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Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical
scaling exponents

N. V. Antonov?! J. Honkonerf, A. Mazzino® and P. Muratore-Ginanneséhi
!Department of Theoretical Physics, St. Petersburg University, Uljanovskaja 1, St. Petersburg, Petrodvorez, 198904 Russia
2Theory Division, Department of Physics, University of Helsinki, P.O. Box 9, FIN-00014 Helsinki, Finland
3INFM-Department of Physics, University of Genova, I-16146 Genova, Italy
“The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
(Received 21 August 2000

An example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is
detectable both in the “flattening” of the inertial-range scaling exponent hierarchy and in the behavior of
odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kine-
matic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic
contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become prac-
tically indistinguishable. Moreover, the skewness factor now diverges as thet Ramber goes to infinity, a
further indication of small-scale anisotropy.

PACS numbes): 47.27.Te, 05.10.Cc, 47.27i, 46.65+¢g

A wide interest has recently been devoted to the possiblerhere k is the magnetic diffusivity. The fiel@° plays the
occurrence of small-scale isotropy restoration for scalae  same role as an external forcing driving the system and is
e.g., Ref.[1] and references therginNavier-Stokeq2,3], also a source of anisotropy for the magnetic field statistics.
and magnetohydrodynamic&IHD) turbulence[4—6]. The Our choice for the velocity statistics generalizes that of
scenario can be summarized as follows. In the presence &fie well-known kinematic Kazantsev-Kraichnan model for
anisotropic large-scale injection mechanisms, the inertialthe compressible case:is a Gaussian process of zero aver-
range statistics is characterized by an infinite hierarchy ofge, homogeneous, isotropic, and white in time. It is self-
scaling exponents; however, the leading contribution to scalsimilar and defined by the two-point correlation function
ing comes from the isotropic component. From this point of 0
view, one might argue that large-scale anisotropy does not  (Va(t.X)vg(t", x"))=8(t—t")[ds5— Sep(Xx—x")]1, (2)
affect inertial-range scaling properties. Actually, focusing on 0 o )

a larger set of observables, small-scale anisotropies becor¥éered,z=consts,; and S,5(x—x") is fixed by isotropy
manifest. It turns out that the behavior of odd-order dimen-and scaling:

sionless ratioge.g., skewness and hyperskewndsscom-
pletely different from the case of small-scale isotropy resto-
ration. Such indicators go to zero down to the inertial range
much slower than predicted by dimensional considerations
[7] or, more dramatically, they diverge at the smallest scalegith the coefficients

[6] (see alsd8,9)).

The main aim of this Rapid Communication is to present S?(d+¢&—1)—&C? dc?—§2
a model o_f MHD turbulence_whe_:re, by varying the de_gree of X (d+&(d—1)¢ (d+&)(d-1) (4)
compressibility of the velocity field, anisotropic persistence
is now detectable both from the “flattening” of the hierarchy The gegree of compressibility is thus controlled by the ratio
of mertlal_—range_ scahn_g exponenthe isotropic component ,—2/52 \jith S2((didivi)) andC2(3v;)2). It satis-
a_md t.he first anisotropic ones may become practically |nd_|sﬁes the inequality &p<1; p=0 and 1 corresponding to
tinguishablg and the divergence of the skewness factor withihe nyrely solenoidal and potential velocity fields, respec-
the Pelet number. We give the basic ideas and resultstively_
longer and more exhaustive technical discussions will be |, the present paper our attention will be focused on the

presented elsewhere. inertial-range behavior of magnetic correlation functions,

In the presence of a mean componBfitactually varying  \yhere power laws are expected in their decompositions on a
on a very large scale) and for the compressible velocity get of orthonormal functiong

field v, the kinematic MHD equations describing the evolu-

tion of the fluctuating(divergence-freepart B of the mag- > na

netic field arg10]: <B|r|‘(t,x)B“‘1(t,x’)>: > Pj(cosg)réi, (5)
j=o0

Sup(1) =18 X5,5+Y

Mol g
r2

l, r=px=x,

B being some component &, e.g., its projection along the

directionr=r/r or B°=B°/B°, and¢ is the angle between
+Kkod’B,, a=1,...d, (1) and B°. Due to the anisotropic injection mechanism, the

3B ,+0;9;B,=—(B,+B>)div;+Bjdiv,+Bldv,
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inertial-range statistics is now characterized by an infinite 3 ' . . S S—.—
hierarchy of exponentg (denotes thgth anisotropic sectgy > |
rather than just one exponent, as in the isotropic case. ]

If the Kolmogorov 1941 isotropization hypothesis holds, =
the contribution from the anisotropic sectdi®., j#0) to O — B
the scaling of correlation functions should be negligible with R -
respect to the isotropic component. Such a picture indeed 5 . . . )
holds for even correlation functions and solenoidal velocity 0.0 0.2 0.4 0.6 0.8 1.0
[4,6], but it breaks down for compressibility that is strong £
enough.

In order to prove this fact, consider first the pair correla- FIG- 1. Behavior of" vs ¢ for d=3 andj =0, 2, and 4(from
tion function,Caﬁ(t,r)z(Ba(t,x)BB(t,x’)>. Here, exploit- below to abovg Thick lines,p =1; thin lines,p=0.
ing the zero-mode techniqd1-14, the complete set of ) ) . )
scaling exponentg;"* can be found nonperturbatively. We In Fig. 1 we present the behavior of obtained from
give the basic ideas of the strategy. expression7) for p =0 (thin lineg andp=1 (thick lines.

_ 11 11
A closed equation foC,; can be found due to the time As one can see, fap=0 we have/;"<0 but {7>0 and

decorrelation of the velocity field: {410 so that, in particular,r(L)% > (r/L)%" in the iner-
tial range of scales.
Cop=Sijd19;Cop—(9;Si5)9iCqj— (9;S4i)(9;Cjp) The situation changes fap>g. (p.~0.1274 forj=2
_ 1,1 L
+((9if9j3ag)(cij+Bi°B,9)+2Ko(920ag and d=3), when {3~ becomes negative for all<0¢<1.

This means that, for compressibility strong enougl1iL§§(l>'l

_ 0RO 4 4. . _Rpo 0 9. X 0RO 4 9. X , i )
BB; 919 Sai — BB d19;Spi+ B Bpdid;S; and (/L)% become very closeéstill, < gt for j<k).

—Caj(319;Sg) + Cp919;Sup+ Cupdid;S; As we can see from_Eq$1(_)) and (11) the effect1 ?eC?TeS
dramatic for large dimensions ang#0 when {5~ 5.
+2(9iCp) 9;Sij (6)  The contribution to the scaling in E5) coming from the
L . ) sector j=2 thus becomes less and less subleading as
(see[6] for the derivation in the incompressible case and/ord increase.

ProjectingC, on the basis that span the irreducible rep- gy ther strong evidence of the crucial role of compress-
resentations of S@) [15], a system of linear algebraic jyijity in the failure of the small-scale isotropy restoration
equations for the scaling law coefficients is obtained. Th&an "he obtained by looking at the higher-order correlation
leading solutions are associated with the homogeneous SO'HJnctions[i.e. nand/org>1 in Eq.(5)] and, in particular, at
tions of such system, i.e., with zero modes. Their scalingjimensjonless ratios of odd-order moments. Were isotropy
exponents follow from the imposition that the determinant Ofrestored at small scales, such ratios would go to zero for
the coefficients be zero. Schematically, the solutions can b%rge Pelet number. The7latter is defined as BéL/ 7)Y

expressed in the form wherelL is the integral scale angox* is the dissipation

scale.
{rEat B+ e (i even, (7 Nonzero values of such indicators are thus the signature
) of anisotropy persistence. As we are going to show, in con-
whereq, j, y, andd are cumbersome functions 6fd, and  trast to the incompressible case, for large enough the
j and will not be reported here for the sake of brevity. Con-gyewness factor now diverges as-Pe. To be more spe-

tributions to the scaling associated with gdslvanish due to ific, the leading contribution in expressi¢s) can be writ-
the symmetrygp— — ¢. In particular, the expression derived tan as

in Ref.[16] in the isotropic case has been recovered here for
j=0. Following the same arguments reported in Ré&f, it BD BI(t x’ a9 LY AR 3 12
is possible to show from Eq7) that the treshold to the (BI(tX)By (Lx"))ex(r/ )0 (r/L)"0 exrfe’,  (12)

dynamo is the same as in the incompressible case.jFor, hare we have defined)9=al%+ 1. The expressions

=0 andj=2, the limit{—0 in Eq.(7) yields for £5'* have been obtained up to first ordergby means of
L1149, I 2 the field theoretic renormalization group and operator prod-
b= (=1+2p=dp) e+ O(£D, ® uct expansion. A detailed presentation of these techniques
for the casgy =0 can be found if6] (see also Ref$8,9,17
%,1 =102 E+0(82), (9) for t_he scalar case arld.8] for general re_view beI_ow we
( ) ) confine ourselves to only the necessary information.
The stochastic problerfl) and(2) can be reformulated as
a multiplicatively renormalizable field theoretic model; the

ndg_ n

2—p[4+d(d—2)(d+1)]

while for larged we have

: 1-2p(1— &) corresponding RG equations have infrared stable fixed point.
gcl)vlz - — £+0(1/d), (10  This implies existence of scaling behavior for all the corre-
1+p¢ 1+p¢ lation functions in the infrared region with certain scaling
dimensions, calculated in the form of series gn In this
(= 43 p&(£-2) +O(1/d) (11) sensef is similar toe =4—d in the models of critical phe-

1+pé 1+pé nomena.
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The key role is played by the scaling dimensiax,j ] nq(l+pd?—2p)+(d+1—2p)
of the jth rank irreducible tensor composite operators —¢ (d+2)
(X)- By (X)[Ba(X)By(x)]' (13) “7)  eng v
B,.(X)-- B, (X)[B,(X)B,(X)]'+---. 13 _ 2_

Heren=2I +] is the total number oB’s and the dots stand ' .
for the subtractiongneeded forj=2) which make the op- \(’)Vtﬁir:;vit: first holds if both andq are odd, and the second

erator traceless with respect to any pair of indices, for ex- Forn=q=1, expressior(8) is recovered. Knowing the

ample,B,Bs— 5a,352/d and so on. In the first order i§ n.q ng A . .
(one-loop approximatiornwe have obtained exponentjao Znand Po , (j|men5|onles,s {?:Lols)lzof fhe fg 4
Ron+1(r)=(Bj"(X)B}|(x"))/(B};(x)B)|(x")) can be

constructed and, as in Rdf7], evaluated at the dissipative

Aln,jl= ;{n(n—l) scale[i.e.,r=7 in Eq. (12)]. When doing this, the explicit
2(d—1)(d+2) dependence on Pe appears and the fingf) expressions
X[2—p(d®~d2—2d+4)]—(n—p) read
X(N+p+d—2)(d+1-2¢)}+0(£%). (14

Ropi1(PeocP&ant1 n=12 ..., (18

Note that for any fixedn and anyd>1, dimension(14)
decreases witl and reaches its minimum for the minimal
possible valug,,, i.e., j,=0 if nis even and,=1 if nis _2n%(1-2p+pd®)  (1-2p+pd)
odd. Furthermore, this minimal value is negative and it de- Oon+1(9)= (d+2) B 2 :
creases monotonically as1 grows, 0>A,0>Ag11 (19
>Ask+2,0- . . . . _

Thus the behavior of correlation functios) in the in- It is easy to verify from expressiof19) that ford=2 and
frared range i/ »>1 and any fixed'/L) has the form n=1 we have do,,,1(9)/dp>0. Negative values of

o,n+1(0) may thus become positive duego In particular,

for d=3 we obtaino;(p)=(23p —1)/10, which becomes
(15 positive for p>1/23. It then follows thatR;— as Pe
—oo, the footprint of the persistence of the small-scale an-
isotropy.

. (| -AIndd-Algig [y
n ’ _ _

(the leading term is given by thminimaldimensiong while S K the limit of | di .
the form of the scaling functioy(r/L) at r/L—0 (inertial ome remarks on the fimit of large space dimensions are

rangs is obtained with the aid of the operator product ex- /Orth noting. One immediately realizes fro;n H4) that,
pansion(OPB): for d—o the scaling exponents reduce §§%= —énqdp;

that means the vanishing of intermittency. Note that the re-

; e sult {5'= ¢3! for d— o is nonperturbative. At the dissipative

X(E) => CF(E) ) (16)  scaley, oan11(9)=pd(2n*—1/2)>0, two clear signatures
F of small-scale anisotropy persistence. The latter may thus

occur also in the absence of intermittency.

Here the sum runs over all possible composite operdfors  Let us now examine the possible mechanisms at the origin
entering the OPEA being their scaling dimensions, a@g  of the small-scale anisotropy persistence in our problem.
numerical coefficients analytical imAL)?. The leading term  They can be easily grasped in two dimensions; our previous

of the smallr/L behavior in thgth shell is given by thgth  results being valid for ali=2, it is reasonable to expect that
rank operator with minimal dimension; owing to the linearity the mechanisms we are going to show hold also for higher
in B of Eq. (1), the number of field8 in the operator$=  d’s. Let us start from the incompressible case assuming,

does not exceed their number on the left-hand side of Eqyjthout loss of generality, thét® is oriented along thg axis
(15. Thus the exponents in E(p) are related to the dimen- (i.e. Bozey). As we shall see, all our considerations will

sions(14) as follows: hold, a fortiori, in the compressible case.
. ) ) _ It can be shown that the magnetic field can be represented
{im=Aln+q,j]1-A[n.ja]=ALg,jgl- by the (scalaj magnetic flux function in the fornB= @y
X e,, wherey satisfies the passive scalar equation forced by
We thus conclude that the inequalitA[n,j]/9j=0, which  a large scale gradiel®@=B°xXe,. One findsg, ¥ +v;9; V)
follows from Eq. (14) for all 9 andd=2, generalizes the =k,7*¥ where ¥(t,x)=¢+Gx;. An interesting feature
hierarchy discussed above to the higher-order functions. Itecently recognized for the passive scalar turbulefses,
becomes flatter and flatter as grows @*A[n,j]/djdp e.g., [19] and [20-23) is related to the formation of
<0), while ford— (and g #0) the effect becomes even ‘“cliffs,” i.e., very steep scalar gradients within very short
stronger: in the leadin@(d), expression$l4) and(17) are  distances separated by “plateaus” where the scalar depends
now independent of. smoothly on the position.
The leading term of Eq(5) in the inertial range is given The emergence of this ubiquitous pattern is explained by
by the contribution with the minim4| considering the action of the velocity derivative matrix
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d.v . As emphasized in Ref$20,21], scalar gradients are tive. Compression may thus occur in both directions, enhanc-
weak in the elliptic regions of the velocity field where the ing the formation of fronts in the magnetic flux function.
“rotational” character inhibits the formation of strong scalar  In conclusion, we presented a simple model of MHD tur-
gradients. On the contrary, in the hyperbolic regions the flowpulence where, by varying the degree of compressibility of
is almost “irrotational”: the alignment of scalar gradients the velocity field, the persistence of anisotropy is detectable
with the direction of the eigenvector corresponding to thenoth from the hierarchy of inertial range exponents and from
most negative eigenvalue of the velocity derivative matrixihe divergence of skewness factor with theclee number.
(roughly, the direction of compression along one diregtien  ajthough our results were obtained on the base of a specific
not discouraged, and actually obser{@@], and strong sca- nqel, they seem to be rather general: a similar behavior is
lar gradients develop. also observed for a passive scalar advected by a compress-

When the scalar is forced by isotropic injection meCha'ible velocity field [9] (however, the flattening is less pro-

nisms, no preferentia_l direction ari_ses and th.e intense gradHounced for the latter The results presented here give evi-
ents are randomly oriented. The final result is a small-scal

isotropic statistics. The situation changes in the case %2E;€i0?f a turbulent system displaying such twofold
nonisotropic injection mechanisms like the one encountere '

here. In this case strong gradients are oriented a(dramd, We are deeply grateful to L. Ts. Adzhemyan, L. Biferale,
as very recently shown in Ref22,23, small-scale isotropy A, Celani, A. Lanotte, and M. Vergassola for discussions.
is consequently not restored for the scalar field. Exploitingy.v.A. acknowledges the hospitality of the University of
the relation between the magnetic field and the magnetic flugelsinki. N.V.A. was supported by the Academy of Finland,
function, we can conclude that extreme magnetic fluctuation&RACENAS Grant No. 97-0-14.1-30 and RFFEI Grant No.
have a tendency to occur preferentially along the directioryg-02-16783. A.M. was partially supported by the INFM
B, the origin of the observed small-scale anisotropy. Project No. GEPAIGGO1. P.M.G. was partially supported by
In the compressible case both eigenvalues can be neg&rant No. ERB4001GT962476 from EU.
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