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Entropic tempering: A method for overcoming quasiergodicity in simulation

F. Calvo*
Departement de Recherche Fondamentale sur la Matiere Condensee´, CEA Grenoble,

17 rue des Martyrs, F38054 Grenoble Cedex, France

J. P. K. Doye†

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
~Received 30 June 2000; revised manuscript received 22 September 2000; published 20 December 2000!

The parallel tempering, multicanonical ensemble, and multiple histogram methods are combined into a
powerful technique allowing enhanced sampling of complex energy surfaces. This method is shown to improve
significantly the ergodic behavior in simulations of cluster melting. Application to the finite-size effects in
folding minimal off-latticeb-sheet model proteins shows that the collapse and folding transitions both involve
some latent heat.
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The ergodic hypothesis underlies the study of statist
phenomena at thermal equilibrium. However, in conden
matter physics, it is rarely discussed except in the contex
glassy systems. For such systems, the time scale require
exploring all important parts of the energy landscape is m
larger than the actual observation time. Finite systems
also exhibit very complex energy landscapes@1# resulting in
slow dynamics and glassy behavior at low temperature.
large number of minima and high saddle points on th
landscapes hinder considerably the simulation of proce
such as protein folding or cluster melting. More genera
ergodic sampling of complex energy surfaces becom
harder and harder to achieve in simulation as the comple
of the interaction, the number of degrees of freedom, or
required accuracy is increased. It is also important to sat
the ergodic hypothesis in the context of experiments
which the measurements are carried out on statistical se
on very long time scales.

Quasiergodicity in simulation occurs when the syst
gets trapped into one or several basins of the energy sur
giving rise to unphysical and biased statistics and dynam
In recent years, several authors have proposed solution
overcoming quasiergodic behavior in simulations, as wel
probes of possible nonergodicity@2#. These solutions are
mostly built upon Monte Carlo~MC! methods, which are
much more flexible than deterministic molecular dynam
~MD!. Up to now, two main strategies have been propo
for simulating thermal equilibrium of systems having rou
energy landscapes. The use of several simulations perfor
simultaneously and communicating with each other acce
ates convergence of the low-temperature trajectories. T
idea was first pioneered in the J-walking algorithm of Fra
et al. @3#, and it was subsequently developed in the para
versions of this algorithm@4#, and in the parallel tempering
method also known as the replica-exchange method@5#. An-
other possibility is to artificially modify the statistical prob
ability ~usually Boltzmann-like! in favor of a new distribu-
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tion that is much broader in energy and less penalizing
barriers. Generalized ensembles have been built on this i
and the corresponding simulations have used mainly ei
Tsallis statistics@6# or the so-called multicanonical ensemb
@7#. These strategies are particularly efficient in the medi
and high temperature ranges. Complementary to the prob
of simulating thermal equilibrium, many ideas have be
proposed to accelerate the related static problem of glo
optimization on complex energy landscapes.

The parallel tempering technique is very powerful and h
been able to reproduce the coexisting solid phases of
38-atom Lennard-Jones~LJ! cluster@8#. It is, however, com-
putationally demanding, especially for this complex syst
where numerous and lengthy simulations have to be p
formed, but it is still more tractable than J-walking method
The multicanonical ensemble, on the other hand, encoun
convergence difficulties at low temperatures or energ
even when combined with simple J-walking@9#. A connec-
tion between these two methods can be made using the
sity of states of the system,V(E), which is the basic ingre-
dient of a multicanonical simulation. This link requires a
independent estimation ofV from the parallel tempering
simulation, which can be provided from a multiple histogra
reweighting analysis@10#. But, even performed like this, the
multicanonical simulation fails on the LJ38 problem@8#.

The inefficiency of the multicanonical ensemble sampli
at low energies can be overcome using parallel tempe
Monte Carlo~MC!, but in a dynamical way, by adding th
multicanonical MC simulation to the set of traditional M
simulations. Precisely, we assume thatm trajectories are per-
formed in the canonical ensemble at the respective temp
tures$Ti51/kBb i% wherekB is the Boltzmann constant. A
temperatureTi , the acceptance probability from configur
tion ro

i to configurationrn
i is taken as the usual Metropoli

value, acc(ro
i →rn

i )5min„1,exp$2bi@E(ro
i )2E(rn

i )#%… where
E(r ) is the energy of configurationr . We also assume tha
there exist a (m11)th trajectory which is driven by a
non-Boltzmann probability: the acceptance probability fro
ro

m11 to rn
m11 is taken as min@1,exp„$2S@E(ro

m11)#
1S@E(rn

m11)#%/kB…#. The entropyS(E) is unknown ini-
tially, and will be determined more and more accurately d
ing the simulation. Now, we allow occasional exchanges
©2000 The American Physical Society02-1
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tween the MC trajectories. At each step, the MC mov
described above are performed with a fixed probabilityx.
With probability 12x, an exchange is attempted either b
tween a randomly chosen trajectoryi ,m and j 5 i 11, or
between the multicanonical trajectoryj 5m11 and the ca-
nonical trajectoryi, which is the closest in energy at th
current step. Exchanges involving the multicanonical traj
tory are attempted with 50% probability. An exchange b
tween two canonical trajectories is accepted with probab
@8#

acc~r i
r j !5min„1,exp$Db@E~r i !2E~r j !#%…, ~1!

whereDb5b j2b i . An exchange between a canonical tr
jectory and the multicanonical trajectory (j 5m11) is ac-
cepted with probability

acc~r i
r j !5min$1,exp@b iAi~r j !2b iAi~r i !#%. ~2!

In this expression, we have used the Landau free ene
Ai(r ) defined byAi(r )5E(r )2TiS@E(r )#. Initially, the en-
tropy is chosen to yield a broad energy distribution, for
stance byS(E)5E/Tmax with Tmax a ‘‘large’’ temperature,
Tmax.max$Ti%. After a number of steps, the simulation
interrupted and the energy histograms of them canonical
trajectories are computed. A new estimate of the entropS
5kBln V is made by least-square fitting the data to the pr
ability Pb(E) of observing the energyE6dE at temperature
b @10#: Pb(E)5V(E)exp(2bE)/Z(b). The multicanonical
simulation proceeds with this estimate, and the entropy
regularly updated from the multiple histogram analysis of
canonical trajectories, after more and more data is adde
the histograms.

This method, which we dub ‘‘entropic tempering,’’ i
tested first on the LJ31 cluster. The energy landscape of th
system was recently studied by Doye, Miller, and Wa
@11#, who showed the existence of two low lying isome
separated by a high energy barrier. These isomers corres
to icosahedral packings with distinct surface structur
Mackay and anti-Mackay respectively. The crossover s
between the two growth sequences is 31 atoms. We h
simulated the finite-temperature behavior of this system
ing the entropic tempering method, withm510 canonical
simulations in the temperature range 231023«/kB<T
<0.1«/kB , ten simulations in the temperature ran
0.1«/kB,T<0.5«/kB , and the multicanonical simulation
Since one strong advantage of the parallel tempering me
is that it simultaneously acts as a global optimization al
rithm, we took random geometries as starting configurati
of all the MC trajectories. 1.23106 Monte Carlo sweeps
were performed for each simulation~1 sweep5 31 indi-
vidual steps!, and the entropyS was determined after eac
accumulation of 105 sweeps. For equilibration, the first
3105 sweeps were discarded from the histograms.
changes between trajectories were attempted with the fi
probability x510%. The heat capacityC obtained from the
final estimate ofS has been plotted in Fig. 1 versus the r
duced canonical temperature. We have also represente
curve obtained from multicanonical MC simulations of t
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same length. The two curves agree well only in the melt
region where the heat capacity reaches its maximum, n
Tmelting'0.32, and down to temperatures close to 0.17«/kB
reduced units. Below this temperature, they both display
anomaly as an extra peak or bump. However, the anoma
depend on the simulation method used. In this low tempe
ture regime, we have compared these results to calculat
in the harmonic superposition approximation~HSA! @12#
from the set of minima collected by Doye and co-worke
@11#. The HSA prediction is ergodic by nature, because
makes no assumption about the possible pathways betw
the isomers. Even though it would require a very large se
stationary points to extend its range of validity up to t
melting region, it shows that the coexistence of the two lo
energy minima induces a narrow phase change at aboT
;0.03«/kB . Only the entropic tempering calculation is ab
to reproduce this transition quantitatively. Pure multicano
cal sampling does not converge at low temperatures,
displays variations of the caloric curve below 0.17«/kB that
cannot be reproduced. A more difficult example is the 3
atom LJ cluster, because of its double-funnel energy la
scape@13#. We have been able to obtain results in agreem
with the work of Neirottiet al. @8# with only 30 simulations
of 33108 steps each, compared to 1.331010 in the original
work. Another good test, but even harder than LJ38, would
be the decahedral 75-atom LJ cluster.

As a further application of the entropic tempering metho
we have investigated finite-size effects in the thermodyna
ics of a model protein. Many authors have characterized
folding thermodynamics of lattice and off-lattice models
considering the variations of the heat capacity versus t
perature@14#. In the present work, we have chosen a sim
off-lattice model developed by Honeycutt and Thiruma
@15#, which predicts native states of theb-sheet form. This
three-letter model, often called the ‘‘BLN’’ model, has bee
widely studied by a variety of groups, with some min
changes in the parameters@16–20#. In particular, for the 46-

FIG. 1. Heat capacity per atom of the 31-atom Lennard-Jo
cluster vs the canonical temperature, per unit ofkB . The results of
Monte Carlo entropic tempering~MCET, thick solid line!, multica-
nonical MC ~thin solid line!, and superposition approximatio
~HSA, dashed line! are represented.
2-2
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mer sequence~four sheets!, the energy landscape@17#, ther-
modynamics@15,18#, and kinetics@19# have been character
ized. It has also been used as a benchmark for glo
optimization@20#. More generally, this model displays roug
energy landscapes that cannot be sampled by convent
simulation methods. We use here the same values of
parameters as Berne and co-workers@20#, including the non-
rigid bond lengths between successive residues. Four
quences have been considered, containing 2, 3, 4, andb
strands or 22, 34, 46, and 58 residues, respectively@21#.
Thirty MC simulations at reduced temperatures in the ra
1022<T<1.5 were performed during 106 sweeps following
23105 equilibration sweeps, and again with 10% probabil
for attempting an exchange. The heat capacities for the
model proteins are shown in Fig. 2. All curves show a cl
peak which is characteristic of a transition from coil states
a set of collapsed states, but not only consisting of the na
state@19#. This transition can also be observed in the var
tions of the radius of gyration~not plotted here!. Another
interesting feature of the caloric curves is that they also
play an anomaly at temperatures lower than the collapse
peratures defined as the heat capacity maxima. The sho
in the heat capacity is particularly marked for the two
three-, and five-strand systems. In the case of the four-st
protein, our results are in agreement with those obtained
Guo and Brooks@18# ~within the small differences in the
models used!, but qualitatively different from those of Nym
eyer et al. @22#. Following previous investigations of thi

FIG. 2. Heat capacities per residue of fourb-sheet model pro-
teins, in units ofkB for N522 ~two sheets!, 34 ~three sheets!, 46
~four sheets!, and 58~five sheets!.
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system@18#, the thermal anomalies can be interpreted as s
natures of the transition from the collapsed states to the
tive state, that is the true folding transition. Some support
this interpretation can be provided by the calculation of
temperature dependence of the structural overlap with
native state@18#. Since many~but not all! model proteins
show such a behavior, it seems important to note that
multiple-step folding of this model system is very similar
the multiple-step melting of many atomic clusters@23#.

Because of the presence of anomalies in the heat cap
ties, it is difficult to extract the critical exponents of finite
size scaling theory for this system@24#. However, by analogy
to the recent analysis of the helix-coil transition by Han
mann and co-workers@24#, we assume that the present mod
proteins can be considered as one-dimensional objects.
also assume that the collapse transition is a first-order
@24#. Defining the folding temperatureTf by the occurrences
of the anomalies, we can evaluate the variations of bothTc
and Tf versus 1/Na, with a'1 represented in Fig. 3. Two
interesting features can be observed. First, the folding t
perature becomes closer to the collapse temperature as
increases. This is similar to what is observed in clusters@23#,
and we will assume that it holds for proteins much larg
than those presently investigated. Also, the fit to a strai
line for Tc(1/N) is very good. Using the previous assum
tion, it allows us to estimate the folding temperature for p
teins having a large number ofb strands: Tf(N→`)
'Tc(N→`)'1.03 reduced units.

The present results show that the heteropolymer ‘‘BLN
model generally exhibits multistep folding in a range
sizes. It would be valuable to know how this phenomen
evolves when the number of strands increases~e.g., to check
the previous prediction!, and when the length of the strand
increases. In particular, a relative decrease of the heat ca
ity anomaly with respect to the main collapse peak would
another similarity with cluster melting@23#. Other size ef-
fects resulting from more complex~i.e., not all-b) native
states could also be investigated.

The entropic tempering technique incorporates the ca

FIG. 3. Variations of the collapse~closed circles! and folding
~open squares! temperatures of the BLN heteropolymers vs 1/N.
The straight dashed line is the extrapolation to large number
strands.
2-3
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lation of the microcanonical entropyS as a function of the
energy. This function contains much more information th
the microcanonical caloric quantities. In addition to the c
nonical properties obtained by Laplace transformation,
density of states can be used in other situations, for exam
to calculate statistical rates of evaporation or fragmenta
@25#, or to classify the order of a transition from the zeros
the partition function in the complex plane@24,26#. The par-
allel tempering exchanges are the key ingredient for acce
ating convergence and ensuring ergodicity at low tempe
ture. By combining this method with multicanonic
sampling, the entropic tempering scheme allows fewer
shorter simulations to be used, and at the same time prov
a reliable estimate of the density of states. The density
states, in turn, is the fundamental element of all thermo
namical functions.

In the present work, the entropic tempering method w
described in the framework of the canonical ensemble.
changing the Boltzmann exponential weights in the acc
tance probabilities, it is possible to improve further the sa
ys

ys
.

s

s

em

01090
n
-
e
le,
n
f

r-
a-

d
es
of
-

s
y
-
-

pling efficiency by using Tsallis polynomial weights, or se
eral multicanonical trajectories. The microcanonical and m
lecular dynamics~MD! ensemble~with additional constraints
on the total linear and angular momenta! can also be sampled
by taking the appropriate weights. A further coupling wi
standard MD simulations into a hybrid MC-MD algorithm
will then provide a way for molecular dynamics to becom
ergodic. With these various possible enhancements and
ease of its implementation, we believe that entropic temp
ing is an efficient, general-purpose strategy for reducing
quasiergodic behavior in simulation of complex systems.

Note added in proof.After this article was accepted fo
publication, we found another work using different combin
tions of the multicanonical and parallel tempering metho
@Chem. Phys. Lett.329, 261~2000!#, which, however, do not
seem to be far superior to the multicanonical sampling al
at low temperatures.
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