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Partitioning composite finite systems
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We compare different analytical and numerical methods for studying the partitions of a finite system into
fragments. We propose a numerical method of exploring the partition space by generating the Markov chains
of partitions based on the Metropolis algorithm. The advantages of the method for the problems where
partitions are sampled with nontrivial weights are demonstrated.

PACS number~s!: 02.70.Lq, 05.10.2a, 25.70.Pq
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Many fields of physics deal with the common pheno
enon that, under appropriate conditions, a compound sys
can disintegrate into constituents. Let us consider an isol
system composed ofA0 identical particles~we call them
nucleons! which are kept together by some attractive forc
If sufficient energy is put into the system, it will disintegra
into fragments. These fragments can either be individ
nucleons or bound clusters of several nucleons. Example
such processes abound in condensed matter physics, nu
physics, and astrophysics. In order to provide a microsco
description of such processes, one must sort out poss
partitions of the system and compare their probabilities.
the first step, it is necessary to develop methods of gene
ing and sampling the partitions. The aim of this paper is
propose an efficient method of doing this.

The obvious way to proceed is simply to construct
partitions directly and calculate the characteristics of inter
Unfortunately, this approach can be realized only for sm
A0 because the total number of partitions,P(A0), grows rap-
idly with A0. For instance,P(100)5190 569 292 while
P(200)5397 299 902 938 8. Even if one needs only perfo
a few nontrivial operations for each partition, this task b
comes intractable forA0.100. We shall, however, reserv
this direct method for checking the more practical metho
presented below.

First, we address an analytical approach to dealing w
the Euler’s partitioning problem. We characterize each p
tition f by the multiplicities$NA% of fragments with different
nucleon numbersA, 1<A<A0. Then, the conservation o
the total nucleon number for eachf is expressed as

(
A51

A0

NA
( f )A5A0 . ~1!

Evidently, the total fragment multiplicityM in the channelf
is

M f5 (
A51

A0

NA
( f ) . ~2!
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Following a well-established method in mathematical lite
ture @1#, we introduce an unconstrained generating funct
~GF!:

Z~x!5 (
N1 ,N2 , . . . ,NA , . . . 50

`

)
A51

`

~cAxA!NA5 )
A51

`
1

12cAxA
,

~3!

where thecA are arbitrary numbers which can later be tak
ascA51. Herex can be considered as a Lagrangian mu
plier. Now we can calculate the total number of partition
P(A0), by simply expanding Eq.~3! and counting the coef-
ficient of xA0, i.e., Z(x)5(A50

` P(A)xA at cA51. The re-
sults for largeA0 or x→1 are well approximated by famou
Hardy-Ramanujan formula:

P~A0!5
1

A48A0

expS pA2A0

3 D 1OH FexpS pA2A0

3 D G1/2J .

~4!

One can use this generating function to calculate appr
mately the average multiplicities of fragments^NA& over all
partitions. This is done by replacing the exact constraint
Eq. ~1! by an approximate one:

(
A51

`

^NA&A5A0 , ~5!

i.e., the constraint is fulfilled on average only. Then o
obtains

A05x
] ln@Z~x!#

]x
5 (

A51

`
AxA

12xA
, ~6!

where we have set thecA51. This equation must be solve
to determinex. Changing summation to integration one c
obtain a very good approximation to the solution at largeA0,

x5expS 2pA 1

6A0
1

1

4A0
D . ~7!
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Now, the mean multiplicities of fragments can be calcula
as

^NA&5cA

] ln@Z~x!#

]cA
5

xA

12xA
. ~8!

The result forA05100 is shown in Fig. 1~top panel! in
comparison with the results of the direct method in which
the partitions are included in the calculation. It is seen t
the agreement is good except for a slight discrepancy at l
A, which indicates an expected finite size effect. Indeed,
~8! gives small but finitê NA& even for A.A0 when the
exact calculation gives strictly zero. The average multiplic
of all fragments can be calculated as^M &5(A^NA& and is
well approximated by the expression

^M &5
1

p
A3A0

2
lnS 6A0

bp2D , ~9!

with b50.315 087. For example, forA05100 it gives us
^M &521.51 while the exact value obtained with the dire
method is 21.75. One can find similar formulas for^NA& and
^M & in Refs.@2#.

More generally, it is useful to consider the situation
which partitions are biased with certain weights. In statisti
theory, for example, identical fragments are counted in
partition sum with a factorial weight 1/NA! The weight of a
partition is thenWf51/)ANA! In this case, the correspond
ing generating function can be written as

Z~x!5 (
N1 ,N2 , . . . ,NA , . . . 50

`

)
A51

`
~cAxA!NA

NA!
5 )

A51

`

exp~cAxA!.

~10!

FIG. 1. Average multiplicitieŝ NA& of fragments with mass
number A for the system with total massA05100. Solid lines,
direct calculation taking into account all partitions; dashed lin
numerical Markov chain generation of partitions; dotted-das
lines, analytical calculations by the generating function meth
dotted lines, biased random generation. Top panel, for partit
with equal weights; bottom panel, for partitions with the factor
weights 1/)ANA!
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This form is similar to the grand canonical partition sum
one identifiesx with the fugacity andcA’s with the partition
sums of individual fragments@3#. Now instead of Eqs.~6!
and ~8! one easily obtains~after substitutingcA51):

A05 (
A51

`

AxA, ^NA&5xA. ~11!

For A0→` one finds the approximate expressionsx
5exp(21/AA0) and^M &5AA0. These results are shown i
Fig. 1 ~bottom panel!. The mean multiplicity^M &510 for
the caseA05100 is in good agreement with the exact val
of 9.77 obtained by direct calculation.

For the two simple examples considered above one
calculate also the multiplicity distributions of individua
fragments. It is clear from the structure of the generat
functions, Eqs.~3! and~10!, that the distribution is exponen
tial in the first case and Poissonian in the second case.
normalized multiplicity distributions are, respectively,

P1~NA!5
1

11^NA& S ^NA&
11^NA& D

NA

,

P2~NA!5exp~2^NA&!
^NA&NA

NA!
. ~12!

As seen in Fig. 3, the exact results are reproduced by th
distributions with high accuracy.

In practice, however, direct accounting for all partitio
can only be done forA0&100. If the weight factors are
complicated, it can also be hard to find an analytical soluti
Multiplicity distributions and correlations, which are of con
siderable physical interest, are particularly difficult
obtain.1 There is thus a need for another method, presuma
based on the generation of individual partitions. Obvious
it must be efficient enough to permit computer simulati
within a reasonable time.

A first attempt to develop such a method was made
Refs. @5# by introducing a bias functionb(A0 ,M )
5P(A0 ,M )/P(A0), whereP(A0 ,M ) is the total number of
partitions with exactlyM fragments. It can be calculated u
ing the recursion relation@1,5#

P~A0 ,M !5P~A02M ,M !1P~A021,M21!. ~13!

As before, the total number of partitions isP(A0)
5(MP(A0 ,M ). This bias function is used to generate
sample of partitions by the Monte Carlo method. First,M is
selected randomly with a probability given by the bias fun
tion, b(A0 ,M ). Then, a random partition with selected mu
tiplicity is generated as described in Ref.@3#. We shall refer
to this method as biased random generation~BRG!. Another
Monte Carlo method of generating partition samples usin
bias function obtained with a Laplace transformation is d
scribed in Ref.@6#.

Figures 1 and 2~top panel! show how well the BRG
method works in the case when all partitions have eq

1In this respect an interesting development of an analyt
method was recently made in Ref.@4#.

,
d
;
s

l



y
re

lt
u-
aw
ic
in
n
e

m
se
a

in
h
ne
ha
on
on

u
u

s

s
b

ub
itio

he

nd
a
s

nc-
the

ng

e

is
ach

e
e-
na-

y
w

ing
en

n-

uent
tly
ad-
re
ncy

-
ns

dis-
ce-
en-
hat
di-
any
er

d by

e
CG

dis-
ri-
hly
her
ob-

ys.
rst,

sed

RAPID COMMUNICATIONS

R66 PRE 62A. S. BOTVINA, A. D. JACKSON, AND I. N. MISHUSTIN
weights. The results are presented forA05100 and summa-
rize the outcome of 105 randomly generated partitions. B
construction, this method is guaranteed to give the cor
multiplicity distribution as shown in Fig. 2~top panel!. It is
less trivial that it reproduces correctly also the mean mu
plicities of individual fragments as well as other distrib
tions. Unfortunately, the BRG method has a serious dr
back: It produces correct results only for the case in wh
the weights of partitions are equal. This is not surpris
given that Eq.~13! was obtained under this assumptio
When we introduce nontrivial weight factors, for instanc
relative factorial weightsW51/)ANA! for partitions with
fixed M, the method fails. This is clearly seen in the botto
panel of Fig. 1 for mean fragment multiplicities. In the ca
of nontrivial partition weights the analytical calculation of
bias function might be very difficult.

Here, we propose a method of the partition sampl
which is designed especially for computer simulations. T
idea is to generate a Markov chain by moving from o
partition to another by minimal steps, i.e., by demanding t
neighboring partitions differ by the state of one nucle
only. We shall refer to this method of generating partiti
samples as Markov chain generation~MCG!. The procedure
allows the following moves:~a! to transfer a nucleon from
one fragment to another,~b! to make a nucleon free, or~c! to
attach a free nucleon to a fragment. In addition, one m
ensure that each new partition is different from the previo
one, since fragments with the sameA are to be regarded a
indistinguishable.

As well known, any sampling procedure of this kind mu
satisfy the detailed balance requirement. This can
achieved by applying the famous Metropolis algorithm@7#,
where a chain of partitions is generated by performing s
sequent moves in the partition space biased by the part
probabilitiesW ~weight factors!. As shown elsewhere~e.g.,
Ref. @8#!, this method provides a correct description of t
complete partition space for any specified weight factorsW.
In the MCG the number of all possible moves is limited a
easily countable for any partition. By generating a new p
tition we account for the probability of all possible move

FIG. 2. Distribution of total fragment multiplicityM for the
systemA05100. Notations are the same as in Fig. 1.
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and thus we avoid analytical calculations of the bias fu
tion. The detailed balance is guaranteed by application of
Metropolis algorithm.

The numerical procedure is implemented in the followi
way:

Step I. For a given partition withM fragments of mass
numbersAi ( i 51, . . . ,M ), enumerate all fragments in th
order of decreasing mass so thatA1>A2> . . . >AM . This
order is to be strictly maintained; any move violating th
ordering is rejected. In this manner, we ensure that e
move gives a genuinely new partition.

Step II. Select at random the fragmenti that loses a
nucleon and the fragmentj ( j 51, . . . ,M11; j Þ i ) that ac-
cepts it. ~The casej 5M11 corresponds to making th
nucleon free.! Check this move against the ordering requir
ment of Step I. If the order is violated, repeat the determi
tion of i and j.

Step III. Calculate the weight of a new partition,Wnew,
and compare it with the weight of the previous one,Wold . A
new partition is added to the ensemble ifWnew>Wold . If
Wnew,Wold , a new partition is added with probabilit
Wnew/Wold . Otherwise, the old partition is taken as the ne
one and a new move is undertaken.

Step IV. Calculate the characteristics of interest by tak
all partitions from the chain. The chain is truncated wh
these characteristics are saturated.

Another Markov process based on the binary fissio
fusion moves was proposed in Ref.@2#. Since those moves
correspond to larger jumps in the partition space, subseq
partitions and their statistical weights may differ significan
from each other. Therefore, that method should involve
ditional calculations of probabilities of the moves which a
minimized in our case. Our analysis shows that the efficie
of the Metropolis sampling is significantly enhanced by im
posing requirements of proximity and ordering of partitio
in the Markov chain.

We stress that, contrary to the GF and BRG methods
cussed above, the MCG method is a purely numerical pro
dure which requires nothing more than random number g
eration. This provides a welcome degree of universality t
is missing in other methods. For example, similar to the
rect calculation, our method can be applied in case of
partition weights. Also it can be easily generalized for oth
partition spaces, e.g., when fragments are characterize
two numbers~such as massA and chargeZ) instead of one
number@9#.

The initialization problem, i.e., which partition should b
taken as a seed, does not appear to be important for the M
method. The system withA05100 loses all memory of the
initial partition after approximately 104 moves. In order to
obtain a representative partition sample, one should just
card these initial partitions from the ensemble. This is ve
fied for several cases when partition weights vary smoot
with fragment mass and the number of fragments. In ot
cases, the number of initial moves may increase. This pr
lem must be analyzed in each particular case.

We have checked the MCG method in a number of wa
The results are presented in Figs. 1–4 for two cases: fi
when all partitions have equal weights~top panels! and sec-
ond, when partitions with identical fragments are suppres
by the factorial weightsWf51/)ANA! ~bottom panels!. They
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show the mean fragment multiplicity as a function ofA ~the
mass distribution!, the distribution of total fragment multi
plicity, and a very specific characteristic, i.e., the distributi
of multiplicities of particular fragments (A51, A54, and
A>10) taken over all partitions. The results of the exa
direct method and of Markov chain generation are in rema
ably good agreement. It should be stressed that forA0
5100 all 1.93108 partitions are included in the direc
method, while only 105 partitions can be taken from th
chain to explore the entire partition space with the MC
method. Small discrepancies in the tails of the distributio
are seemingly related to a limited sample size and nume
precision. However, they are not important in practice
cause of their very small relative weight in the chain. F
smaller systems~e.g., A0520) the agreement is also goo
For larger systems~e.g., A051000), where the direc
method is intractable, comparisons were made with the a
lytical GF method. As demonstrated in Fig. 4, the agreem
is quite good, apart of a small discrepancy in the tails. O
should bear in mind, however, that the GF method sligh
overestimates the exact result~see Fig. 1!. We emphasize
that the same high quality agreement between the direct
MCG methods is achieved in both considered cases w

FIG. 3. Multiplicity distributions of fragments withA51, A
54, andA>10 for the systemA05100. Notations are the same a
in Fig. 1.
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differ significantly by the weight factors. Calculations ha
been made for partitioning with other weights, and simi
agreement has been found. Therefore, we believe that
MCG method described here offers a simple and effici
numerical solution to the partition sampling problem.

In conclusion, we have analyzed several methods for
culating characteristics of the partition space of a finite co
posite system. We have developed a numerical method,
Markov chain generation, which is flexible and efficient
practical calculations with complicated partition weights. W
have demonstrated that in the general case of weighted
titions one can find characteristics of the whole partiti
space by generating a limited number of partitions. We se
variety of applications of this method in different fields dea
ing with finite-size objects, from atomic nuclei to molecul
clusters and astrophysical objects. We believe that
method will be very useful for studying the thermodynam
of finite systems~see examples in@3,4,6,9#!.

The authors thank J.P. Bondorf for fruitful discussion
A.S.B. thanks the INFN, Italy~Bologna section!, and I.N.M.
thanks the Niels Bohr Institute, Copenhagen University,
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FIG. 4. Comparison of fragment mass distributions forA0520
and 1000 calculated by the analytical and Markov chain genera
methods. Top and bottom panels show calculations for two differ
weighting factors as above.
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