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Entropic tempering: A method for overcoming quasiergodicity in simulation
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The parallel tempering, multicanonical ensemble

, and multiple histogram methods are combined into a

powerful technique allowing enhanced sampling of complex energy surfaces. This method is shown to improve
significantly the ergodic behavior in simulations of cluster melting. Application to the finite-size effects in
folding minimal off-lattice 3-sheet model proteins shows that the collapse and folding transitions both involve

some latent heat.
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The ergodic hypothesis underlies the study of statistication that is much broader in energy and less penalizing of
phenomena at thermal equilibrium. However, in condensedarriers. Generalized ensembles have been built on this idea,
matter physics, it is rarely discussed except in the context ofhd the corresponding simulations have used mainly either
glassy systems. For such systems, the time scale required fgallis statistic$6] or the so-called multicanonical ensemble

exploring all important parts of the energy landscape is muc

larger than the actual observation time. Finite systems cafl

also exhibit very complex energy landscapgkresulting in
slow dynamics and glassy behavior at low temperature. Th

large number of minima and high saddle points on these
landscapes hinder considerably the simulation of processgs,

such as protein folding or cluster melting. More generally,

7]. These strategies are particularly efficient in the medium

nd high temperature ranges. Complementary to the problem
of simulating thermal equilibrium, many ideas have been

roposed to accelerate the related static problem of global
ptimization on complex energy landscapes.

The parallel tempering technique is very powerful and has

en able to reproduce the coexisting solid phases of the
38-atom Lennard-JongkJ) cluster[8]. It is, however, com-

ergodic sampling of complex energy surfaces becomegytationally demanding, especially for this complex system
harder and harder to achieve in simulation as the Complex|tyvhere numerous and |engthy simulations have to be per-
of the interaction, the number of degrees of freedom, or thgormed, but it is still more tractable than J-walking methods.
required accuracy 1s mpreased. Itis also lmportanF to SatleSrhe multicanonical ensemble, on the other hand, encounters
the ergodic hypothesis in the context of experiments irconvergence difficulties at low temperatures or energies,

which the measurements are carried out on statistical sets
on very long time scales.

ewen when combined with simple J-walkifi@]. A connec-
tion between these two methods can be made using the den-

Quasiergodicity in simulation occurs when the systemsity of states of the systerf)(E), which is the basic ingre-
gets trapped into one or several basins of the energy surfacdient of a multicanonical simulation. This link requires an
giving rise to unphysical and biased statistics and dynamicgndependent estimation df} from the parallel tempering
In recent years, several authors have proposed solutions f§imulation, which can be provided from a multiple histogram
overcoming quasiergodic behavior in simulations, as well ageweighting analysi§10]. But, even performed like this, the

probes of possible nonergodicifi2]. These solutions are
mostly built upon Monte CarlgMC) methods, which are

multicanonical simulation fails on the kgJproblem[8].
The inefficiency of the multicanonical ensemble sampling

much more flexible than deterministic molecular dynamics2t |ow energies can be overcome using parallel tempering

(MD). Up to now, two main strategies have been propose
for simulating thermal equilibrium of systems having roug

Monte Carlo(MC), but in a dynamical way, by adding the
hmulticanonical MC simulation to the set of traditional MC

energy landscapes. The use of several simulations perform&inulations. Precisely, we assume thirajectories are per-

simultaneously and communicating with each other accele

formed in the canonical ensemble at the respective tempera-

ates convergence of the low-temperature trajectories. Thid'eS{Ti=1/kgBi} wherekg is the Boltzmann constant. At
idea was first pioneered in the J-walking algorithm of FrantZ{€MPeraturer;, the acceptance probability from configura-

et al.[3], and it was subsequently developed in the paraIIeFiO” r, to configurationr,, is taken as the usual Metropolis

versions of this algorithnfi4], and in the parallel tempering
method also known as the replica-exchange mefbhdAn-
other possibility is to artificially modify the statistical prob-
ability (usually Boltzmann-likg in favor of a new distribu-
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value, acc(,—r,)=min(1,exd—B[E(r,)—E(ry)]}) where
E(r) is the energy of configuration. We also assume that
there exist a fH+1)th trajectory which is driven by a
non-Boltzmann probability: the acceptance probability from
rm* ! to 1™ is taken as mifl,exg{— JE(r™ Y]
+SE(r™ 1) 1}/kg)]. The entropyS(E) is unknown ini-
tially, and will be determined more and more accurately dur-
ing the simulation. Now, we allow occasional exchanges be-
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tween the MC trajectories. At each step, the MC moves 6 . . - -
described above are performed with a fixed probability
With probability 1— y, an exchange is attempted either be-
tween a randomly chosen trajectorszm and j=i+1, or
between the multicanonical trajectoj=m+1 and the ca-
nonical trajectoryi, which is the closest in energy at the
current step. Exchanges involving the multicanonical trajec-
tory are attempted with 50% probability. An exchange be-
tween two canonical trajectories is accepted with probability

(8]

9]
1

~
1

©w

— MCET 1
—— Multicanonical
————— HSA

Heat capacity (units of k)

acdr'=rl)=min(1L,exd AB[E(r)—E(r)]}), (@

n

whereA = gj— B; . An exchange between a canonical tra-
jectory and the multicanonical trajectorym+1) is ac-
cepted with probability

0 0.1 0.2 0.3 04 0.5
Temperature (units of e ky )

o . ' FIG. 1. Heat capacity per atom of the 31-atom Lennard-Jones
acdr'=r)=min{1,exg B;Ai(r')—BiA(r')]}. (2)  cluster vs the canonical temperature, per unikgf The results of
Monte Carlo entropic temperingCET, thick solid ling, multica-
In this expression, we have used the Landau free energyonical MC (thin solid line, and superposition approximation
A;(r) defined byA;(r)=E(r)—T;SE(r)]. Initially, the en-  (HSA, dashed lingare represented.
tropy is chosen to yield a broad energy distribution, for in-
stance byS(E)=E/T . With Tro @ “large” temperature, same length. The two curves agree well only in the melting
Tmac>maxT;}. After a number of steps, the simulation is region where the heat capacity reaches its maximum, near
interrupted and the energy histograms of thecanonical  T,.,s~0.32, and down to temperatures close to 1Ky
trajectories are computed. A new estimate of the entt®py reduced units. Below this temperature, they both display an
=kgln ) is made by least-square fitting the data to the prob-anomaly as an extra peak or bump. However, the anomalies
ability P4(E) of observing the energli + 5E at temperature  depend on the simulation method used. In this low tempera-
B [10]: P4(E)=Q(E)exp(—BE)/IZ(B). The multicanonical ture regime, we have compared these results to calculations
simulation proceeds with this estimate, and the entropy i$n the harmonic superposition approximatigHSA) [12]
regularly updated from the multiple histogram analysis of thefrom the set of minima collected by Doye and co-workers
canonical trajectories, after more and more data is added {d1]. The HSA prediction is ergodic by nature, because it
the histograms. makes no assumption about the possible pathways between
This method, which we dub “entropic tempering,” is the isomers. Even though it would require a very large set of
tested first on the LyJ cluster. The energy landscape of this stationary points to extend its range of validity up to the
system was recently studied by Doye, Miller, and Walesmelting region, it shows that the coexistence of the two low-
[11], who showed the existence of two low lying isomers energy minima induces a narrow phase change at about
separated by a high energy barrier. These isomers correspored.0%/kg . Only the entropic tempering calculation is able
to icosahedral packings with distinct surface structuresto reproduce this transition quantitatively. Pure multicanoni-
Mackay and anti-Mackay respectively. The crossover sizeal sampling does not converge at low temperatures, and
between the two growth sequences is 31 atoms. We hawisplays variations of the caloric curve below (:1Kg that
simulated the finite-temperature behavior of this system useannot be reproduced. A more difficult example is the 38-
ing the entropic tempering method, with=10 canonical atom LJ cluster, because of its double-funnel energy land-
simulations in the temperature rangex 20 3g/kg<T scapd 13]. We have been able to obtain results in agreement
=<0.le/kg, ten simulations in the temperature rangewith the work of Neirottiet al. [8] with only 30 simulations
0.1e/kg<T=<0.5%/kg, and the multicanonical simulation. of 3x 10% steps each, compared to ¥.30' in the original
Since one strong advantage of the parallel tempering methodork. Another good test, but even harder thangl.dvould
is that it simultaneously acts as a global optimization algobe the decahedral 75-atom LJ cluster.
rithm, we took random geometries as starting configurations As a further application of the entropic tempering method,
of all the MC trajectories. 1.210° Monte Carlo sweeps we have investigated finite-size effects in the thermodynam-
were performed for each simulatidd sweep= 31 indi- ics of a model protein. Many authors have characterized the
vidual stepg and the entropys was determined after each folding thermodynamics of lattice and off-lattice models by
accumulation of 19 sweeps. For equilibration, the first 2 considering the variations of the heat capacity versus tem-
X 10° sweeps were discarded from the histograms. Experaturd14]. In the present work, we have chosen a simple
changes between trajectories were attempted with the fixedff-lattice model developed by Honeycutt and Thirumalai
probability y=10%. The heat capacit@ obtained from the [15], which predicts native states of thgsheet form. This
final estimate ofS has been plotted in Fig. 1 versus the re-three-letter model, often called the “BLN” model, has been
duced canonical temperature. We have also represented thadely studied by a variety of groups, with some minor
curve obtained from multicanonical MC simulations of the changes in the parametdd&6—20. In particular, for the 46-
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FIG. 3. Variations of the collapsélosed circles and folding
(open squargstemperatures of the BLN heteropolymers v 1/
The straight dashed line is the extrapolation to large numbers of
strands.
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system[18], the thermal anomalies can be interpreted as sig-
natures of the transition from the collapsed states to the na-
tive state, that is the true folding transition. Some support for
this interpretation can be provided by the calculation of the
0 02 04 06 08 1 0 02 04 06 08 1 temperature deper_ldence of the structural overlap vv_ith the
Temperature Temperature native statg/18]. Since many(but not al) model proteins
show such a behavior, it seems important to note that the
FIG. 2. Heat capacities per residue of fg8isheet model pro-  multiple-step folding of this model system is very similar to
teins, in units ofkg for N=22 (two sheets 34 (three sheels 46  the multiple-step melting of many atomic clust¢2s).
(four sheets and 58(five sheets Because of the presence of anomalies in the heat capaci-
ties, it is difficult to extract the critical exponents of finite-
mer sequencéour sheety the energy landscagé?], ther-  size scaling theory for this systdr@4]. However, by analogy
modynamicq 15,18, and kinetic§19] have been character- to the recent analysis of the helix-coil transition by Hans-
ized. It has also been used as a benchmark for globahann and co-workeli24], we assume that the present model
optimization[20]. More generally, this model displays rough proteins can be considered as one-dimensional objects. We
energy landscapes that cannot be sampled by conventionalso assume that the collapse transition is a first-order one
simulation methods. We use here the same values of th@4]. Defining the folding temperaturg; by the occurrences
parameters as Berne and co-worké@], including the non-  of the anomalies, we can evaluate the variations of Aaqth
rigid bond lengths between successive residues. Four sendT; versus IN*, with a~1 represented in Fig. 3. Two
guences have been considered, containing 2, 3, 4, gfd 5 interesting features can be observed. First, the folding tem-
strands or 22, 34, 46, and 58 residues, respectij/21y. perature becomes closer to the collapse temperature as size
Thirty MC simulations at reduced temperatures in the rangéncreases. This is similar to what is observed in clugi2s,
10 2<T=1.5 were performed during $Gweeps following and we will assume that it holds for proteins much larger
2x 10° equilibration sweeps, and again with 10% probability than those presently investigated. Also, the fit to a straight
for attempting an exchange. The heat capacities for the foumne for T.(1/N) is very good. Using the previous assump-
model proteins are shown in Fig. 2. All curves show a cleattion, it allows us to estimate the folding temperature for pro-
peak which is characteristic of a transition from coil states taeins having a large number o8 strands: T{(N—)
a set of collapsed states, but not only consisting of the native- T (N— )~ 1.03 reduced units.
state[19]. This transition can also be observed in the varia- The present results show that the heteropolymer “BLN”
tions of the radius of gyratiorinot plotted herge Another model generally exhibits multistep folding in a range of
interesting feature of the caloric curves is that they also dissizes. It would be valuable to know how this phenomenon
play an anomaly at temperatures lower than the collapse tenevolves when the number of strands incredses., to check
peratures defined as the heat capacity maxima. The shouldére previous prediction and when the length of the strands
in the heat capacity is particularly marked for the two-,increases. In particular, a relative decrease of the heat capac-
three-, and five-strand systems. In the case of the four-strarity anomaly with respect to the main collapse peak would be
protein, our results are in agreement with those obtained bgnother similarity with cluster melting23]. Other size ef-
Guo and Brookq18] (within the small differences in the fects resulting from more complegi.e., not all;3) native
models used but qualitatively different from those of Nym- states could also be investigated.
eyer et al. [22]. Following previous investigations of this The entropic tempering technique incorporates the calcu-

Heat capacity (units of k)

N
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lation of the microcanonical entrop$ as a function of the
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pling efficiency by using Tsallis polynomial weights, or sev-

energy. This function contains much more information thaneral multicanonical trajectories. The microcanonical and mo-

the microcanonical caloric quantities. In addition to the ca-

lecular dynamic$MD) ensembléwith additional constraints

nonical properties obtained by Laplace transformation, then the total linear and angular momentan also be sampled
denSIty of states can be used in other situations, for exampl«by taking the appropriate Weights_ A further Coup“ng with
to calculate statistical rates of evaporation or fragmentatio’tandard MD simulations into a hybrid MC-MD algorithm

[25], or to classify the order of a transition from the zeros of
the partition function in the complex plafi24,26. The par-

allel tempering exchanges are the key ingredient for accele
ating convergence and ensuring ergodicity at low temper
ture. By combining this method with multicanonical
sampling, the entropic tempering scheme allows fewer an
shorter simulations to be used, and at the same time provid

states, in turn, is the fundamental element of all thermody
namical functions.
In the present work, the entropic tempering method wa

S

will then provide a way for molecular dynamics to become
ergodic. With these various possible enhancements and the
'sase of its implementation, we believe that entropic temper-

al’ng is an efficient, general-purpose strategy for reducing the

8uasiergodic behavior in simulation of complex systems.
Note added in proofAfter this article was accepted for

a reliable estimate of the density of states. The density O?%bllcatlon, we found another work using different combina-

ons of the multicanonical and parallel tempering methods
[Chem. Phys. Lett329, 261(2000], which, however, do not
seem to be far superior to the multicanonical sampling alone
at low temperatures.

described in the framework of the canonical ensemble. By
changing the Boltzmann exponential weights in the accep-
tance probabilities, it is possible to improve further the sam-and Professor P. Labastie for useful discussions.
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