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Glassy dynamics near zero temperature
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We numerically study finite-dimensional spin glasses at low and zero temperature, finding evidefice for
strong time-space heterogeneitiés), spontaneous time scale separation, @ing power law distributions of
flipping times. Using zero temperature dynamics we study blocking, clustering and persistence phenomena.
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The study of nonequilibrium dynamics in quenched spin (iv) The persistence phenomenon.
systems provides a rigorous and numerical test ground for Our studies focus on thecJ Edwards-Andersor(EA)
modeling glassy behavior. Among the open issues whichmodel in two and three spatial dimensidsiuare and cubic
arise in this context there is the connection between spatidéttices. The Hamiltonian of these models reads
and temporal heterogeneities and the global off-equilibrium
dynamical features characteristic of glassy structures such as H= z sdisi, 1)
aging[1]. In the last decade, much progress has been made (iNeE 1™
in the study of domain evolution and aging in both ordered
and disordered systeni@—4]. In particular, the mean-field WhereE s the set of lattice edges, the spins are of Ising type,
picture of the glassy transitiof5,6] plays a central role in and the couplings take the valuesl with equal probability.
interpreting results of numerical simulations on spin systems, The study of 3D EA model in the very low temperature
but it cannot account for heterogeneities. On the other hand€gion requires huge thermalization times, and therefore it
a set of interesting numerical and analytical results on théas been severely limited by available computer resources.
off-equilibrium dynamics in nonfrustrated systems have beefPnly very recently these studies have been pushed to very

obtained[7-9], which can be now extended to frustrated low temperatures, thanks to the use of parallel comp{iédrs
ones. The data presented in this Rapid Communication referring to

The scope of this study is to provide a further link be-the 3D case has been obtained with the help of the APE100
tween the different aspects of the glassy transition unfolde@arallel computef11]. The 2D case is indeed much simpler
by the various approaches. More specifically, we shall focudn Virtue of the existence of polynomial algorithms for
on models with discrete#J) couplings in two and three ground-state calculations.
dimensions. Of particular interest is the onset of time scale It iS known that in both 2D and 3D EA mode]$2] low-
separation in the low temperatut®w T) regime and its €ring temperature produces a surprising increase in the num-
connections with the blocking and persistence phenomena iper of high frequency flipping spins. Here we push the study
the zero-temperaturel& 0) limit. of the ﬂ_lpplng times distribution to the very low temperature

The choice of discrete couplings stems from the fact thaf€gion in the hard case of the 3D EA model. Moreover, we
they naturally arise as interactions incorporating geometricdnvestigate the dependence of this distribution on the waiting
frustration and constraints. Moreover, models with discretdime, which is a relevant feature of the aging regime in
couplings are of central relevance in other areas such as corfllassy phases. . . o
binatorial optimization and are known to provide very rich ~ According to the typical scheme used in off-equilibrium

dynamical features, even #@t=0 [10]. dynamical studie§6], we simulate large systentef at least
In what follows, we report results from extensive numeri- 32> Spin9 and we start the experiment with an instantaneous
cal simulations concerning the following issues: quench from infinite temperature to one in the glassy phase

(i) The onset and the dependence on waiting time of théT<Tc=1.1). Next we let the system evolve for a waiting
spontaneous time scale separation and space clustering tiRet,, [times are expressed in terms of Monte Carlo sweeps
sufficiently low T in 2D and 3D models. (MCS9)]. Finally we calculate the flipping rates probability

(i) The related emergence @=0 of the “blocking” distribution function(PDF measuring the number of flips
phenomenon together with the clustering of a finite fractiondone by every spin within time windows extending frag
of spins that flip infinitely ofter{“fast” spins), along withits ~ t to t,+2t, wheret=2* (with k<26) is also the time
interpretation in terms of the functional mean-field order pa-Window size. We simply define the mean flipping times

rameter. the time window size divided by the number of flips and we
(i) The T=0 distributions of flipping times and fast construct the PDF of its logarithn®, ; (In7), by taking the
spins clusters sizes. histogram over all spinéwith the labelt identifying the time

window). This distribution is expected to be self-averaging

(similar to correlation functions and so we prefer to simu-
*Email address: riccife@ictp.trieste.it late few very large samples. The choice of working with the
"Email address: zecchina@ictp.trieste. it In(7) PDF instead of that for is dictated by the broadness of
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FIG. 1. Flipping times PDF show a spontaneous time scale sepa-

ration as temperature is decreased. In the inset we present the PDF FIG. 2. T=0.3'_5_ data4has been_measured on & $pstem(ten
; - sample} after waiting 2* MCS. Different curves correspond to
of the scaling variabld In(7).

different time window sizegfrom bottor) t= 212 214216 718 220
2222%4 The last curve coincides with data presented in Fig. 1.

[P(In Doce™™" 7] corresponds to a power law tail in the latter time of t, = 216,218,

[P(r)ocr *1].

In thet,,= 0 case we find, as expected, tiqp(In 7) does  cerning only one waiting timeIn Fig. 2 we display the PDF
not depend ort and so we consider only the PDF measuredfor different choices of the ratit't,,: the lowest curves cor-
during the last time window, which has the largest supportespond to the quasiequilibrium regime, while the upper ones
(more than 1B MCS) and the highest statistics. In Fig. 1 we have values of of the order oft,, and therefore include the
show such a distribution for different temperatures. While atffects coming from the aging regime.
very high temperatures the PDF is strongly peaked around |t is clear that the time-scale separation is sharper in the
the mean, it acquires very large tails approaching the glasguasiequilibrium regime, while approaching the aging re-
transition temperaturiel 2] and finally develops a clear bimo- gime the gap between fast and slow peaks is partially filled.
dal shape at very low temperatures, as can be seen in Fig.dbserving that the slow spins create the environment where
(note the logarithmic scale on tlyeaxis). The emergence of the fast spins move ifithe so-called cage efféctwe may
a spontaneous time scale separation allows us to naturalssume that the metastable state is identified by the spatial
divide the spins into two very general classes: the “fast” structure of slow spins which act as a rigid backbone on time
spins belonging to the left peak and the “slow” ones to thescales typical of the quasiequilibrium regime. Therefore, we
right peak. While the shape of the left part of the distributionmay also observe that the basic excitations that bring the
does not change with temperature, the position of theystem out of quasiequilibrium are given by those spins
“slow” peak is clearly moving towards higher values when which fill the gap between the peaks. The study of the spatial
the temperature is decreased. As shown in the inset of Fig. Ltructure of these spins would help towards the understand-
this process verifies the simple scalifign(7), commonly  ing of basic excitation in 3D spin glasses.
found in every activated process in spin glasses. It follows The same set of simulations with Gaussian couplings
that slow spins are the ones that have to overcome a barrigfives no evidence of such a simple time scale separation. In
in order to flip, while the fast ones will eventually have a this case the distribution of microscopic time scales is differ-
zero local field at some tim@vhich could even happen very ent and much longer simulations would be needed in order to
rarel)b. In the zero temperature limit we expect that the S|0Wunvei| the Separa’[ion_ Moreover, at=0 in the Gaussian
peak moves towards unreachable time scales, whereas fagfse the system rapidly gets stuck in a local minimum and its
spins are the only spins responsible for the dynamics. Theonfiguration is fully frozen, which is consistent with the
adjective “fast” could be somehow miSleading; in turn their zero-temperature classification given [ig] On|y the =J
actual flipping times follow a very broad distribution. model has a rich aging behavior at zero temperature.

It is well known that in the aging regime two-time quan-  |n the T=0 limit activated processes disappear and the
tities depend on both times and not only on their differenceg|ow peak goes to infinity. Then the gap between the peaks
In the case oPy; (In 7) this dependence on the waiting time can no longer be filled when the system leaves the quasiequi-
is shown in Fig. 2, where we present data for a low temperalibrium regime. In other words, therW(In 7) becomes

ture (T=0.35), a very large waiting timet(=2%%), and ¢, .independentwe have checked this fact numericajland
many values oft. During the aging process two different jt describes only the fast spin component. Remarkably
regimes can be identifig®,13]: thequasiequilibriunregime  enough, theT=0 PDF is already present in the finite tem-
(t<t,,) where the system relaxes inside a quasistate, and t"tﬁsrature data, in their quasiequilibrium regirfsee Fig. 2,
aging regime ¢=t,) where macroscopic rearrangementsand this would suggest tha=0 dynamical features could
take place. In these two regimes the shape oRfie(In7)is  pe present at low temperatures too, at least in the quasiequi-
different (this has been verified in many simulations with librium regime. Hereafter we will consider only the follow-
different t,, values, even if here we report the results con-ing updating rule: A site is randomly chosen and it is ori-
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FIG. 3. Solid lines show the persistence decay after dlﬁerenh FIG. 4. Fast spin cluster sizes PDF ' !

Hing 4 i 2 10DSpin al Dashed lines present the persis2VE been collected in system of sizes$,365°, and 108, and with
waiting imes in a spin glass. Lashed Iines prese epe SIS'tlwo different updating rulegsequential and randogmThe power

tenci mt aﬁmu;_ro;anonlcal experiment, where the energy is keF1aw fit gives—1.94(3) as the best exponent. Two-dimensional data,
constant after timeé,, . measured in a 108Gsystem, clearly show a cut-off.

ented in the direction of the neighbors majority or at randomspin glass is not completely frozen. While a large fraction
if the local field on it is zero. U..(«) of the spins get blocked forever, faite fraction 1
We find that theT=0 flipping time distributions can be —U.() of the volume is composed by spins that flip infi-
well fitted by a power law over many decades, with an ex-njtely often[14], with their flipping times following power
ponenth +1=1.76(2) in 3D and\ +1=2.08(3) in 2D. This  |aw distributions. The fast spins produce the persistence phe-
means that in 2D after a large bfinite time (given by the  nomenon.
average flipping timgan extensive fraction of the system  |n Fig. 3 we report with dashed lines the results of a
can be flipped with zero-energy costs. On the contrary, in 30nicrocanonical experiment. As before, we let the system re-
an average flipping time cannot be defined and this divertax for t,, MCS and then we measure the persistence. The
gence may be related to the existence of a finite temperatugfifference is that now the dynamics after timg is per-
phase transition. formed keeping the energy constant to the value it had at
Persistence7] is one the most studied properties of zerotimet,,. Fort<t,, the data perfectly coincide with those for
temperature dynamids3,9]; nevertheless, it has never been the usual persistence. Then the system leaves the configura-
measured in spin glasses. Here, we fill this gap. tional space regioftstate[6]) where it was confined by the
The persistencé (t,t,,) is defined as the number of un- dynamics, and it goes far awdwe check this also measur-
flipped spins in the time intervat,,,t,+t]. In pure ferro-  ing correlation functions that behave qualitatively like per-
magnetic models(at least for D=2,3) the persistence sistenceé Thus, we can conclude that the freezing phenom-
U(t,t,) decays to zero, in the large times limit, B¢t,t,)  enon is completely dynamicdll5]. In other words the
x(t/t,)~"P), the exponent being,, independent. On the system seems to be stuck only because it always finds a path
contrary, in disordered models the persistence is expected tewards a lower energy configuration belonging to the same
remain finite[9] in the t— limit and its asymptotic value state before finding a path towards a different state.
U.(t,) may depend on the waiting time. The physical For both dimensionalities we find that fast spins are orga-
mechanism underlying such an effect is the slow freezing ohized in clusters. At any time and in each cluster there must
a rigid component. It follows that the proper way of estimat-be at least one “free” spin that can be flipped without any
ing the persistence in disordered systems is by taking a suknergy cost AE<0). The number of free spins equals the
ficiently large value oft,,, differently from what has been number of flat directions in the configuration space and de-
done in previous studies where the choige=0 was used. creases lowering the energy. Free spins usually appear in
In Fig. 3 we show the results for 33:J spin glasses pairs, which wander inside their clusfg6]. Fast spin clus-
(very similar results have been found in the 2D ga¥¢hile  ter sizes follow the PDF shown in Fig. 4. Measurements
the system relaxes towards the stationary state the number hive been taken after a waiting timetgf=10*. Note that a
frozen spins grows and..(t,,) monotonically increases with finite t,, can overestimate a little the cluster’s size; however,
t,. In the large time limit we can extract th@ exponent for both dimensions we have thak,.(10%) is very near to
from the decayU(t,t,,) —U..(t,)<t™? This fitting proce- U, () and we did not find any dependencetgn Up to our
dure is not an easy one, because of the slow persistenegcuracy, 3D data can be well fitted by a power law with an
decay, and so our results are affected by large errors. Owxponent—1.943). On thecontrary 2D data clearly show a
best estimations ar@=0.46(3) andU..(»)=0.862(2) in  cut-off. We can not exclude that 3D data would also show a
3D and #=0.64(3) andU,(»)=0.778(2) in 2D. Thed#  cut-off on larger scales.
value in 3D is confirmed by the local magnetization PDF, For any finite cluster we can construct the set of allowed
which can be well fitted by the law (¢m?)?~! at low and  configurations and then we can evaluate the time a random
zero temperatures. walker needs to visit all of them. This time is, by construc-
These numbers imply that in the large time limit+al tion, greater than the larger flipping time of any spin in the
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cluster. In this way we can link clusters sizes and flippingscribed in terms of power law exponents that distinguish the
times, and one would expect to find a cut-eff,, in the 2D 2D from the 3D case. The dynamics inside a cluster of fast
distribution of flipping times as a consequence of the onespins, although diffusivelike, has strong constraints and can
present at,,,in Fig. 4. However, times may be exponential be interpreted along the lines 7.
in the cluster sizgsuch as, e.g., the recurrence timend Given a proper definition of persistence in aging systems,
Tmax May be considered infinite for all practical purposes.we have been able to estimate the persistence exponent in the
Moreover, if one assumes from percolation arguments that A model, which turns out to be of kind1 [9], i.e., partially
Cmax grows logarithmically with the system si2& then7max  frozen and partially infinitely flipping. Finally, with a micro-
would grow as a power df,, like it usually does in any finite  canonical experiment, we have shown that blocking phenom-
size system. _ ena are completely dynamical, even in disordered systems.
In conclusion, we have performed a numerical study of In spite of the central role played by space and time het-

the low temperature dynamics of a finite-dimensional frus—erogeneities in glassy dynamics, such aspects have been

trated model with discrete couplings, namely the EA rnOdeIrather poorly studied from the analytical point of view. The

in 2D and 3D, which can be viewed as a prototype model for ope of this paper has been to provide some reference nu-

glassy systems. The onset of a spontaneous time-space scaleF .
separation allows for a classification of spins in distinctmerlcal results which hopefully could be captured by theo-

classes characterized by their own dynamics as well as tHgtical arguments. A first step in this direction can be done
identification of low-energy excitation responsible for struc-Within the framework of finitely connected long range mod-
tural rearrangements during the aging. els (such as, e.g., the Viana-Bray oﬁks])_. !n these model_s.

In the T=0 limit, while a part of the system completely the underlying graph generates nontrivial heterogeneities,
freezes, the fast spin dynamics can be quantitatively dedriven by the connectivity pattern.
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