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Critical properties of a branched polymer growth model

Sergio S. Botelho and F. D. A. Aara˜o Reis*
Instituto de Fı´sica, Universidade Federal Fluminense, Avenida Litoraˆnea s/n, Campus da Praia Vermelha,24210-340 Nitero´i RJ, Brazil

~Received 9 August 2000; published 22 December 2000!

We study the branched polymer growth model~BPGM! introduced by Lucenaet al. @Phys. Rev. Lett.72,
230 ~1994!# in two dimensions. First the BPGM was simulated in very large lattices with concentrations of
impuritiesq50 andq50.2. The scaling of the mass in chemical space gives accurate estimates of the critical
branching probabilitiesbc and of the chemical dimensionsDc at criticality, improving previous results. Esti-
mates of the fractal dimensionDF at criticality are consistent with a universal value along the critical line. Our
results forq50 suggest small deviations ofDc and DF from the percolation values. We also simulated the
BPGM in finite lattices of lengths betweenL532 andL5512 for the same concentrationsq. Using finite-size
scaling techniques, we confirm the previous estimates ofDF and the universality along the critical line, and
obtain the correlation exponentn51.4360.06. It proves that the BPGM is not in the same universality class
of percolation in two dimensions. Finally, we simulate random walks on the critical polymers grown in very
large lattices withq50 andq50.2, and obtain the random walk dimensionDw and the spectral dimensionDs .
Dw is larger andDs is smaller than the corresponding values in critical percolation clusters, due to the lower
connectivity of the polymers. The scaling relationDs52DF /Dw is not satisfied, as observed in other tree-like
structures.

DOI: 10.1103/PhysRevE.63.011108 PACS number~s!: 05.40.2a, 05.50.1q
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I. INTRODUCTION

Various statistical models of polymers’ growth in fre
space and in disordered media have been studied in the
decades@1–4#. The simplest model to represent the confo
mational properties of linear polymers in diluted solutio
and good solvent conditions is the self-avoiding walk~SAW!
@1#, where the interactions between the monomers are re
sented only by the excluded volume condition. The kine
growth walk~KGW! has also been introduced to describe
growth of a linear polymer under the excluded volume co
dition @5,6#. In the KGW, at each time step, a monomer
added to the end of the~rigid! chain in a randomly chose
direction. These problems are not identical because diffe
SAW configurations with the same number of monom
have the same statistical weight, but this is not true in
KGW model, although the ensemble elements are the sa
Despite this important difference, it was shown that t
SAW and the KGW have the same critical exponents@7#.

In 1994, Lucenaet al. @8# introduced the branched poly
mer growth model~BPGM!, which is a generalization of the
KGW that includes branching. It was originally proposed
a realistic model for the kinetic growth of ramified polyme
in dirty media. Since then, the BPGM was studied in free a
diluted two- and three-dimensional lattices by several
thors@8–11#, and also in the Cayley tree@10#. In this model,
the center of the lattice att50 is occupied by a seed. Att
51, one monomer is added in a random direction with pr
ability 1, and a second monomer is added in another di
tion with probabilityb. Thus,b is called the bifurcation prob
ability. This process is continued so that, at timet11, the
polymer can grow from each of the sites added at the pr
ous timet, which are named active sites. From each act
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site, one monomer is added with probability 1 and a sec
monomer is added with probabilityb, provided that there are
sufficient empty neighbors. If an active site has no em
neighbor, it stops growing and a dangling end is created
there are no active sites with empty neighbors, the polym
stops growing.

In two dimensions, it was shown@8# that, at a certain
critical branching probabilitybc , there is a transition be
tween a finite growth regime (b,bc), where the polymer
structure is asymptotically equivalent to the KGW~or the
SAW!, and an infinite growth regime (b.bc), where the
polymer is compact. In a diluted lattice, the value ofbc de-
pends on the concentration of impuritiesq, which is the frac-
tion of nonavailable lattice sites.

Since the universality class of branched polymers~gener-
alization of the SAW including branching! is believed to be
the same of lattice animals@12,13#, the question of the uni-
versality class of the BPGM at criticality attracted some
terest. Estimates of the chemical dimension (Dc) of the criti-
cal BPGM in two dimensions@9,10# were consistent with the
percolation value and led to the proposal that, at the crit
line bc(q), this model belongs to the same universality cla
of percolation. On the Cayley tree, this equivalence was
orously proved@10#. However, previous estimates of th
fractal dimensionDF of the critical BPGM in the square
lattice differed from the percolation value (DF

perc591/48
'1.896): Lucenaet al. obtainedDF'1.8 at some points of
the critical line, while Neves and Onody@11# obtainedDF
51.96360.006 forq50 andDF51.94660.002 forq50.1.
Moreover, the estimate of the exponentn for q50 of Neves
and Onody@11# differed from the percolation value. Conse
quently further analysis of the BPGM is important, partic
larly at criticality, not only for its theoretical relevance bu
also for its possible applications to real systems@8#.

The first aim of this work is to improve previous resul
on the conformational properties of critical branched po
©2000 The American Physical Society08-1
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SERGIO S. BOTELHO AND F. D. A. AARA˜O REIS PHYSICAL REVIEW E63 011108
mers in two dimensions, in order to determine critical exp
nents and discuss the~possible! equivalence to percolation a
criticality. Then, forq50 andq50.2, we will simulate very
large polymers near the critical line. The study of the BPG
in chemical space will provide estimates ofbc andDc . The
value ofDc seems to decrease asq increases, and is slightly
different from the percolation value forq50. The estimates
of DF are consistent with a universal value along the criti
line, but the more accurate result forq50 is slightly larger
than DF

perc. Subsequently, we will simulate the polymers
finite lattices and study the scaling of the average radius
gyration and of the correlation length. We will obtain es
mates of the exponentn of the BPGM that are definitely no
consistent with the percolation valuen54/3. Then, our re-
sults show that the critical BPGM is not in the same univ
sality class of percolation in two dimensions, although so
dimensions that characterize the critical polymers~and are
intimately related to its topology, such asDc) are nearly the
same.

We will also study random walks in two-dimension
branched polymers grown at criticality, in order to estima
the random walk dimensionDw and the spectral dimensio
Ds . We will show thatDw and Ds are different from the
corresponding values in critical percolation clusters, a
these differences are related to the different topologies
those fractals. This study is also relevant in the contex
diffusion in disordered media, since we will show that t
scaling relationDs52DF /Dw fails, even when strong cor
rections to scaling are considered in the calculation ofDs .

This paper is organized as follows. In Sec. II we w
present results of simulations of the BPGM in~infinitely
large! square lattices near the critical points forq50 andq
50.2, and we will estimatebc , Dc andDF . In Sec. III, we
will simulate the BPGM in finite square lattices near t
critical points and obtain the exponentn using finite-size
scaling techniques. In Sec. IV we will present results
simulations of random walks on critical polymers and es
mateDw andDs . In Sec. IV we will summarize our conclu
sions.

II. CHEMICAL AND FRACTAL DIMENSIONS
OF THE CRITICAL BPGM

We simulated the BPGM in the square lattice forq50
and q50.2. Several values ofb around the critical points
were considered. At each point (q,b), we generated 1.5
3105 polymers with a maximum number of monomers ran
ing from MMAX 513105 to MMAX 523105. The largest
polymers were generated in free lattices nearbc . During the
simulations, many polymers stopped growing due to ste
hindrance effects, but their data were not considered in
calculation of average quantities. The sizes of the latti
used in the simulations are sufficiently large so that less t
0.1% of the generated polymers touch its borders~such poly-
mers are also discarded from the calculation of aver
quantities!.

The chemical distancel between two given sites of a frac
tal is defined as the length of the shortest path on the st
ture that connects those sites. In the case of the BPGM
01110
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t th shell is grown at the time stept from the active sites a
time t21. Consequently, that shell is the set of sites w
chemical distancel 5t from the origin. The chemical dimen
sionDc relates the mass inside thet th shell ~i.e., the mass of
the set with chemical distancel<t from the origin!, M (t), to
the chemical distancet:

M ~ t !;tDc. ~1!

The maximum chemical distance of the polymers in o
simulations wastMAX 563103 for branching probabilities
near the critical points.

The fractal dimensionDF relates the mean square radi
of gyration of the polymer̂ Rg

2& and its massM, i.e., the
number of monomers:

^Rg
2&;M2/DF. ~2!

As observed in previous works@9,10#, the convergence o
the estimates ofDc to the asymptotic value is more rapi
than the convergence ofDF . Consequently, it will be used to
estimatebc .

In order to study the asymptotic behavior ofM (t), we
analyzed the evolution of the declivities of logM(t)3 log t
plots. The sequence of estimates

Dc
( i , j )~ t !5

log~M̄ ~ t, j !/M̄ ~ t2 i , j !!

log~ t/~ t2 i !!
~3!

was calculated, where the average massM̄ (t, j ) is defined as

M̄ ~ t, j !5
1

~2 j 11! (
k52 j

j

M ~ t1k!. ~4!

In Eq. ~4!, M (t) is the average mass inside thet th chemical
shell. Ast→`, Dc

( i , j )(t)→Dc , for fixed i and j. The use of
the average mass in Eq.~3! ~with j 5100) and large values o
i ( i 5500) is suitable to reduce the effect of statistical flu
tuations of the data with consecutive values oft.

In Figs. 1~a! and 1~b! we showDc
(500,100)(t) versus 1/t for

polymers in the square lattice withq50 andq50.2, respec-
tively, considering several values of the bifurcation probab
ity b. For b,bc , we expect thatDc

( i , j )(t)→1 ~the SAW

FIG. 1. Estimates of the chemical dimension of the BPGM
~a! q50: from bottom to top,b50.0572,b50.0573,b50.0574,
b50.0575; ~b! q50.2: from bottom to top,b50.164, b50.165,
b50.166,b50.167.
8-2
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TABLE I. Concentration of impurities (q), estimates of critical branching probabilitiesbc and estimates
at the critical points ofDc , DF , Dw andDs .

q bc Dc DF Dw Ds

0 0.0573560.00005 1.7160.02 1.9160.01 3.1060.02 1.2760.02
0.2 0.165560.0005 1.6760.05 1.9160.02 3.1260.03 1.26560.015
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value!, while for b.bc we expect thatDc
( i , j )(t)→2 ~compact

clusters!. The final estimates ofbc and Dc are shown in
Table I.

Those estimates improve previous results@9,10# and agree
with them within error bars. However,Dc seems to decreas
slowly whenq increases along the critical line, although t
possibility of a universal value cannot be excluded. Foq
50, Dc is slightly larger than the estimate in critical perc
lation clustersDc

perc51.67560.003 @14#. The simulation of
very large polymers was crucial to notice this difference
cause it was possible to find the critical point with high a
curacy. On the other hand, the~less accurate! estimate ofDc
for q50.2 does not exclude the percolation value.

However, in order to discuss the question of the univ
sality class of the critical BPGM, the calculation of sta
exponents such asDF andn is necessary. At this point it is
relevant to stress that any difference inDc can be related to
the different topologies of those structures, while the sta
exponents may be the same, and vice-versa. For insta
recall that both a random walk and a SAW haveDc51,
while their critical exponents are very different in one, tw
or three dimensions.

In order to study the asymptotic behavior of^Rg
2& and

calculateDF , we adopted a procedure similar to the previo
one. We constructed the sequence of estimates

DF
( i , j )~M !52

log~M /~M2 i !!

log~R̄M
( j )/R̄M2 i

( j ) !
, ~5!

where the average~squared! radiusR̄M
( j ) is defined as

R̄M
( j )5

1

~2 j 11! (
k52 j

j

^Rg
2& (M1k) . ~6!

In Eq. ~6!, ^Rg
2&M is the average squared radius of gyration

polymers withM monomers. AsM→`, DF
( i , j )(M )→DF for

fixed i and j.
In Figs. 2~a! and 2~b! we show DF

(30000,500)(M ) versus
1/M for polymers in the square lattice withq50 and q
50.2, respectively, considering some values of the bifur
tion probabilityb around the critical points shown in Table
Our estimates ofDF for the critical BPGM are also shown i
Table I. Within error bars, they are consistent withDF

perc

591/4851.896 . . . @15# of two-dimensional critical perco
lation clusters, although the central estimates are slig
larger than that value. Previous estimates ofDF @8,11#, ob-
tained with polymers confined in finite lattices and with d
ferent methods, were not universal along the critical line a
do not agree with our estimates.
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III. FINITE-SIZE SCALING

The correlation function of this problem,g(r ), is defined
as the probability that a lattice site at distancer from the
origin is occupied. Forb.bc only finite polymers must be
considered. We expect that

g~r !;e2r /j, ~7!

wherej is the correlation length of the problem. The exp
nentn governs the divergence ofj near the critical point:

j;ubc2bu2n. ~8!

Apart from a constant factor, the average squared co
lation length of the BPGM is given by

j25

E r 2g~r !dDr

E g~r !dDr

, ~9!

where the integrals are taken over the D-dimensional sp
where the polymers are generated. Equation~9! is an average
square radius where the statistical weight of each polyme
its number of monomers. At this point, it is important
notice that, in the previous calculation of the average rad
of gyration~Sec. II!, each polymer was taken with the sam
weight, since our aim was to study the geometry of infinite
large polymers.

Alternatively, in the averaging process where any po
mer has the same statistical weight, the denominator in
~9! is the average number of monomers of finite polym
~average mass!, and the numerator is the average moment
inertia (*r 2dm). The above averaging process differs fro
the percolation problem, where the average correlat
length is obtained by taking all sites as origins for calculat

FIG. 2. Estimates of the fractal dimension of the BPGM for~a!
q50: from bottom to top,b50.0570, b50.0573, b50.0574, b
50.0580; ~b! q50.2: from bottom to top,b50.1625, b50.165,
b50.166,b50.170.
8-3
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SERGIO S. BOTELHO AND F. D. A. AARA˜O REIS PHYSICAL REVIEW E63 011108
g(r ) @15#. This difference is related to the presence o
well-defined origin in the BPGM.

Reliable estimates ofn cannot be obtained directly from
Eq. ~8! due to the error bars ofbc and because Eq.~8! is
valid only in a narrow critical region. On the other hand, t
exponentn appears in the finite-size scaling relations of
quantities calculated in finite lattices. Then, the average
dius of gyration and the correlation length of confined po
mers, as well as theirb-derivatives, will be used to estimat
that exponent.

It is expected that, in a finite lattice of lengthL and near
the critical point, the average squared radius of gyrat
^Rg

2&L ~as calculated in Sec. II! of confined polymers scale
as @16#

^Rg
2&L'LDFf ~ ub2bcuL1/n!. ~10!

In Eq. ~10!, f is a scaling function of the variablex5ub
2bcuL1/n. The squared correlation lengthjL

2 of confined
polymers scales as

jL
2'L2g~ ub2bcuL1/n!, ~11!

whereg is another scaling function of the variablex.
The b-derivative of^Rg

2&L at b5bc scales as

rL~bc![S d^Rg
2&L

db D
b5bc

;Ll1, l1[DF1
1

n
, ~12!

and theb-derivative ofjL
2 at b5bc scales as

mL~bc![S djL
2

db D
b5bc

;Ll2, l2[21
1

n
. ~13!

We simulated the BPGM in square lattices of lengthsL
ranging fromL532 to L5512, atb5bc and at two other
values ofb, typically 0.5% below and abovebc (b2 and
b1). Lattices withq50 and q50.2 were considered. Th
polymers are grown until there is no growth site with
available empty neighbor~if the polymer touches a border o
the lattice, it continues growing!. For eachL, the total num-
ber of polymers grown atb2 andb1 varied from 106 to 107,
in five different runs.rL(bc) ~Eq. 12! and mL(bc) ~Eq. 13!
were calculated numerically from the differences in the
erage radii of gyration and in the correlation lengths atb2

andb1 . The error bars were estimated from the dispersi
of the results in the different runs.

Finite-size estimates ofDF , l1 and l2 were obtained
from

DF~L !5
log~^Rg

2&L /^Rg
2&L/2!

log 2
, ~14!

l1~L !5
log~rL /rL/2!

log 2
, ~15!

and
01110
l
a-
-

n

-

s

l2~L !5
log~mL /mL/2!

log 2
, ~16!

with ^Rg
2&L , rL andmL calculated atb5bc . The scaling of

the correlation length@Eq. ~11!# suggests the calculation o
the finite-size estimates

v~L !5
log~jL

2/jL/2
2 !

log 2
. ~17!

Since v(L)→2 as L→`, the extrapolation ofv(L) is a
useful test to our methods.

In Fig. 3~a! we showDF(L) versus 1/L and in Fig. 3~b!
we showv(L) versus 1/L, for q50 andq50.2. It is clear
from Fig. 3~b! that v(L)→2 with an accuracy better tha
1%, which also confirmsj2 as the ~squared! correlation
length of the problem. The universality at the critical line
suggested by the convergence ofDF(L) to the same region
for q50 andq50.2 in Fig. 3~a!. The estimate ofDF from
finite-size scaling is shown in Table II and is consistent w
the previous one~Table I!.

In Fig. 4~a! we showl1(L) versus 1/L and in Fig. 4~b!
we showl2(L) versus 1/L, for q50 andq50.2. Universal-
ity along the critical line is confirmed once again. The fin
estimates ofl1 and l2 are shown in Table II. The sam
estimaten51.4360.06 is obtained from the exponents rel
tions in Eqs.~12! and ~13! ~see Table II!, which shows the
reliability of the method. That estimate is different from th
percolation valuenperc54/351.333 . . . @15#, even if the er-
ror bar is considered. It proves that the critical BPGM in tw
dimensions is not in the universality class of percolation. I
important to mention that our estimate is also very differe
from the lattice animals exponentnLA50.640860.0003
@17#.

FIG. 3. ~a! Finite-size scaling estimates of the fractal dimensi
of the BPGM forq50 ~squares! andq50.2 ~triangles!; ~b! finite-
size scaling estimates of the squared correlation length dimensiov
for q50 ~squares! andq50.2 ~triangles!.

TABLE II. Estimates from finite-size scaling ofDF , l1 andl2,
and the estimates of the exponentn obtained using Eqs.~12! and
~13!.

DF l1 l2 n ~Eq. 12! n ~Eq. 13!

1.9260.02 2.6260.02 2.7060.03 1.4360.06 1.4360.06
8-4
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CRITICAL PROPERTIES OF A BRANCHED POLYMER . . . PHYSICAL REVIEW E63 011108
Our estimates ofn greatly improve the previous one
@11#, obtained with different methods and with much larg
error bars.

IV. RANDOM WALKS ON POLYMERS AT CRITICALITY

In order to improve the knowledge of the critical pol
mers’ properties, we studied random walks~RW! on those
structures. It is interesting for the study of diffusion pr
cesses in this system and also for the connection with
problem of lattice vibrations, i.e., for the calculation of th
spectral dimension@18#.

We generated 33103 polymers with 63105 monomers at
(q50, bc50.057 35) and at (q50.2, bc50.1655). On each
polymer, we simulated 53103 RW with a maximum number
of stepsNMAX 543104. The starting position of each walke
was randomly chosen in a square 1003100 window around
the origin because the choice of different starting positio
for the walker allows it to visit many different microscop
environments on the polymer. At each time step, the wa
may move along any monomer that begins or ends at
present position. Less than 0.5% of the RW that were g
erated have attained the active sites~the border of the poly-
mer network!, and these walks were not considered to co
pute average quantities.

The first important quantity to be measured is the me
square displacement^R2&N of N-step RW. It scales as

^R2&N;N2/Dw, ~18!

where Dw is the RW dimension. In Euclidean lattices an
weakly disordered lattices~e.g., disordered lattices above th
percolation threshold!, Dw52, indicating normal diffusion.
In highly disordered media, such as most fractal lattic
Dw.2, which represents an anomalous diffusion@19–21#.

We calculated a sequence of approximantsDw
( i , j )(N) de-

fined analogously to Eqs.~5! and~6!, by replacing the aver-
age squared radius of the polymer (^Rg

2&M), by the rms dis-
placement of the RW (^R2&N

1/2), and replacing the number o
monomersM by the number of RW stepsN. In Figs. 5~a! and
5~b! we showDw

(4000,100)(N) versus 1/N for RW on critical
polymers at (q50, bc50.057 35) and (q50.2,bc50.1655),
respectively. We obtain very accurate estimates ofDw , as
shown in Table I. We also simulated random walks on po
mers grown in other points of the critical regions, i.e., w

FIG. 4. ~a! Finite-size scaling estimates of the exponentl1 ~Eq.
12! for q50 ~squares! andq50.2 ~triangles!; ~b! finite-size scaling
estimates of the exponentl2 ~Eq. 13! for q50 ~squares! and q
50.2 ~triangles!.
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values ofb within the error bars ofbc ~Table I!. They pro-
vide results statistically identical to the ones presented
Figs. 5~a! and 5~b!, confirming the reliability of the estimate
of Dw .

Our results suggest a universal exponentDw along the
critical line bc(q), although a very small variation cannot b
completely discarded. However, notice that they are rema
ably different from the valueDw

perc52.87160.001 @14# for
RW in two-dimensional critical percolation clusters. Th
difference follows a general trend for the variation ofDw in
fractals with the sameDF : Dw increases in fractals with a
higher density of dangling ends, since they contribute sign
cantly to the delay of the diffusion. This is exactly the ca
of the polymers grown in the BPGM when compared to t
percolation clusters. This trend was previously found
many other fractals whereDF andDw were exactly known or
were calculated with high accuracy@22#.

The other quantity that we measured was the mean n
ber of distinct sites visited by N-step walks,^S&N . It scales
as

^S&N;NDs/2, ~19!

where Ds is the spectral dimension of lattice’s vibration
@18#. Equation~19! is valid only if Ds,2, but this is the case
of the most frequently studied fractal lattices@19–21#.

We calculated the sequence of approximantsDs
( i , j )(N),

defined analogously to Eq.~5!, but now replacinĝ Rg
2&M by

^S&N . The convergence of those approximants toDs is usu-
ally slow due to strong corrections to scaling; for instance
a two-dimensional lattice, Eq.~19! has a logarithmic correc
tion @23#. In Figs. 6~a! and 6~b! we showDs

(2000,100)(N) ver-

FIG. 5. Estimates of the random walk dimensions on criti
polymers grown in lattices with~a! q50 and~b! q50.2.

FIG. 6. Estimates of the spectral dimensions of critical polym
grown in lattices with~a! q50 and ~b! q50.2. Dashed lines are
least squares fits of the data.
8-5
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SERGIO S. BOTELHO AND F. D. A. AARA˜O REIS PHYSICAL REVIEW E63 011108
sus 1/N1/3 for random walks on critical polymers at (q
50, bc50.057 35) and at (q50.2, bc50.1655), respec-
tively. The N21/3 variable in Figs. 6~a! and 6~b! is the one
that best fits the sequencesDs

( i , j )(N) to a straight line, for
variousi and j.

The final estimates ofDs are shown in Table I. They ar
also consistent with a universal value along the critical l
and are different from the estimateDs

perc51.32560.006@24#
in two-dimensional critical percolation clusters. This diffe
ence is also related to the very different topological str
tures of the critical polymers and the critical percolati
clusters, in particular for the lower connectivity of the pol
mers. Also notice that the relative difference inDF is much
smaller than the difference inDs .

We also notice that the above estimates ofDs , Dw and
DF do not satisfy the scaling relation@18#

Ds52
DF

Dw
, ~20!

even if the error bars of those quantities are considered.
instance, forq50.2 we obtain 2DF /Dw51.22460.012 from
the data in Table I, and this value is certainly smaller th
the asymptotic value ofDs @see Fig. 6~b!#.

Previous works have suggested the failure of Eq.~20! in
other tree-like structures@25,26#. In some cases it was recov
ered with the introduction of strong corrections to scali
@27#, but the trends ofDs

( i , j ) in Figs. 6~a! and 6~b! do not
suggest this possibility. On the other hand, it is importan
notice that the deviations from Eq.~20! are nearly 3%, indi-
cating that this relation, although not exact, still gives re
sonable qualitative information.

V. CONCLUSION

We studied conformational properties of the tw
dimensional BPGM in the critical region and diffusion
these polymers.

The critical bifurcation probabilitiesbc were estimated
from the scaling of the polymer mass in chemical spa
s

v.

01110
e

-

or

n

o

-

,

which also gives the chemical dimensionDc at criticality.
Polymers in free lattices and lattices with concentrationq
50.2 of impurities were considered. The estimate ofDc for
q50 is slightly different from the value in critical percola
tion clusters, which may be related to the different topolog
of these fractals. A small difference from the percolati
value is also observed in the fractal dimensionDF for q
50. However, within error bars our results are consist
with universality along the critical line. The finite-size sca
ing study of the problem also suggests this universal beh
ior, and gives estimates of the correlation length exponenn
that are different fromnperc, indicating that the critical
BPGM is not in the universality class of percolation.

Simulations of random walks in the critical polymers pr
vide estimates of the random walk dimensionDw and the
spectral dimensionDs . Dw is larger than the value in critica
percolation clusters due to a higher density of dangling e
in the polymers.Ds is also different from the value in critica
percolation clusters, and the scaling relation~20! is not sat-
isfied, even if strong corrections to scaling are introduced

The main conclusion from our work is that the BPGM
not in the same universality class of percolation, although
differences in critical exponents and inDc ~which is an in-
trinsic dimension! are small. On the other hand, the oth
intrinsic dimension that was calculated here,Ds , is clearly
different from the percolation value, as expected from th
very different topological structures. It is also relevant
stress that, together withDF , the calculation ofDs is impor-
tant for possible applications of the BPGM to real system

Note: in a recent paper@28#, the two-dimensional BPGM
was studied using exact enumeration techniques upt
514. Ergodicity violation in some Monte Carlo implemen
tations of the problem was discussed, which may expl
some differences from our results.
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