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Self-exciting chaos as a dynamic model for irregular neural spiking
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We introduce a nonlinear dynamical system with self-exciting chaotic dynamics. Its interspike interval
return map shows a noisy Poisson-like distribution. Spike sequences from different initial conditions are
unrelated but possess the same mean frequency. In the presence of noisy perturbations, sequences started from
different initial conditions synchronize. The features of the model are compared with experimental results for
irregular spike sequences in neurons. Self-exciting chaos offers a mechanism for temporal coding of complex
input signals.

PACS numbse(s): 05.45.Ac, 05.45.Xt, 82.40.Bj, 87.16e

Irregular spike sequences are the foundation of neural in- X=a(Xg—X)—r1-To-Fa— XY/(Ca+ X)— X,
formation processing. They occur under at least three differ-
ent situations. First, as spontaneous firing under nonperturb-
ing constant external conditiorisee, e.g.[1] for recordings o
from afferent neurons Second, as irregular firing with a 7= a(Zg=Z)+T1 Ty Ta—CoZ
constant mean frequency in response to a constant external 0 172708 &
stimulation. Adrian[2] and countless subsequent studies
(see, e.qg.[3]) observed that in repeated experiments only
this mean frequency is conserved, whereas the individual

) . where
spike sequences appear unrelatgeke[4] for a comparison

Y:a(YO_Y)_rl r2' r3_XY/(C4+X),

W= a(Wy—W)+XY/(cs+X),

of 25 sequencegsThis formed the basis for the hypothesis ry=cyX/[ o+ X3/(WB+0.00D],
that the specific sequence of interspike intervals is irrelevant

for neural information processing and that the relevant part r=Y(1+Y)3[L/(1+ceW) + (1+Y)4],
of the information is encoded in the mean frequency of a

single neuron’s firing5]. Third, irregular spike sequences rg=2%(c,+2°%).

occur in response to irregular perturbation of neurons. This
fact by itself is not very surprising. However, in repeatedThis set of equations describes a reaction of variaklasd
experiments where thidentical irregular perturbation is ap- Y yielding Z under the nonlinear regulation of effectav.
plied repeatedly neurons respond with the same irreguldPetails can be found if@]. In spite of its different origin the
spike sequencit]. This means that complex input functions dynamics of the subsysteiX, Y, and Z shows qualitative
increase the reliability of the response compared to a corsimilarities with the excitable Hodgkin-Huxley equations.
stant external perturbation. For some sets of parameters the full systdmpossesses a
Excitable chaotic systems have an aperiodically oscillatSPontaneously spiking chaotic attractor. The dynamics is
ing “basal state” and there is no constant threshold for arfomposed of sections of high-frequency, small-amplitude
external perturbation to induce a spike. Rather, the minimalPasal” chaos irregularly interrupted by large-amplitude

perturbation required to induce a spike depends on the phaSBikes(Fig. 1. The attractor has one positive Lyapunov ex-
of the basal chaos. Spatially extended excitable chaotic Syg_onent(LCE). . .
Self-exciting chaos results from a global bifurcation of an

tems do not transport a single suprathreshold perturbation = . . .
. . L excitable chaotic attractor. The bifurcation creates an escape
through the medium but require a minimal number of prop-

: region that allows the trajectory to leave the former chaotic
erly correlated perturbations to transport wals Together ttractor. The size of the escape region and the escape fre-

with the .faCt_ that_two chaotic SySte"_‘S can be synch_ronize@uency depend on the distance of a relevant bifurcation pa-
by applying identical noisy perturbatiofg], these findings 5 meter from the bifurcation point. If an external stimulation

suggest that excitable chaos may provide a model for thg,qgifies this parameter the strength of the stimulation is
irregular spiking of nerve cells. We demonstrate how thisgoged in the mean frequency of the spiking. Spike sequences
could account for the experimental observations. with different initial conditions are unrelated to each other
We introduce a deterministic chaotic system that is noteyen though the mean frequency is preserved.
only excitable but also spontaneously generates irregular Figure 2a) shows the return map of interspike intervals
spike sequences. Due to its deterministic origin such a sysiSls), i.e., the periods of time between two successive spike
tem is expected to differ dynamically from a system wheremaxima which neglects the small chaotic oscillations. With
an excitable fixed point is perturbed by noisy fluctuationsthe exception of the sharp border for small values of ISIs
the standard assumption to explain spontaneous irregular agndicating a finite minimal period within which no spike is
tivity of nerve cells(see, e.g.[8] for a discussion induced this return map is remarkably structureless. The
The following set of kinetic rate equations is considered:density of points is highest near the origin and decreases
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FIG. 1. Time series of spontaneous spiking from a chaotic basal v_T_ (b)
state in Eqg.(1). Parametersa=0.675, Xy,=10.6, Yy=10.4, Z, c
=11611,W0=0, Cl:331 Cz=0.1, C4=0.1, C6:191 C7=0.1, Cg TU
=10, andL = 80. b
2
continuously with increasing interval length. In contrast, a St -
return map from the maxima of the chaotic oscillations be- Q2
tween spikes displays the one-dimensional fractal structure ‘&
of chaos. g
We studied the influence of noise added to all variables in
Eqg. (2). It was found that for increasing noise intensity the -
mean frequency of spikes increases. The sequence of ISIs
remains irregular, however. Figur€h? is an ISI return map % ) 3‘0_ 60
with added white noise. The plot shows a significant reduc- Interspike interval n

tion of the ISl distribution compared to the unperturbed case. ) ) o

As in the unperturbed case, there is a sharp border for small FIG- 2. Return map with 40000 interspike intervals of large
ISI values. In addition, a pattern of orthogonal lines is dis-SPKes in the system of Fig. 1. Only maxima larger than 1.5 were
cernible used to determine spike timinga) Without noise;(b) with noise

In order to verify correlations present in the ISI sequence%dded to all four variableszero mean Gaussian noise, intensity

we applied sensitive correlation measures from random ma—'la'
trix theory. The measure chosen is the nearest-neighbor spac-
ing distributionP(s), which is designed to detect any corre- s=1. In this case the system possesses a distinct mean fre-
lation in the temporal position of two adjacent ever§]. In  quency for the occurrence of spikes. With high probability
order to calculateP(s) the sequence has to be unfolded tothe interval between two adjacent spikes is close to 1 on the
get rid of the smooth part of the spike density. Figure 3unfolded time scale. The probability to observe smaller or
displays the probabilities that a distance of lengthccurs  larger ISIs decreases rapidly to zero.
within the unfolded sequence. To obtain a realistic picture An important question in neural spiking is the repeatabil-
only 1000 events have been taken into account. ity of certain spike trains to a repeatedly applied non-
Figure 3a) is the histogram for a spike sequence gener<onstant perturbatiof#]. If two simulations of Eq(1) in the
ated by Eq(1) in the case of unperturbed self-exciting chaosabsence of any perturbation are run from different initial
[cf. Fig. 2a)]. The histogram displays a probability hole for conditions, the spiking occurs at uncorrelated times due to
small time distances reflecting the finite minimal period the dependence of the chaotic trajectory on the choice of
between two consecutive spikes. For distansesp to s  initial conditions. A plot of the differences in one variable
~ 1.2 the histogram slightly overshoots the theoretical curvebetween two such time series therefore continuously varies
In the asymptotic regions>2 the histogram is well- between limits given by Xax and — Xpax [Fig. 4@)]. The
described by the theoretical curve of the Poisson distributionsmall-amplitude oscillations are uncorrelated as well. The
We have confirmed that the match of the ISI analysis and thaddition of Gaussian white noise changes this result dramati-
Poisson distribution is almost perfect for longer time seriescally. If two simulations are subject to the identical pertur-
Compare the excellent agreement with experimentally obbation they produce irregular yet synchronized spike se-
tained histograms ifi,8]. qguences[Fig. 4(b)]. There is an optimal value of noise
Figure 3b) shows the result for a time series with addedamplitude for this synchronization to occur. The average du-
white noise[cf. Fig. 2b)]. In contrast to Fig. @) the distri-  ration of desynchronization between two signals decreases
bution now is accumulated around the mean event distander small values of noise amplitude, then reaches a minimum
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and decreases for large values. At the suboptimal value ahap generated from the small-amplitude chaos. The ISI re-
noise intensity chosen in Fig(l®) the synchronization is not turn map is structureless and appears high-dimensional even
perfect. Occasionally a burst of desynchronized activity octhough it is generated from a low-dimensional chaotic attrac-
curs after which the synchronization is recovered again. Inor [Fig. 2(a)]. The reason for this is the loss of autocorrela-
purely deterministic simulations an increase in noise levetion during the small-amplitude chaotic oscillations. Due to
[as compared to Fig.(8)] is sufficient to allow perfect syn- the positive LCE the autocorrelation function of a chaotic
chronization for a long time. In the realistic situation wheresigna| decays to zero within a finite time. If the mean interval
in addition to the identical'pertu.rbation an indgpenden; NOIS§atween spikes is larger than this time, the average ISI will
term of small mean amplitude is addéd mimic unavoid-  h, |onger be correlated to its predecessor and the ISI distri-

able experimental noisesynchronization is observed for a 1, yion Wil resemble that of an uncorrelatégoisson pro-
broad range in the intensity of the identical irregular pertur—Cess

bation. - . . . We are not aware of reports describing excitable chaos in
A surprising feature of self-exciting chaos is the quallta-H dakin-Huxlev t p i F the i tiqati
tive difference between an ISI return map and any return odgkin-ruxiey types ol equations. -rom the investigation
of our model and several related equations we infer that the
25 ‘ nonlinear modulation of the strength of both autoinhibition
(a) and autocatalysi$realized by variableV in Eq. (1)] is a
crucial requirement. In neurons this would translate into a
self-regulatory modulation of the ion channel characteristics.
If a noisy perturbation is added to the self-exciting chaos
the mean spiking frequency is increased and distinct patterns
appear in the ISI return mdjFig. 2(b)]. The points then tend
to be arranged along a multitude of horizontal and vertical
lines. This reflects that spikes always arise from a similar
phase of a small-amplitude oscillation. Thus the number of
oscillations between spikes induces a certain discreteness in
the escape times. This discreteness implies that the spike
sequence has a preference for certain I1SIs and for certain ISI
w sequenceémotifs). The preference for motifs makes it likely
0 e 10000 that certain 1SI sequences can easily be induced by external
perturbations, whereas other sequences would rather sup-
25 . press spiking. By these means the system can act as a filter to
(b) recogn_ize distinct inpu_t pa_\tterr(ise._, different pieces of in-
formation. As an application, excitable chaos was used to
detect hidden short-term correlated events in noisy human
EEG[11].
05 | | Figure 3 shows that noise induces correlations immanent
in the system. The qualitative differences between the unper-
turbed and the noise-perturbed case are remarkable even with
-05 | ] the arbitrarily chosen poor statistics. This is of importance
for the analysis of experimental results, where long station-
ary time series may be difficult to obtain. In particular, in

-15

-25

8T i addition to the purely geometric impression created by the
return maps in Fig. 2, the distributidA(s) permits a more
25 quantitative description of correlations within strongly ir-

0 Icl)%)e 10000 regular time series from comparatively short ISI sequences.
Irregular perturbations with zero mean increase the prob-
FIG. 4. DifferencesX,— X, between two time series started ability for spikes to generate a reliable sequence of |Big.
with different sets of initial conditions in Eq1). (a) Without noise;  4(b)]. This is in accordance with experiments performed with
(b) with noise as in Fig. @). neurons in brain slice preparatiof. It was shown that the
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response of neocortical neurons to a noisy perturbation isoiselike results and not show the distinct fingerprints of
much more reliable than the response to a constant parametetiaos. Our simulations suggest that attention should be paid
offset. In accordance with our numerical observations thiso any high-frequency oscillations between spikes. With low
increase in reliability is accompanied by an increased spikingevels of experimental noise, analysis of the interspike be-
frequency. Furthermore, the measurements of irregular spikhavior could indicate a chaotic process. In neurophysiology
ing activity under constant conditions clearly show short-these high-frequency events are often considered pure noise
term correlations between experiments after externallyng therefore filtered or ignored. However, e.g., Stral.
forced synchronizatiofsee Fig. 1a in Ref4]). Thisis also  paye identified a distinct high-frequency component of pos-
observed in our model after synchronization by a suddeRiy, geterministic origin during irregular spiking of rat cor-
jump in parametez,. Itis a typical feature of deterministic . ,qyiatal cell§12]. Evidence for the existence of unstable
Ch?.OtIC systems but unlikely in noise-driven excitable flxedperiodic orbits (implying low-dimensional chadswithin
point systems. noisy ISI return maps in neural spiking was obtained for data

f From an experlmen.te}l point of View collept!ng the ISI‘?’ from rat hippocampal slices by Sat al. [13]. Self-exciting
rom a spontaneously firing neuron is not sufficient to obtain h ff lanation both of the hiah d the |
information about the mechanism generating the spike se21a0s OfIers an expianation both of the hignh- and the low-

guence. Even extremely long stationary time series with on|)§jgnen3|onaldprophertles of |rreg]:,|lar splkle. sequences in the
a small level of(unavoidablg intrinsic noise would produce a0°sence and in the presence of external input.
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