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Slow dynamics of equilibrium density fluctuations in suspensions
of colloidal hard spheres near the glass transition
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A mean-field theory for the dynamics of equilibrium suspensions of colloidal hard spheres near the glass
transition is presented based on the standpoint recently proposed by the present author. It is shown that
although the relative magnitude of the density fluctuations to the mean equilibrium density is small even near
the glass transition, they are described by a nonlinear stochastic equation which originates from the long-range
hydrodynamic interactions between particles. A nonlinear mean-field equation for the particle mean-square
displacement is then derived. This equation is used to analyze the recent experimental data for equilibrium
colloidal suspensions. Analyses show that no divergence ofxthend B-relaxation times is found in the
experimental data, although the dynamic properties of the colloidal liquid exhibit a drastic slowing down in the
so-called supercooled region.

PACS numbds): 82.70.Dd, 05.40-a, 51.10+y

A number of experiments on colloidal suspensions havé&nown, dynamical properties, such as the von Schweidler
shown a transition from a liquid phase to a glass phase, simlaw and the Kohlrausch-Williams-Watts formuldor
lar to that in glass-forming liquid§1—3]. With the recent stretched exponentia[8]. The nonequilibrium effects are
development of the mode-coupling thediyiCT) [4—6] for ~ Observable as the waiting time effects in experiments and

the dynamics of supercooled liquids, much of the recent ex§imulatiﬁns. On tthef other _handt, iﬂ the bequili(tj)rium tiuspgn-
perimental studies on colloidal suspensions have been dggions Wnere most of Experiments fiave been done, the above

. o .. Spatial heterogeneities would be difficult to observe experi-
f&gr;ed ar]?l:kr]]d tl\r)lec_ﬁ)_r(.amtc;lons o;ltr:.e MCfTi Thed.mtc.)SttStr;kmgmentally because their size and magnitude are very small
cature ot the IS he prediction of two distinct slow compared to those in the nonequilibrium case. In this Rapid
relaxation processesy and B, with the relaxation times

. ; . Communication, however, we show that only nefgy the
t, and tg, which diverge ast,~[¢/dc—1]"7 and ty  gensity fluctuations can be described by a nonlinear stochas-

~[¢l¢o—1|"°, where is a particle volume fraction and ¢ djffusion equation with the self-diffusion coefficient,
¢. a critical volume fraction. For hard-sphere suspensionsyhich shows the dynamic anomaly. By employing a mean-
one finds¢.~0.516, 7~2.46, andé~1.60[6]. The transi-  field approach, we then derive a nonlinear equation for the
tion point ¢, does not coincide with the experimental resultsparticle mean-square displacement from that equation and
ranging from 0.571 to 0.58(2,3]. This discrepancy may analyze recent experimental data on equilibrium colloidal
result from the fact that the MCT deals with only the direct suspensions.

interactions between particles. In fact, there are two kinds of We consider a three-dimensional colloidal suspension
interactions between particles in the suspension of hardith the particle volume fractio¢:47ra8nec{3, which con-
spheres. One is the hydrodynamic interactions between pasists ofN identical spherical particles with radiag and an
ticles through the Oseen tensor. Another is the direct interincompressive liquid in a volum¥, whereng,=N/V is the
actions between particles. In the nonequilibrium suspensiorgquilibrium particle number density. In this paper we focus
it has been shown that the long-range hydrodynamic intera@nly on a suspension-hydrodynamic stegd, where the
tions play an essential role in the slow dynamics négr space-time cutoffsr(,t.), which are the minimum wave-
while the short-range hydrodynamic interactions reduce théength and time of the dynamic process of interest, are set as
effect of the direct interactions drastically]. The long- r.>1 andtp>t.>tg. Herel denotes the screening length
range hydrodynamic interactions lead to a nonlinear detergiven byl =(67Ta0neq)‘1’2, in which the hydrodynamic in-
ministic diffusion equation with the dynamic anomaly of the teractions between particles become importaty, the
self-diffusion coefficient, where the diffusion coefficient be- Brownian relaxation time of the particle, ahg= aé/Do the
comes zero a¢g=(4/3)3/(7 In3—8In2+2)~0.5718& . . . . structural-relaxation time which is a time required for a par-
This anomaly can enhance even small initial disturbances iticle to diffuse over a distance,, whereDy is a diffusion
space and cause the long-lived, spatial heterogeneities fabnstant of a single particle. In this stage the relevant vari-
intermediate times neapy [8]. As long as the system is able is the volume fraction fluctuations given Bys(r,t)
away from a critical point, the density fluctuations are small=(477a3/3)5n(r,t), where dn(r,t) is the equilibrium den-
compared to the mean density, even near the glass transitigity fluctuations arounde,. Hence, we start with the follow-
point and obey a linear stochastic diffusion equation. How4ing nonlinear stochastic diffusion equation already described
ever, the density fluctuations are still important since theyelsewherd9,10]:

are observable through the scattering function by scattering ;

experiments. In fact, those heterogeneities do influence the

dygamics of the density quctuatio?]s and lead to the long- ﬁéd’(r’t)_v'[DS( 0¢)V ol +(ry), @
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with the space-time-dependent self-diffusion coefficient

ag/re ag/re
rs<t>=f0° dqq28<q)F<q/ao,t>2/ j0° dq?S(q),

(1-9¢/132)(a+ 5l Ppy)?
Ds(86)=DE(¢) ——s . ®
dD Y (psDo) + (o + 6l pyg) i o L )
where the long-time self-diffusion coefficierDg(¢) is
wherey=2 here, andr= ¢/ ¢$,— 1 is the separation param- given by[7]
eter andD§(¢) the short-time self-diffusion coefficielisee (1-9¢/32) o7
Ref. [7] for detailg. Here &(r,t) is the Gaussian, Markov D5(¢)=DZ(¢) (6)

S .
random force and satisfies $Dd(hgDo) + 07

Here the spatial cutoff, was chosen so as to satisfy

(&(r,1))=(&(r,H)6¢(r",0)=0, I'«(0)=1, since the self-diffusion coefficient should be iden-
(3 tical with D for short times.
(E(r,Hé&(r',t")) The memory ternd’g(t) containsS(q) andF(q,t), both

of which are unknown. In order to calculate it, therefore, we
next employ the following empirical relation fd¥(q,t) re-

cently proposed by Segand Pusey11,12:

where the brackets denote the average over an equilibrium
ensemble. F(qg,t)=exd —g?D%(q)M,(1)/(6D2)], (7)

Equation(1) is a starting equation to study the slow dy-
namics of the equilibrium density fluctuations near the glassvhere D®(q,¢) denotes the g-dependent, short-time
transition. The most important feature of H@) is that the  collective-diffusion coefficient ant¥,(t) represents the par-
diffusion coefficientDg(d¢) becomes dynamically anoma- ticle mean-square displacement given by ,(t)
lous at é¢(r,t)=—o¢y as Dg(dp)=Dol o+ dep(r,t)/ =—(6/k?)InF4kt). Since the function®°(q) andS(q) are
¢>g]2. We note here that this anomaly originates from thestill unknown, inserting Eq(7) into Eq. (5), expanding the
long-range hydrodynamic interactions. Hence, there are twaominator of Eq(5) in powers ofM,(t), and formally per-
kinds of relaxation regions, slow relaxation regidiggassy forming the integration oveq in Eq. (5), one can then re-
regions with §¢(r,t)=—o¢4] and fast relaxation regions write Eq. (5) approximately asI's(t)~1—\(¢)My(t)
[liquid regions with 8¢ (r,t)<— o ¢y]. Similar to the non- +O(M3)~ext —\(#)M(t)], where the parametev(¢) de-
equilibrium case[8], the glassy regions are expected toscribes a static collective property of the equilibrium system
freeze for intermediate times, forming a long-lived, spatiallyand is treated as a smooth control parameter. Use of4kq.
heterogeneous structure. In fact, Ef). can still be nonlinear  then leads to
in 6¢ as long as the magnitudlé¢/¢g| is the same order as

= —25(t—t’)(477ag¢/3)v [Dg(8(r,t))VS(r—r')],

||, although the relative magnitude of the density fluctua- d L s L
tions 8¢ to the mean valu@ is small. Here we should men- dt M2(t)=6Ds(¢) +6[Ds(¢) ~Ds(¢)]
tion that in the derivation of Eq.l) the direct correlations
were neglected for simplicity, and hence, the present theory xexg —N¢)My(1)]. (8)
is restricted only to the description of the self-diffusion pro-
cess. By solving Eq.(8) formally, we thus obtain
By solving Eq. (1) numerically, one can calculate )
the  self-intermediate  scattering  function Fg(k,t) Fs(k,t)=exfd —k“™Mz(1)6]

=(8ny(t)dn_(0)), wheresn(t) is the Fourier transform
of én(r,t), andFg(k,0)=1. In the following, however, we
simply employ a mean-field approach with the two steps to
derive an asymptotic equation fBig(k,t) [10]. The first step
is to split up the variabl&¢(t) into two parts, a linear part
in 8¢y(0) and others; §¢q(t) =F(q,t) 5¢q(0)+14(1),

—[1+(DYD5){exp6ADL) —1}] K6V (9)

Similar to the nonequilibrium casf8], there exist four
characteristic time stages neg§. The first is the early stage
[E] for t<ty,=1/(6ADY). The scattering functiorFg(k,t)

: : ; ; : A beys a short-time exponential decay given By(k,t)
hereF(q,t) is the intermediate tte functio en by © ; . .
whereF(q,t) is niernesia'e scatiering inction grven y=ex;{—k2 Dg]. After this stage, long-lived, glassy domains

F(q,t)=(ongy(t) on_4(0))/S(q), with the static structure e :
(a,)={ang(t) on_o(O))/S(a) are formed. This is theB-relaxation stages] for to<t

factor S(q)=(|8n,(0)[?), and I4(t) describes nonlinear , andt _
terms in 8¢4(0) and fluctuations. The second step consists<ta, Wheret, is thea-relaxation time. For volume fractions

of a Gaussian factorization for the many-point correlations of&'9er than the crossover volume fractien; [9], Fs(k,t)

&ng(0), resulting in products o8(q). From Eq.(1), one can ©0P€YyS two kinds of power-law decays. In the early
thus obtain, to lowest order i¥¢,(0)/4), B-relaxation stagé S| for to<t<tz=1/(6ADg), Fg(k,t)
obeys a critical decay

P (k)= KDY #) +{DY &)~ DY HNTSDIFsk D), Falk=(ttg+1) 77, (19

(4)  wherea=k?(6\). Herety represents the crossover time
from the short-time self-diffusion process to the long-time
with the memory term self-diffusion process. This power-law decay continues up to
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FIG. 1. Self-intermediate scattering functién(k,t) vs time at
kag= 1.3 for different volume fractionfleft to right) ¢$***=0.466,
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0.502, 0.529, 0.538, 0.553, 0.558, 0.566, 0.573, 0.578, and 0.583.

The open circles indicate the experimental data from R&fand
the solid line from Eq(9).

the time scale of ordet. In the late S-relaxation stage

[BL] for tg<ts<t,, Fg(k,t) obeys a power law of the

von Schweidler type
Fs(k,t)=(t/to+1) 720 —A(k, @) (t/t) " ?,  (11)

where the exponerti(k, ¢) is to be determined, andi(k, ¢)

FIG. 2.\ and log, (D¥) vs ¢®®. The solid line indicates Ed6)
and the dotted line Eq13b). The closed circles show the experi-
mental data from Ref3], the closed diamonds from R¢fL2], the
open circles the theoretical prediction by the fitting, and the open
diamonds the fitting results. The vertical dashed lines 4f&
=0.544 and 0.580.

N=0.032p/[ po( py— ¢)]—57.56+194.64°. (13b)

The volume fractionp®® dependence of andD¥ are shown

is a positive constant. This power-law decay continues up tin Fig. 2 together with the experimental data. As mentioned
the time scale of ordetr,. After this stage, the spatial rear- by van Megenet al. [3], the experimental data ap®*®
rangement of the glassy domains starts to occur and contin=0.566 is the most concentrated for whigeg(k,t) decays to

ues up to the time scale of ordgr= aZ/Dg. This is the

so-called a-relaxation stage] «] for t,<t<t, . Fg(k,t)

obeys a stretched exponential decay
Fo(k,t)~(t/to+1) " 2exd — (t/t,)"], (12

wheret ||~ 7, and the exponentg and # satisfy the re-

lation B= y/ (< 1) [8]. After this stage, the glassy domains
disappear and the long-time self-diffusion process dominates

the system. This is the late stae] for t=t, . Fg(k,t)
obeys a long-time exponential decay given By(k,t)
=exd —k? Dkt].

Equation(9) is used to analyze the recent experimental

data obtained by van Meget al.[3]. The parametex(¢) is

thus determined from the fitting. The experimental suspen-

sion comprises mixtures of polymer particl€28% of total
particle volume and silica particle(2%) suspended irTis-

decalin, while the present theory deals with identical hard

spheres. Hence, the experimental volume fracth§i must
be different from the theoretical volume fractiah for the
ideal hard-sphere suspension. For a given valuep%f,
therefore, we use the experimental data Bdy in Eq. (9),
while treating\ as a free parameter and choosihgo that

the theoretical, long-time self-diffusion diffusion coefficient
Dg( ¢) given by Eq.(6) coincides with the experimental one.

Figure 1 shows the fitting results férg(k,t) for different

zero in the experimental time. For volume fractions higher
than 0.566, however, the data fail to decay completely in the
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FIG. 3. Power laws ap®P=0.566 andkay=1.3, Where)\ag
=52. The solid line indicates Eq9), the dotted-dashed line the

volume fractions. From the fitting, one can thus find the fol-¢yitical decay given by Eq10) with a=0.0054, the dashed line the

lowing interesting relations betweef \, and ¢

$P=9.29x 10 0 p/[ (g~ b)]+0.536p+ 0.781¢(>i,3a

von Schweidler decay given by E@l1) with b=0.972, and the

dotted line the stretched exponential decay given by(E#). with

B~0.95. The open circles indicate the experimental data from Ref.

[3].



RAPID COMMUNICATIONS

R5918 MICHIO TOKUYAMA PRE 62

region[ S] for ¢P<¢>P<¢y™®, and to glass regiopG] for
#*P=¢3™. In Fig. 3 the power laws given by Eqd.0)—(12)

are plotted at$p®P=0.566 andka,=1.3 together with the
experimental data. From the fitting, we fifgk=0.95 andb
=0.972. Here we note that the stretched exporteand the
von Schweidler exponeltitare close to 1 because the spatial
heterogeneities are weak compared to those in the nonequi-
librium case. In Fig. 4 the volume fractiop®*® dependence

of the time scalesg, t,, andt_ are also shown. In region
[S], therefore, those time scales are shown to obey the
power laws

tg~(Dg) 7% t,~(Dg) "% t.~(Dg) "% (14
wheres~1.6, n~2.1, andy=2(B8=y/n~0.95). Thus, we

log] 0(Doti/aoz)

i L] IS] [G] ] point out that sincex and Dg are smooth functions ap®®,
0 . L — b1 the divergence dfy, t,, andt_ does not occur at any values
048 052 056 06 064 068 of ¢*® while in a ¢ spacetg~|a|°, t,~|o|"7, andt,
¢ ~| |72 sinceDE(p) ~|o|?.

In conclusion, we have shown that as long as the relative

FIG. 4. Characteristic timefs vs ¢ atka,=1.3. The symbols Magnitude of the density fluctuatior(r,t) to the mean

indicate the fitting results far; (O), t,, (@), andt, (<). The solid value ¢ is the same order asl, the density fluctuations obey
line indicatest, = 2/(k?DY) and the dotted lindz=1/(6AD). the nonlinear stochastic equation, which results from the

The vertical dashed lines ag;?=0.544 ande¢*=0.580. long-range hydrodynamic interactions between particles. We
have then derived the mean-field nonlinear equat®rfor
experimental time window although they show some downihe particle mean-square displacement. We have thus shown
ward curvature at longer times. Although the long-time self-that although the size and the magnitude of the spatial het-
diffusion coefficient cannot be obtained experimentally forerogeneities are small, they are still the origin of thand 8
such higher volume fractions, one can predict it theoreticallyelaxations. Equatio8) was used to analyze the recent ex-
by using Egs(13). The predicted values are also shown inPerimental data. From analyses, we have concluded that the
Fig. 2. In order to check the validity of the transformation long-time self-diffusion coefficient is a smooth function of
(13a, we also show the experimental dataDif for smaller ¢ and no divergence of the- and p-relaxation times
volume fractions in Fig. 2. A good agreement is indeed seeffkes place. Hence, we predict that this would be the case
between the theoretical results and the experimental data. €Ven in fragile(and not so fragileglass formers, where sev-

It is interesting to note from Fig. 2 that both functions eral laws are pr(_)posed to fit the experimental data. !n order
and D% show a crossover aroung®P=0.562 from a small to check the vaI_|d|ty of the present theory, the_experlmental
volume fraction behavior to a large volume fraction behay-Measurements in a longer time window for higher volume
ior. In fact, their derivativesdh/d¢®® andd log(DY)/d¢®, ~ Tactions is encouraged.
change drastically betweery®?=0.544(p5") and ¢*® We thank T. C. Mortensen and W. van Megen for provid-
=0.580(¢g"). With increasing volume fractionpy™®, we  ing us with their experimental data files. This work was sup-
thus observe a progression from normal colloidal liquid re-ported by the Tohwa Institute for Science, Tohwa Univer-
gion [L] for 0<¢®P<¢7®, to supercooled colloidal liquid ~sity.
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