of the exponenbbtained using Eqg12) and
(13).
log(pL/pLr2)
Na(L)= “logz (15 D A A, v (Eq. 12 v (Eq. 13

1.92+-0.02 2.62:0.02 2.7G:0.03 1.43:0.06 1.430.06
and
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~27F i ~2F E T a5 4 T aasf 3
2 a..E i 2 3) ] g 3 1 8 3 E

- ~7F E N onf _' g 31F 4§ ¢ 31F =
< 3 i < [ E =] ] <3 o E
2.65 E I = F 1 ] =1 F E =1 3
ne i 3 s ] T _305F 1 S, 305F 3
R YT T T Y- 265 bl A E L Lalauled A9 E il
0 05 1 15 2 0 05 1 15 2 3 0 05 1 15 2 3 0 05 1 15 2

102 1! 10% L 104 N-! 104 N-!

(a) (b) (a) (b)

FIG. 4. (a) Finite-size scaling estimates of the exponentEq.
12) for g=0 (squaresandqg= 0.2 (triangles; (b) finite-size scaling
estimates of the exponeint, (Eq. 13 for =0 (squares and q
=0.2 (triangles.

FIG. 5. Estimates of the random walk dimensions on critical
polymers grown in lattices witlla) q=0 and(b) q=0.2.

values ofb within the error bars ob. (Table |). They pro-
vide results statistically identical to the ones presented in

Our estimates ofv greatly improve the previous ones rjos ga) and 5b), confirming the reliability of the estimates
[11], obtained with different methods and with much Iargerong' 59 b), d y
w-

error bars. Our results suggest a universal exponByf along the

critical line b.(q), although a very small variation cannot be
IV. RANDOM WALKS ON POLYMERS AT CRITICALITY completely discarded. However, notice that they are remark-

In order to improve the knowledge of the critical poly- aPly different from the Valu_e_D\?verC: 2.871+0.001[14] for
mers’ properties, we studied random wall&W) on those R_W in two-dimensional critical percolation .C|L.JSterS..ThIS
structures. It is interesting for the study of diffusion pro- difference follows a general trend for the variationi®y, in
cesses in this system and also for the connection with th&actals with the sam®g: D,, increases in fractals with a
problem of lattice vibrations, i.e., for the calculation of the higher density of dangling ends, since they contribute signifi-
spectral dimensiofi8]. cantly to the delay of the diffusion. This is exactly the case

We generated 8 10° polymers with 6x 10° monomers at  Of the polymers grown in the BPGM when compared to the
(q=0,b.=0.057 35) and atd=0.2,b.=0.1655). On each percolation clusters. This trend was previously found in
polymer, we simulated § 10° RW with a maximum number mMany other fractal; whngBF andD,, were exactly known or
of stepsNyax =4X 10%. The starting position of each walker Were calculated with high accura¢g2].
was randomly chosen in a square ¥0ID0O window around The other quantity that we measured was the mean num-
the origin because the choice of different starting positiond€r of distinct sites visited by N-step walks)y . It scales
for the walker allows it to visit many different microscopic @S
environments on the polymer. At each time step, the walker
may move along any monomer that begins or ends at its
present position. Less than 0.5% of the RW that were gen-
erated have attained the active sitdse border of the poly- where Dy is the spectral dimension of lattice’s vibrations
mer networl, and these walks were not considered to com{18]. Equation(19) is valid only if Dg<2, but this is the case
pute average quantities. of the most frequently studied fractal lattickld—21].

The first important quantity to be measured is the mean We calculated the sequence of approximdnéé”(N),
square displacemelR?), of N-step RW. It scales as defined analogously to E5), but now replacing RS)M by
(S)n - The convergence of those approximant®tois usu-
ally slow due to strong corrections to scaling; for instance, in
a two-dimensional lattice, Eq419) has a logarithmic correc-
tion [23]. In Figs. §a) and b) we showD 1N} ver-

(S)N~ NP2, (19

<R2>N~N2/DW, (18)
whereD,, is the RW dimension. In Euclidean lattices and
weakly disordered lattice®.g., disordered lattices above the
percolation threshold D, =2, indicating normal diffusion.

In highly disordered media, such as most fractal lattices, 2 M fT T3 Z 128 E T
D,>2, which represents an anomalous diffusj@8—-21]. §v 1.25 :"\ 3 §v 1.26 N E

We calculated a sequence of approximabfs’(N) de- S 12fF 3 2 ME S 3
fined analogously to Eq$5) and(6), by replacing the aver- g 115 3 E g 122 b E
age squared radius of the polyméRé)M),bythe rms dis- a '11;...|...|...|...: Q"’lll’: E 0N

placement of the RW(R?)?), and replacing the number of
monomersM by the number of RW steps. In Figs. 5a) and
5(b) we showD{/%°*1%N) versus 14 for RW on critical
polymers at =0, b,=0.057 35) and¢=0.2,b.=0.1655),

0 2 4 6 8

102 N-1/3
(2)

0 2 4 6 8

102 N-1/3
(®)

respectively. We obtain very accurate estimatePgqf, as

FIG. 6. Estimates of the spectral dimensions of critical polymers

shown in Table I. We also simulated random walks on poly-grown in lattices with(a) g=0 and(b) g=0.2. Dashed lines are
mers grown in other points of the critical regions, i.e., with least squares fits of the data.
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sus 1N'? for random walks on critical polymers afy( which also gives the chemical dimensi@n, at criticality.
=0, b.,=0.05735) and at d=0.2, b,=0.1655), respec- Polymers in free lattices and lattices with concentratipn

tively. The N~ %2 variable in Figs. 6a) and Gb) is the one  =0.2 of impurities were considered. The estimateDgffor
that best fits the sequenc@é"”(N) to a straight line, for gq=0 is slightly different from the value in critical percola-
variousi andj. tion clusters, which may be related to the different topologies

The final estimates dD are shown in Table I. They are of these fractals. A small difference from the percolation
also consistent with a universal value along the critical linevalue is also observed in the fractal dimensibp for q
and are different from the estimab£®" = 1.325+0.006[24]  =0. However, within error bars our results are consistent
in two-dimensional critical percolation clusters. This differ- With universality along the critical line. The finite-size scal-
ence is also related to the very different topological strucing study of the problem also suggests this universal behav-
tures of the critical polymers and the critical percolationior, and gives estimates of the correlation length expoment
clusters, in particular for the lower connectivity of the poly- that are different fromv® indicating that the critical
mers. Also notice that the relative differenceDr is much ~ BPGM is not in the universality class of percolation.

smaller than the difference iD,. Simulations of random walks in the critical polymers pro-
We also notice that the above estimatesDqf, D,, and  Vide estimates of the random walk dimensiDy, and the
D do not satisfy the scaling relatidri8] spectral dimensioDg. D,, is larger than the value in critical

percolation clusters due to a higher density of dangling ends
in the polymersDy is also different from the value in critical
percolation clusters, and the scaling relati@0) is not sat-
isfied, even if strong corrections to scaling are introduced.
even if the error bars of those quantities are considered. For The main conclusion from our work is that the BPGM is
instance, folg=0.2 we obtain D¢ /D,,=1.224-0.012 from  not in the same universality class of percolation, although the
the data in Table |, and this value is certainly smaller thardifferences in critical exponents and . (which is an in-
the asymptotic value dD [see Fig. @)]. trinsic dimension are small. On the other hand, the other
Previous works have suggested the failure of &) in  intrinsic dimension that was calculated hebg,, is clearly
other tree-like structurg®5,26. In some cases it was recov- different from the percolation value, as expected from their
ered with the introduction of strong corrections to scalingvery different topological structures. It is also relevant to
[27], but the trends ng"') in Figs. 6a) and Gb) do not  stress that, together wildg, the calculation oD is impor-
suggest this possibility. On the other hand, it is important tatant for possible applications of the BPGM to real systems.

De

D=25-,

(20

notice that the deviations from EO) are nearly 3%, indi- Note: in a recent papg28], the two-dimensional BPGM
cating that this relation, although not exact, still gives rea-was studied using exact enumeration techniques up to
sonable qualitative information. =14. Ergodicity violation in some Monte Carlo implemen-
tations of the problem was discussed, which may explain
V. CONCLUSION some differences from our results.

We studied conformational properties of the two-
dimensional BPGM in the critical region and diffusion in
these polymers.

The critical bifurcation probabilitied. were estimated This work was partially supported by CNPq and FAPERJ
from the scaling of the polymer mass in chemical space(Brazilian Agencies
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