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We compare different analytical and numerical methods for studying the partitions of a finite system into
fragments. We propose a numerical method of exploring the partition space by generating the Markov chains
of partitions based on the Metropolis algorithm. The advantages of the method for the problems where
partitions are sampled with nontrivial weights are demonstrated.

PACS numbeps): 02.70.Lqg, 05.10-a, 25.70.Pq

Many fields of physics deal with the common phenom-Following a well-established method in mathematical litera-
enon that, under appropriate conditions, a compound systetare [1], we introduce an unconstrained generating function
can disintegrate into constituents. Let us consider an isolate@F):
system composed oA, identical particles(we call them

nucleong which are kept together by some attractive forces. - - AN - 1
If sufficient energy is put into the system, it will disintegrate Z(X):N N EN — Al_:[1 (cax™) A:Aﬂl 1—caxA
into fragments. These fragments can either be individual LA A 3

nucleons or bound clusters of several nucleons. Examples of

such processes abound in condensed matter physics, nucl@giere thec, are arbitrary numbers which can later be taken
physics, and astrophysics. In order to provide a microscopigsc,=1. Herex can be considered as a Lagrangian multi-
description of such processes, one must sort out possibiglier. Now we can calculate the total number of partitions,
partitions of the system and compare their probabilities. Atp(A;), by simply expanding Eq3) and counting the coef-
the first step, it is necessary to develop methods of generafient of x*0, i.e., Z(x)=35_,P(A)x" at ca=1. The re-
ing and sampling the partitions. The aim of this paper is tog|ts for largeA, or x— 1 are well approximated by famous

propose an efficient method of doing this. Hardy-Ramanujan formula:

The obvious way to proceed is simply to construct all
partitions directly and calculate the characteristics of interest. 1 2A, [2A,) M2
Unfortunately, this approach can be realized only for smallP(Aq) = \/_—exp< ™3 +0 exp( T T” ]

A, because the total number of partitiof{A,), grows rap-
idly with A,. For instance,P(100)=190569292 while @)

P(200)=397 299902938 8. Even if one needs only performpne can yse this generating function to calculate approxi-

a few n_ontr|V|aI operations for each partition, this task be'mately the average multiplicities of fragmerits,) over all
comes intractable foA,>100. We shall, however, reserve 5 qitions This is done by replacing the exact constraint of
this direct method for checking the more practical method q. (1) by an approximate one:

presented below.
First, we address an analytical approach to dealing with *

the Euler’'s partitioning problem. We characterize each par- > (NAYA=A, (5)

tition f by the multiplicities{N,} of fragments with different A=1

nucleon numberg\, 1<A<A,. Then, the conservation of

the total nucleon number for eatlis expressed as i.e., the constraint is fulfiled on average only. Then one

obtains
Ao

) AX
> NPA=A,. (1) Ao=
A=1

aln[Z(x)] A
X
1-xA

ax

=> (6)
A=1

where we have set they=1. This equation must be solved
to determinex. Changing summation to integration one can
obtain a very good approximation to the solution at la#ge

S [1 1
Mf:AZl NA . (2) X:ex4—’ﬂ 6—A0+ 4_A0) (7)
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Evidently, the total fragment multipliciti in the channef
is
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10E ‘ ‘A —106 ' R This form is similar to the grand canonical partition sum if
1| o~ L one identifiesx with the fugacity andc,’s with the partition
partitions with ] T N
Wb . equal probability | sums of individual fragmentg3]. Now instead of Eqs(6)
10—{ Y k and (8) one easily obtaingafter substitutingc,=1):
S0t o, -
S0 o g Ag= > AXY, (Np)=xA (12)
E [ | L KAKEE A=1
=4
o . _ . _
Sk o For Ap—> one finds the approximate expressions
%‘10.1: Bt veghs =exp(—1/\/A) and(M)=/A,. These results are shown in
i . Fig. 1 (bottom panel The mean multiplicity{ M)= 10 for
10_5 G E the caseA,=100 is in good agreement with the exact value
L N of 9.77 obtained by direct calculation.
10} T T For the two simple examples considered above one can
5 o e calculate also the multiplicity distributions of individual
A, fragment mass number fragments. It is clear from the structure of the generating

functions, Egs(3) and(10), that the distribution is exponen-
FIG. 1. Average multiplicities(N,) of fragments with mass tial in the first case and Poissonian in the second case. The

numberA for the system with total mas8,=100. Solid lines, normalized multiplicity distributions are, respectively,
direct calculation taking into account all partitions; dashed lines,

numerical Markov chain generation of partitions; dotted-dashed (Na) \Na

lines, analytical calculations by the generating function method,; P1(Na) = T+(Ng) |\ 1+(Np)/

dotted lines, biased random generation. Top panel, for partitions A A

with equal weights; bottom panel, for partitions with the factorial (N A>NA

weights 1I1,N ! P2(Na) =exp(—(Na)) Nl (12

Now, the mean multiplicities of fragments can be calculatedas seen in Fig. 3, the exact results are reproduced by these

as distributions with high accuracy.
In practice, however, direct accounting for all partitions
aln[Z(x)] xA can only be done foA;=100. If the weight factors are
(Na)=ca ICan  1_xA (8 complicated, it can also be hard to find an analytical solution.

Multiplicity distributions and correlations, which are of con-
siderable physical interest, are particularly difficult to
obtain® There is thus a need for another method, presumably
ased on the generation of individual partitions. Obviously,
must be efficient enough to permit computer simulation
thin a reasonable time.
A first attempt to develop such a method was made in
Refs. [5] by introducing a bias functionb(Ay,M)
=P(Aq,M)/P(Ap), whereP(Ay,M) is the total number of
partitions with exactlyM fragments. It can be calculated us-
ing the recursion relatiofil,5]

The result forAy=100 is shown in Fig. 1(top panel in
comparison with the results of the direct method in which all
the partitions are included in the calculation. It is seen tha
the agreement is good except for a slight discrepancy at Iarqﬁi
A, which indicates an expected finite size effect. Indeed, Eq.
(8) gives small but finite{N,) even for A>A, when the
exact calculation gives strictly zero. The average multiplicity
of all fragments can be calculated @4 )=>,(N,) and is
well approximated by the expression

© P(Ag,M)=P(Ag—M,M)+P(A;—1M—1). (13

1 [3A, [6A,
(M=2NZ " 52
b As before, the total number of partitions i®(Ag)
, o =>uP(Ap,M). This bias function is used to generate a
with b=0.315087. For example, foho=100 it gives us  gample of partitions by the Monte Carlo method. Fidtis
(M)=21.51 while the exact value obtained with the directgg|ected randomly with a probability given by the bias func-
meth'od is 21.75. One can find similar formulas ¢bl,) and tion, b(Ag,M). Then, a random partition with selected mul-
(M) in Refs.[2]. o ) . tiplicity is generated as described in RE3]. We shall refer
More generally, it is useful to consider the situation inq this method as biased random generatBRG). Another
which partitions are biased with certain weights. In statisticahjonte Carlo method of generating partition samples using a
theory, for example, identical fragments are counted in &jas function obtained with a Laplace transformation is de-
partition sum with a factorial weight Wj,! The weight of & g¢riped in Ref[6].
partition is thenW;=1/II\N,! In this case, the correspond-  Figures 1 and 2Atop panel show how well the BRG

ing generating function can be written as method works in the case when all partitions have equal

SocaxHNa 2
Z(x)= > [T —5-—=11 explcax®.
....=0A=1  Nj! A=1

ln this respect an interesting development of an analytical
(10 method was recently made in R§#].
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L S T ' and thus we avoid analytical calculations of the bias func-
10 'L A=100 ] tion. The detailed balance is guaranteed by application of the
- Devalprobabity Metropolis algorithm.
] The numerical procedure is implemented in the following

way:

Step |. For a given partition wittM fragments of mass
¢ . e numbersA; (i=1,... M), enumerate all fragments in the
1 T T T 3 order of decreasing mass so thgt=A,= ...=Ay. This
w0l ] order is to be strictly maintained; any move violating this
partitions with 3 . . . .
Jactorial weights ] ordering is rejected. In this manner, we ensure that each
g move gives a genuinely new partition.
107 al partitions Step Il. Select at random the fragmenthat loses a
. b . Markov chain ] nucleon and the fragment(j=1,... M+1;j+#i) that ac-

[ cepts it. (The casej=M+1 corresponds to making the
5 20 70 %0 nucleon free. Check this move against the ordering require-

M, total multiplicity ment of Step I. If the order is violated, repeat the determina-

tion of i andj.

Step Ill. Calculate the weight of a new partition,,,,
and compare it with the weight of the previous oWé, . A
new partition is added to the ensembleVif,o,=Wyq. If
weights. The results are presented #Ag=100 and summa- W, <W,q4, a new partition is added with probability
rize the outcome of fOrandomly generated partitions. By Wen/ Wy g. Otherwise, the old partition is taken as the new
construction, this method is guaranteed to give the correabne and a new move is undertaken.
multiplicity distribution as shown in Fig. Zop pane). It is Step IV. Calculate the characteristics of interest by taking
less trivial that it reproduces correctly also the mean multi-all partitions from the chain. The chain is truncated when
plicities of individual fragments as well as other distribu- these characteristics are saturated.
tions. Unfortunately, the BRG method has a serious draw- Another Markov process based on the binary fission-
back: It produces correct results only for the case in whictfusion moves was proposed in R¢2]. Since those moves
the weights of partitions are equal. This is not surprisingcorrespond to larger jumps in the partition space, subsequent

given that Eq.(13) was obtained under this assumption. Partitions and their statistical weights may differ significantly
When we introduce nontrivial weight factors, for instance,T0m each other. Therefore, that method should involve ad-

relative factorial weights/=1/1,N,! for partitions with ditional calculations of probabilities of the moves which are

fixed M, the method fails. This is clearly seen in the bottomminimized in our case. Our analysis shows that the efficiency

panel of Fig. 1 for mean fragment multiplicities. In the caseOf the Metropolis sampling is significantly enhanced by im-

of nontrivial partition weights the analytical calculation of a posing requirements of proximity and ordering of partitions

bias function might be very difficult in the Markov chain.
9 y ' . . We stress that, contrary to the GF and BRG methods dis-
Here, we propose a method of the partition sampllngcu

o . . ) _ ssed above, the MCG method is a purely numerical proce-
which is designed especially for computer simulations. Theﬂure which requires nothing more than random number gen-

idea_ _is to generate a l\_/Ia_lrkov chain_ by moving fro_m ON€eration. This provides a welcome degree of universality that
partition to another by minimal steps, i.e., by demanding thafg missing in other methods. For example, similar to the di-

neighboring partitions differ by the state of one nucleonyect calculation, our method can be applied in case of any
only. We shall refer to this method of generating partition partition weights. Also it can be easily generalized for other
samples as Markov chain generatiddCG). The procedure partition spaces, e.g., when fragments are characterized by
allows the following moves(a) to transfer a nucleon from two numberssuch as masé and chargeZ) instead of one
one fragment to anothefh) to make a nucleon free, ¢c) to number[9].
attach a free nucleon to a fragment. In addition, one must The initialization problem, i.e., which partition should be
ensure that each new partition is different from the previougaken as a seed, does not appear to be important for the MCG
one, since fragments with the sameare to be regarded as method. The system withy=100 loses all memory of the
indistinguishable. initial partition after approximately fomoves. In order to

As well known, any sampling procedure of this kind must obtain a representative partition sample, one should just dis-
satisfy the detailed balance requirement. This can beard these initial partitions from the ensemble. This is veri-
achieved by applying the famous Metropolis algoritif,  fied for several cases when partition weights vary smoothly
where a chain of partitions is generated by performing subwith fragment mass and the number of fragments. In other
sequent moves in the partition space biased by the partitiocases, the number of initial moves may increase. This prob-
probabilitiesW (weight factor$. As shown elsewherée.g., lem must be analyzed in each particular case.
Ref. [8]), this method provides a correct description of the We have checked the MCG method in a number of ways.
complete partition space for any specified weight factdtts The results are presented in Figs. 1-4 for two cases: first,
In the MCG the number of all possible moves is limited andwhen all partitions have equal weightep panels and sec-
easily countable for any partition. By generating a new par-ond, when partitions with identical fragments are suppressed
tition we account for the probability of all possible moves, by the factorial weight®V;= 1/I1yN! (bottom panels They

P(M), probability of multiplicity

FIG. 2. Distribution of total fragment multiplicityM for the
systemA,=100. Notations are the same as in Fig. 1.
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partitions with
equal probability

partitions with
equal probability

partitions with
Sfactorial weights
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<N,>, mean multiplicity
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P(N,), probability of multiplicity
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FIG. 4. Comparison of fragment mass distributions Age= 20
and 1000 calculated by the analytical and Markov chain generation
methods. Top and bottom panels show calculations for two different
weighting factors as above.

FIG. 3. Multiplicity distributions of fragments witth=1, A
=4, andA=10 for the systenf\;=100. Notations are the same as
in Fig. 1.

differ significantly by the weight factors. Calculations have
been made for partitioning with other weights, and similar
agreement has been found. Therefore, we believe that the
MCG method described here offers a simple and efficient

show the mean fragment multiplicity as a functionfofthe
mass distributioy) the distribution of total fragment multi-
plicity, and a very specific characteristic, i.e., the distribution
of multiplicities of particular fragmentsA=1, A=4, and . . ” ;
A=10) taken over all partitions. The results of the exactnumer'c"’1I solution to the partition sampling problem.

direct method and of Markov chain generation are in remark- IlrliﬁoncrI]uilor;, :/iv?i hthfa t";:nalyzrfig sneveral m?th%ﬁt for Crﬁl_'
ably good agreement. It should be stressed thatAgr culating characteristics ot Ine partition space of a finite co

=100 all 1.9x10° partitions are included in the direct posite system. We haye deve_lop(_ad a n_umerical m_et_hod,_ the
method while only 19 partitions can be taken from the Markov chain generation, which is flexible and efficient in
chain tc,) explore the entire partition space with the MCGpracUcaI calculations Wlth complicated partition We|_ghts. We
method. Small discrepancies in the tails of the distribution have demonstrated that in the general case of weighted par-

are seemingly related to a limited sample size and numenczt\\t'ons one can f_|nd char_acterlstlcs of the \_/v_hole partition
g . . ! Space by generating a limited number of partitions. We see a
precision. However, they are not important in practice be-" - T . o )
. . . . . variety of applications of this method in different fields deal-
cause of their very small relative weight in the chain. For. AP . . .
= . ing with finite-size objects, from atomic nuclei to molecular
smaller systemge.g., Ao=20) the agreement is also good. clusters and astrophysical objects. We believe that this
For larger systems(e.g., Ap=1000), where the direct phy J '

. . ; method will be very useful for studying the thermodynamics
method is intractable, comparisons were made with the aNdse e o stemssee examples if8.4,6,9)
lytical GF method. As demonstrated in Fig. 4, the agreemen(t) y P T

is quite good, apart of a small discrepancy in the tails. One The authors thank J.P. Bondorf for fruitful discussions.
should bear in mind, however, that the GF method slightlyA.S.B. thanks the INFN, ItalyBologna sectioy) and I.N.M.
overestimates the exact resgiee Fig. 1L We emphasize thanks the Niels Bohr Institute, Copenhagen University, for
that the same high quality agreement between the direct artie kind hospitality and financial support. This work was

MCG methods is achieved in both considered cases whickupported in part by the Humboldt Foundation, Germany.
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