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Curvature-induced symmetry breaking in nonlinear Schrodinger models
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We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity
leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than
a symmetric stationary state. We show that the energy of localized states decreases with increasing curvature,
i.e., bending is a trap for nonlinear excitations. A violation of the Vakhitov-Kolokolov stability criterion is
found in the case where the instability is due to the softening of the Peierls internal mode.
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Nanoscale physical systems such as biological macromotesents a self-interaction of the quasiparti@aeharmonicity
ecules, nanotubes, microtubules, vesicles, and electronic amd vibrations. The excitation transfed,,, in the coupling
photonic waveguide structures—6] are usually objects with term depends on the distance in the embedding space be-

nontrivial geometry. The gene transcription is usually ac+yeen the sites andm: J,,=J(|r,— ), Where the radius-
companied by a local DNA bendinty -9, the electronic vectoanz(xn,yn,zn) characterizes the position of the site

properties of carbon nanotubes drastically depend on thegn the manifold. The sites are assumed to be equidistantly
chirality [10]; T-shaped junctions were recently proposed

11 | tal conduct tal tact d(_;glaced on a plane envelope cur(€ig. 1). This model is
[. ] as nanoscale me al-semiconductor—metal contac losely related to the so-called wormlike inextensible chain
vices. The geometry manifests itself in particular in the cre

ation of linear quasibound statésee, e.9.[12,13). On the model[15,16 which is abundantly used in polymer dynam-

" : : ~ ics (see, e.g.[17-19). We consider the properties of non-
other hand, the competition between nonlinearity and dls’perﬁnear excitations in the vicinity of a smooth bend where the

e e o S ot gUIV can be modeled by he pargbol wiout loss ofgen-
9 P %rality (as done in Fig. t ynszﬁ/z and z,=0, with «

and one might expect that theterplay of geometry and being the inverse radius of curvature at the bending point.

nonlinearity can I_eao_l to qualitatively new effectdn ex- The distance between neighboring sites is assumed to be
ample ofnonlinearity-induced change of the geometry of the,

systemis found in Ref[14], where the classical Heisenberg independent of the curvature [rp.1—ry[=1 (inextensibil-
model on a two-dimensional manifold was considered. It wadly of the chain. Therefore, the excitation dynamics would
shown that a periodic topological spin soliton induces a pel'©t depend on the curvature of the system in tiearest-
riodic pinch of the cylindric manifold. neighbor approximationwhen J,,=J&,_m +1. In many

In this Rapid Communication we consider nonlinearPhysical problems, however, the nearest-neighbor approxi-
Schralinger (NLS) models on a curved one-dimensional Mation is too crude. For example, the DNA molecule con-
manifold and show that the competition between curvaturd@ins charged groups, and therefore the vibration-excitation
and nonlinearity leads to another qualitative effect;transfer is due to the dipole-dipole interaction decaying with
curvature-induced symmetry breaking for nontopologicalthe distancer as 1f°. Effective dispersive interaction be-
solitary excitations This effect is inherent for both con- tween nonlinear layers in nonlinear dielectric superlattices is
tinuum and discrete NLS models. We start with the discret@xponential, expt ar), with the inverse radiua depending
NLS equation o o

Q O

d Q 0

gt ¥nt 20 It [l =0, (1) 3 $
Q o

which describes a system of coupled nonlinear oscillators, 3 £
¥n(t) being the complex amplitude at the sitgn=0,+1,
+2). In the theory of chargéenergy transferi,(t) is the
wave function of the carriers. The Hamiltonian

1
H:_; ; Jnm‘//: l!/m+§|l//n|4 (2

o FIG. 1. Curved chain with sites equidistantly placed on a pa-
and the number of excitatiofguanta N== | ,| are con-  rabola with the curvature=0.5 atx=0 and corresponding effec-
served quantities. In Eq1) the nonlinear termi,| %4, rep-  tive double-well potential ;= — = J, m-
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FIG. 3. Spectrum of linear excitations around the symmetric
stationary statep,(A) for a=2, J=6.4, and«=3. There are two
internal localized modes: Peierls antisymmetqx) @nd breathing
symmetric p). In the inset the dependenb&A) is shown.

FIG. 2. Number of excitationdl(A) for the straight chain £
=0; dotted-dashed lineand curved chain£= 3; solid, dotted, and
dashed lingsfor «=2 andJ=6.4. In the inset shapes of the sym-
metric (s) and asymmetriqas stationary states foN=23.6 are

shown. The linear stability of the stationary states is investigated

on parameters of the lattidsuperlattice spacing, linear re- (as is described in Refs{23,2]])_, _Ietting '/’”(t).:[‘f’”(A)
fractive index and so 9r{20]. When the long-range charac- * €n €XPQ0]€xp(At) and linearizing Eq(1) with respect

ter of the couplingl,, is considered, the number of neigh- © €n- _Byzdeflnltl_on the stationary statg,(A) is linearly
bors available for the excitation is largaear the bending StaPle if2“>0. Figure 3 shows the spectrum of linear exci-
point than far away from it. This creatdss shown below tations around the symmetric localized state. We find that
analytically) the effective double-well potenti&l (/), which there are two localized internal modes: Peierls antisymmetric

is appreciably responsible for the effects discussed in whaf'°de @) and breathing symmetric modb)( There are two
follows. intervals of instability of the symmetric stationary state:

. , _ ST when 0.99<A <1.26 the instability is due to the breathing
V\ie |r2ve_s,st|gateq bc?th]“m__‘] exp( a|r,? rr_“|) and ‘?”m internal mode. In this part of the curW(A) (dashed line in
=J|rp—ry % Butin this Rapid Communication we disCUsS the inset dN/dA<0 and the instability agrees with the
in detail the first case only. It is knowj21] that in the case  y/akhitov-Kolokolov stability criterion[24]. When 0.84< A
of straight line (c=0) such NLS model exhibitdfor & <099 the stationary state is unstable with respect to the
<1.7) bistability in the spectrum of nonlinear stationary pgjerls modéthe corresponding part ™(A) is marked by
states. To distinguish these effects from the finite curvaturg,e gotted ling In this latter caseve observe a violation of
effects we user=2. We study stationary states of the sys-ihe vakhitov-Kolokolov stability criteriobecause this insta-
tem (1) = ¢n(A)e™, whereA is the nonlinear frequency ity interval corresponds to a part of the cumhéA) where
and ¢,(A) is the amplitude in theth site. dN/dA >0 (see Fig. 2

Figure 2 showsN versusA obtained numerically for the  The energy of the symmetric as well as asymmetric local-
straight chain and curved chain. Several new features arise §% states is monotonically decreasing function of the cur-
a consequence of the finite curvature: vature(see Fig. 4 Thus, one may expect that thenlinear

(i) There is a gamt smallA in which no localized exci- localized excitation may facilitate bending of flexible mo-

tation can exist. The gap originates from the existence, in thicular chain For N>Niy(«), when symmetric and asym-
linear case, of a two-hump localized mode created by curvaetric stationary states coexist, tlaeymn”_netnc state is al-
ture. The gap increases when the curvatriecreases. ways energetically more favorabl@aking into account that

(ii) There aretwo branches of stationary states branch in the linear limit the ground state of the model is symmetric
of symmetric localized excitationss), which exists for all  With respect to the center of symmetny-0 one can con-
values ofN, and a branch aisymmetric localized excitations c_:lude.thatcomblned action of the f|n|te. curvature and non-
(a9, which exists only foN>N,,(«). The threshold value In€arity provides the symmetry breakimg the system. A
Nin(x) decreases whew decreases and vanishes in the limit typical evolu_tlon Of. the curved NLS model in the case when.
x—0. The symmetric stationary state has a two-humpe he symmetric stationary state becomes unstable is shown in
shape(evolved from the linear two-hump localized mode ig. 5. One can see that the t_vvo-hump_ed initial symmetric
while in the asymmetric state the maximum is shifted citheState evolves into an asymmetric state with an excited breath-
to the left or to the right from the center of symmetry0 ing internal mode.
(see inset in Fig. 2

(iii) For the symmetric stationary staté§A) is non- -1.8
monotonicas in Refs[22,21] for NLS models on the straight S
chain with the radius of the dispersive interaction above a H 2 as

critical value. Similarly, in the case of curved chain there is
an interval ofN in which three different symmetric states
coexist for each excitation number. Taking into account that 2.4
for the inverse radiugsr=2 under investigation there is no

bistability in the straight chaifsee dotted-dashed line in Fig.

2), one may conclude tha&istability is facilitated in the sys- FIG. 4. Energy of symmetrics) and asymmetri¢as nonlinear
tems with finite curvature excitations vs the curvature for «=2, J=6.4, andN=4.
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FIG. 6. Dependencel(A) for symmetric §) and asymmetric

(a9 nonlinear excitations in the two-impurity minimal modgl)
with e=0.7 anda=1.

FIG. 5. Switching from the symmetric state to the asymmetric o &2¢
state ate=2, J=6.4, k=4, andN=3.96. iﬁjtﬁjL e[8(/—a)+8(/+a)ly+|y|2y=0, (4)
Apart from the smooth bending we studied the case of the
edge:y,=|x,| tan(d). Qualitatively the same results were
obtained for this case, too.
To clarify the physical meaning of obtained results we
pass to the continuum limit of Eq2), where the Hamil-
tonianH can be represented as

where the parameter is the depth of the well. Introducing

into Eqg. (4 the stationary state ansatzp(/,t)

= ¢(/)exp(At) we find that the corresponding nonlinear ei-

genvalue problem can be easily reduced to an algebraic one.

The results of the analytical consideration are shown in Fig.
© (1 ap|? 1 6. The stationary states) is unique and symmetric for small

HZJ (ELZ(/)‘&—/ +U()| >~ §|¢|4 d7. (3  number of quant&. But when the number of quanta exceeds
o some critical value there are two stationary states: symmetric

Here / is the arclength(the continuum analog of), (s) and asymmetriqas, with the asymmetric state being
L) =" (/" =23, ,,d/" is the square of the disper- energetically more favorable. Thus, similarly to the original

sive length of the excitation, and(/)=—["_J, ,.d/" is mOd?:; thel m|r|1_|qu mgdel deTontrattles a symmetry break-
the energy shift due to the coherent interaction. The invers{ang effect(loca |zat|on. in one of the wels .
: We conclude that in the NLS model the interplay of cur-

Sy ; ; /
I;nggr I_‘W I(I<‘) nart1id r?ttris[:t[[\;]e %Ofnrtr']aug‘;)i arle t%engirallry t vature and nonlinearity leads to the symmetry breaking when
ouble-well Tunctions. € bottom ot Fig. € CISCIElE o asymmetric stationary state becomes energetically favor-

analogue olJ(#), Up=—ZpJn,m, iS shown. In the vicinity .able than the symmetric one. We have found that the energy

of t.he bend there are tV\.IO symmetr|c.sec.t|ons of the chain )t localized states decreases with the increasing of curvature.
which the number of neighbors entering into the range of th ne may expect that the nonlinear localized excitation may

?Aspetr]swe :nt?rr]‘?‘Ct'on' & (IjS hg?her t|f|1an ta”)t/_Wlhetfe etlse ON facilitate bending of a flexible molecular chain. In all cases
(th ?Ln' n 't'IS way 3 douthe-wfeth po erlll lal s rgcture .re'aending manifests itself as a trap for nonlinear excitations.
SUlts. The positions and depths of the WeliS are determineg, . yhe cyrved NLS model in the case of the physical-

by the range of the dispersive interaction and the peculiariy,,~ . . o . ; . .

ties of the bending geometry. For example, in the case of th<r¥ »lmpprtf\gt d'F’O'e_ dipole — dispersive mFerac'uor:inm

edge,y,=|x,|tan(d), we get for smallg =|r,—rm|"° qualitatively the same properties are found.
onon ’ Using as an example the Davydov-Scott mdd@#,27] with

the dipole-dipole coupling between sit8] for the param-
+1)2+1](e"l/Icos(@) _g=al”ly}  eters which characterize the motion of the amide-I excitation
in proteins(they correspond ttN=0.64 in our model de-
creasing of the ground state energy due to a trapping by the
and bending with k=1 (k=3) comprise 10% (46%) of the
J whole excitation energy. This may also be important for the
U(/)~— —(2+e @l/lcos(@) _g=al/ly dynamics of DNA molecule, where, as was mentioned
« above, the vibration-excitations are described by(Egwith

. : e - , the dipole-dipole dispersive interactip@9]. Finally, a vio-
Itis worth noting that the Hamiltonian similar to EG) with lation of the Vakhitov-Kolokolov stability criterion in the

'[L;](e/)D?IOA VgZié?r:réoiicet})?elgtﬁeertfgptgir?;uquhtgestee f:)e%sngtfioncase when the instability is due to the softening of the Peierls

dependence of the dispersive lendtl”) was postulated internal mode is found.

there. In all cases bending manifests itself as a trap for non-

linear excitations. To obtain an analytical solution of the We thank A. C. Scott for helpful discussions. Yu.B.G.
problem one can approximaltg /") by a constant antd (/) and S.F.M. would like to express their thanks to the Depart-
by two §-functions. Then we arrive at the following minimal ment of Mathematical Modelling, Technical University of
model: Denmark, where the major part of this work was done.
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