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Self-exciting chaos as a dynamic model for irregular neural spiking
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~Received 15 July 2000!

We introduce a nonlinear dynamical system with self-exciting chaotic dynamics. Its interspike interval
return map shows a noisy Poisson-like distribution. Spike sequences from different initial conditions are
unrelated but possess the same mean frequency. In the presence of noisy perturbations, sequences started from
different initial conditions synchronize. The features of the model are compared with experimental results for
irregular spike sequences in neurons. Self-exciting chaos offers a mechanism for temporal coding of complex
input signals.

PACS number~s!: 05.45.Ac, 05.45.Xt, 82.40.Bj, 87.10.1e
l i
fe
ur

a
er
ie
nl
u

is
a
a
f
s
h
ed
-
ul
s
o

la
a

m
ha
sy
tio
p

ze

th
hi

no
ul
sy
r

ns
r a

d

s.

is
de
e
x-

an
ape
tic
fre-

pa-
n
is
ces
er

ls
ike
ith
Is

s
he
ses
Irregular spike sequences are the foundation of neura
formation processing. They occur under at least three dif
ent situations. First, as spontaneous firing under nonpert
ing constant external conditions~see, e.g.,@1# for recordings
from afferent neurons!. Second, as irregular firing with
constant mean frequency in response to a constant ext
stimulation. Adrian @2# and countless subsequent stud
~see, e.g.,@3#! observed that in repeated experiments o
this mean frequency is conserved, whereas the individ
spike sequences appear unrelated~see@4# for a comparison
of 25 sequences!. This formed the basis for the hypothes
that the specific sequence of interspike intervals is irrelev
for neural information processing and that the relevant p
of the information is encoded in the mean frequency o
single neuron’s firing@5#. Third, irregular spike sequence
occur in response to irregular perturbation of neurons. T
fact by itself is not very surprising. However, in repeat
experiments where theidentical irregular perturbation is ap
plied repeatedly neurons respond with the same irreg
spike sequence@4#. This means that complex input function
increase the reliability of the response compared to a c
stant external perturbation.

Excitable chaotic systems have an aperiodically oscil
ing ‘‘basal state’’ and there is no constant threshold for
external perturbation to induce a spike. Rather, the mini
perturbation required to induce a spike depends on the p
of the basal chaos. Spatially extended excitable chaotic
tems do not transport a single suprathreshold perturba
through the medium but require a minimal number of pro
erly correlated perturbations to transport waves@6#. Together
with the fact that two chaotic systems can be synchroni
by applying identical noisy perturbations@7#, these findings
suggest that excitable chaos may provide a model for
irregular spiking of nerve cells. We demonstrate how t
could account for the experimental observations.

We introduce a deterministic chaotic system that is
only excitable but also spontaneously generates irreg
spike sequences. Due to its deterministic origin such a
tem is expected to differ dynamically from a system whe
an excitable fixed point is perturbed by noisy fluctuatio
the standard assumption to explain spontaneous irregula
tivity of nerve cells~see, e.g.,@8# for a discussion!.

The following set of kinetic rate equations is considere
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Ẋ5a~X02X!2r 1•r 2•r 32XY/~c41X!2X,

Ẏ5a~Y02Y!2r 1•r 2•r 32XY/~c41X!,
~1!

Ż5a~Z02Z!1r 1•r 2•r 32c9Z,

Ẇ5a~W02W!1XY/~c41X!,

where

r 15c1X/@c21X3/~W310.001!#,

r 25Y~11Y!3/@L/~11c6W!1~11Y!4#,

r 35Z4/~c71Z6!.

This set of equations describes a reaction of variablesX and
Y yielding Z under the nonlinear regulation of effectorW.
Details can be found in@9#. In spite of its different origin the
dynamics of the subsystemX, Y, and Z shows qualitative
similarities with the excitable Hodgkin-Huxley equation
For some sets of parameters the full system~1! possesses a
spontaneously spiking chaotic attractor. The dynamics
composed of sections of high-frequency, small-amplitu
‘‘basal’’ chaos irregularly interrupted by large-amplitud
spikes~Fig. 1!. The attractor has one positive Lyapunov e
ponent~LCE!.

Self-exciting chaos results from a global bifurcation of
excitable chaotic attractor. The bifurcation creates an esc
region that allows the trajectory to leave the former chao
attractor. The size of the escape region and the escape
quency depend on the distance of a relevant bifurcation
rameter from the bifurcation point. If an external stimulatio
modifies this parameter the strength of the stimulation
coded in the mean frequency of the spiking. Spike sequen
with different initial conditions are unrelated to each oth
even though the mean frequency is preserved.

Figure 2~a! shows the return map of interspike interva
~ISIs!, i.e., the periods of time between two successive sp
maxima which neglects the small chaotic oscillations. W
the exception of the sharp border for small values of IS
~indicating a finite minimal period within which no spike i
induced! this return map is remarkably structureless. T
density of points is highest near the origin and decrea
R7579 ©2000 The American Physical Society
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continuously with increasing interval length. In contrast
return map from the maxima of the chaotic oscillations b
tween spikes displays the one-dimensional fractal struc
of chaos.

We studied the influence of noise added to all variable
Eq. ~1!. It was found that for increasing noise intensity t
mean frequency of spikes increases. The sequence of
remains irregular, however. Figure 2~b! is an ISI return map
with added white noise. The plot shows a significant red
tion of the ISI distribution compared to the unperturbed ca
As in the unperturbed case, there is a sharp border for s
ISI values. In addition, a pattern of orthogonal lines is d
cernible.

In order to verify correlations present in the ISI sequen
we applied sensitive correlation measures from random
trix theory. The measure chosen is the nearest-neighbor s
ing distributionP(s), which is designed to detect any corr
lation in the temporal position of two adjacent events@10#. In
order to calculateP(s) the sequence has to be unfolded
get rid of the smooth part of the spike density. Figure
displays the probabilities that a distance of lengths occurs
within the unfolded sequence. To obtain a realistic pict
only 1000 events have been taken into account.

Figure 3~a! is the histogram for a spike sequence gen
ated by Eq.~1! in the case of unperturbed self-exciting cha
@cf. Fig. 2~a!#. The histogram displays a probability hole fo
small time distancess reflecting the finite minimal period
between two consecutive spikes. For distancess up to s
'1.2 the histogram slightly overshoots the theoretical cur
In the asymptotic regions.2 the histogram is well-
described by the theoretical curve of the Poisson distribut
We have confirmed that the match of the ISI analysis and
Poisson distribution is almost perfect for longer time seri
Compare the excellent agreement with experimentally
tained histograms in@1,8#.

Figure 3~b! shows the result for a time series with add
white noise@cf. Fig. 2~b!#. In contrast to Fig. 3~a! the distri-
bution now is accumulated around the mean event dista

FIG. 1. Time series of spontaneous spiking from a chaotic b
state in Eq.~1!. Parameters:a50.675, X0510.6, Y0510.4, Z0

51.1611, W050, c1533, c250.1, c450.1, c6519, c750.1, c9

510, andL580.
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s51. In this case the system possesses a distinct mean
quency for the occurrence of spikes. With high probabil
the interval between two adjacent spikes is close to 1 on
unfolded time scale. The probability to observe smaller
larger ISIs decreases rapidly to zero.

An important question in neural spiking is the repeatab
ity of certain spike trains to a repeatedly applied no
constant perturbation@4#. If two simulations of Eq.~1! in the
absence of any perturbation are run from different init
conditions, the spiking occurs at uncorrelated times due
the dependence of the chaotic trajectory on the choice
initial conditions. A plot of the differences in one variab
between two such time series therefore continuously va
between limits given by1Xmax and2Xmax @Fig. 4~a!#. The
small-amplitude oscillations are uncorrelated as well. T
addition of Gaussian white noise changes this result dram
cally. If two simulations are subject to the identical pertu
bation they produce irregular yet synchronized spike
quences@Fig. 4~b!#. There is an optimal value of nois
amplitude for this synchronization to occur. The average
ration of desynchronization between two signals decrea
for small values of noise amplitude, then reaches a minim

al

FIG. 2. Return map with 40 000 interspike intervals of lar
spikes in the system of Fig. 1. Only maxima larger than 1.5 w
used to determine spike timing.~a! Without noise;~b! with noise
added to all four variables~zero mean Gaussian noise, intens
0.18!.
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FIG. 3. Nearest-neighbor spac
ing distribution in Eq. ~1!. ~a!
Without noise;~b! with noise as in
Fig. 2~b!. Included is the analyti-
cal result for a Poisson distribu
tion.
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and decreases for large values. At the suboptimal valu
noise intensity chosen in Fig. 4~b! the synchronization is no
perfect. Occasionally a burst of desynchronized activity
curs after which the synchronization is recovered again
purely deterministic simulations an increase in noise le
@as compared to Fig. 4~b!# is sufficient to allow perfect syn
chronization for a long time. In the realistic situation whe
in addition to the identical perturbation an independent no
term of small mean amplitude is added~to mimic unavoid-
able experimental noise! synchronization is observed for
broad range in the intensity of the identical irregular pert
bation.

A surprising feature of self-exciting chaos is the quali
tive difference between an ISI return map and any ret

FIG. 4. DifferencesX22X1 between two time series starte
with different sets of initial conditions in Eq.~1!. ~a! Without noise;
~b! with noise as in Fig. 2~b!.
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map generated from the small-amplitude chaos. The ISI
turn map is structureless and appears high-dimensional e
though it is generated from a low-dimensional chaotic attr
tor @Fig. 2~a!#. The reason for this is the loss of autocorre
tion during the small-amplitude chaotic oscillations. Due
the positive LCE the autocorrelation function of a chao
signal decays to zero within a finite time. If the mean interv
between spikes is larger than this time, the average ISI
no longer be correlated to its predecessor and the ISI di
bution will resemble that of an uncorrelated~Poisson! pro-
cess.

We are not aware of reports describing excitable chao
Hodgkin-Huxley types of equations. From the investigati
of our model and several related equations we infer that
nonlinear modulation of the strength of both autoinhibiti
and autocatalysis@realized by variableW in Eq. ~1!# is a
crucial requirement. In neurons this would translate into
self-regulatory modulation of the ion channel characterist

If a noisy perturbation is added to the self-exciting cha
the mean spiking frequency is increased and distinct patt
appear in the ISI return map@Fig. 2~b!#. The points then tend
to be arranged along a multitude of horizontal and verti
lines. This reflects that spikes always arise from a sim
phase of a small-amplitude oscillation. Thus the number
oscillations between spikes induces a certain discretene
the escape times. This discreteness implies that the s
sequence has a preference for certain ISIs and for certain
sequences~motifs!. The preference for motifs makes it likel
that certain ISI sequences can easily be induced by exte
perturbations, whereas other sequences would rather
press spiking. By these means the system can act as a filt
recognize distinct input patterns~i.e., different pieces of in-
formation!. As an application, excitable chaos was used
detect hidden short-term correlated events in noisy hum
EEG @11#.

Figure 3 shows that noise induces correlations imman
in the system. The qualitative differences between the un
turbed and the noise-perturbed case are remarkable even
the arbitrarily chosen poor statistics. This is of importan
for the analysis of experimental results, where long stati
ary time series may be difficult to obtain. In particular,
addition to the purely geometric impression created by
return maps in Fig. 2, the distributionP(s) permits a more
quantitative description of correlations within strongly i
regular time series from comparatively short ISI sequenc

Irregular perturbations with zero mean increase the pr
ability for spikes to generate a reliable sequence of ISIs@Fig.
4~b!#. This is in accordance with experiments performed w
neurons in brain slice preparations@4#. It was shown that the
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response of neocortical neurons to a noisy perturbatio
much more reliable than the response to a constant param
offset. In accordance with our numerical observations t
increase in reliability is accompanied by an increased spik
frequency. Furthermore, the measurements of irregular s
ing activity under constant conditions clearly show sho
term correlations between experiments after extern
forced synchronization~see Fig. 1a in Ref.@4#!. This is also
observed in our model after synchronization by a sud
jump in parameterZ0. It is a typical feature of deterministic
chaotic systems but unlikely in noise-driven excitable fix
point systems.

From an experimental point of view collecting the IS
from a spontaneously firing neuron is not sufficient to obt
information about the mechanism generating the spike
quence. Even extremely long stationary time series with o
a small level of~unavoidable! intrinsic noise would produce
Or
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n
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noiselike results and not show the distinct fingerprints
chaos. Our simulations suggest that attention should be
to any high-frequency oscillations between spikes. With l
levels of experimental noise, analysis of the interspike
havior could indicate a chaotic process. In neurophysiolo
these high-frequency events are often considered pure n
and therefore filtered or ignored. However, e.g., Sternet al.
have identified a distinct high-frequency component of p
sibly deterministic origin during irregular spiking of rat co
ticostriatal cells@12#. Evidence for the existence of unstab
periodic orbits ~implying low-dimensional chaos! within
noisy ISI return maps in neural spiking was obtained for d
from rat hippocampal slices by Soet al. @13#. Self-exciting
chaos offers an explanation both of the high- and the lo
dimensional properties of irregular spike sequences in
absence and in the presence of external input.
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