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Curvature-induced symmetry breaking in nonlinear Schrödinger models
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We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity
leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than
a symmetric stationary state. We show that the energy of localized states decreases with increasing curvature,
i.e., bending is a trap for nonlinear excitations. A violation of the Vakhitov-Kolokolov stability criterion is
found in the case where the instability is due to the softening of the Peierls internal mode.

PACS number~s!: 05.45.Yv, 33.15.Bh, 42.65.Tg, 63.20.Pw
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Nanoscale physical systems such as biological macrom
ecules, nanotubes, microtubules, vesicles, and electronic
photonic waveguide structures@1–6# are usually objects with
nontrivial geometry. The gene transcription is usually a
companied by a local DNA bending@7–9#; the electronic
properties of carbon nanotubes drastically depend on t
chirality @10#; T-shaped junctions were recently propos
@11# as nanoscale metal-semiconductor–metal contact
vices. The geometry manifests itself in particular in the c
ation of linear quasibound states~see, e.g.,@12,13#!. On the
other hand, the competition between nonlinearity and disp
sion likewise results into localization of energy. Taken
gether these two localization mechanisms are compet
and one might expect that theinterplay of geometry and
nonlinearity can lead to qualitatively new effects. An ex-
ample ofnonlinearity-induced change of the geometry of t
systemis found in Ref.@14#, where the classical Heisenbe
model on a two-dimensional manifold was considered. It w
shown that a periodic topological spin soliton induces a
riodic pinch of the cylindric manifold.

In this Rapid Communication we consider nonline
Schrödinger ~NLS! models on a curved one-dimension
manifold and show that the competition between curvat
and nonlinearity leads to another qualitative effe
curvature-induced symmetry breaking for nontopologi
solitary excitations. This effect is inherent for both con
tinuum and discrete NLS models. We start with the discr
NLS equation

i
d

dt
cn1(

m
Jnmcm1ucnu2cn50, ~1!

which describes a system of coupled nonlinear oscillat
cn(t) being the complex amplitude at the siten (n50,61,
62). In the theory of charge~energy! transfercn(t) is the
wave function of the carriers. The Hamiltonian

H52(
n

H(
m

Jnmcn* cm1
1

2
ucnu4J ~2!

and the number of excitations~quanta! N5(nucnu2 are con-
served quantities. In Eq.~1! the nonlinear termucnu2cn rep-
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resents a self-interaction of the quasiparticle~anharmonicity
of vibrations!. The excitation transferJnm in the coupling
term depends on the distance in the embedding space
tween the sitesn andm: Jnm[J(urWn2rWmu), where the radius-
vectorrWn5(xn ,yn ,zn) characterizes the position of the siten
on the manifold. The sites are assumed to be equidista
placed on a plane envelope curve~Fig. 1!. This model is
closely related to the so-called wormlike inextensible ch
model @15,16# which is abundantly used in polymer dynam
ics ~see, e.g.,@17–19#!. We consider the properties of non
linear excitations in the vicinity of a smooth bend where t
curve can be modeled by the parabola without loss of g
erality ~as done in Fig. 1!: yn5kxn

2/2 and zn50, with k
being the inverse radius of curvature at the bending po
The distance between neighboring sites is assumed to
independent of the curvaturek: urWn112rWnu51 ~inextensibil-
ity of the chain!. Therefore, the excitation dynamics wou
not depend on the curvature of the system in thenearest-
neighbor approximation, when Jnm5Jdn2m,61. In many
physical problems, however, the nearest-neighbor appr
mation is too crude. For example, the DNA molecule co
tains charged groups, and therefore the vibration-excita
transfer is due to the dipole-dipole interaction decaying w
the distancer as 1/r 3. Effective dispersive interaction be
tween nonlinear layers in nonlinear dielectric superlattice
exponential, exp(2ar), with the inverse radiusa depending

FIG. 1. Curved chain with sites equidistantly placed on a
rabola with the curvaturek50.5 atx50 and corresponding effec
tive double-well potentialUn52(mJn,m .
R53 ©2000 The American Physical Society
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on parameters of the lattice~superlattice spacing, linear re
fractive index and so on! @20#. When the long-range charac
ter of the couplingJnm is considered, the number of neigh
bors available for the excitation is largernear the bending
point than far away from it. This creates~as shown below
analytically! the effective double-well potentialU(l ), which
is appreciably responsible for the effects discussed in w
follows.

We investigated bothJnm5J exp(2aurWn2rWmu) and Jnm

5JurWn2rWmu2s. But in this Rapid Communication we discus
in detail the first case only. It is known@21# that in the case
of straight line (k50) such NLS model exhibits~for a
,1.7) bistability in the spectrum of nonlinear stationa
states. To distinguish these effects from the finite curvat
effects we usea52. We study stationary states of the sy
tem cn(t)5fn(L)eiLt, whereL is the nonlinear frequency
andfn(L) is the amplitude in thenth site.

Figure 2 showsN versusL obtained numerically for the
straight chain and curved chain. Several new features aris
a consequence of the finite curvature:

~i! There is a gapat smallL in which no localized exci-
tation can exist. The gap originates from the existence, in
linear case, of a two-hump localized mode created by cu
ture. The gap increases when the curvaturek increases.

~ii ! There aretwo branches of stationary states: a branch
of symmetric localized excitations (s), which exists for all
values ofN, and a branch ofasymmetric localized excitation
~as!, which exists only forN.Nth(k). The threshold value
Nth(k) decreases whenk decreases and vanishes in the lim
k→0. The symmetric stationary state has a two-hump
shape~evolved from the linear two-hump localized mode!,
while in the asymmetric state the maximum is shifted eit
to the left or to the right from the center of symmetryn50
~see inset in Fig. 2!.

~iii ! For the symmetric stationary statesN(L) is non-
monotonicas in Refs.@22,21# for NLS models on the straigh
chain with the radius of the dispersive interaction abov
critical value. Similarly, in the case of curved chain there
an interval ofN in which three different symmetric state
coexist for each excitation number. Taking into account t
for the inverse radiusa52 under investigation there is n
bistability in the straight chain~see dotted-dashed line in Fig
2!, one may conclude thatbistability is facilitated in the sys-
tems with finite curvature.

FIG. 2. Number of excitationsN(L) for the straight chain (k
50; dotted-dashed line! and curved chain (k53; solid, dotted, and
dashed lines! for a52 andJ56.4. In the inset shapes of the sym
metric (s) and asymmetric~as! stationary states forN53.6 are
shown.
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The linear stability of the stationary states is investiga
~as is described in Refs.@23,21#!, letting cn(t)5@fn(L)
1en exp(iVt)# exp(iLt) and linearizing Eq.~1! with respect
to en . By definition the stationary statefn(L) is linearly
stable ifV2.0. Figure 3 shows the spectrum of linear exc
tations around the symmetric localized state. We find t
there are two localized internal modes: Peierls antisymme
mode (p) and breathing symmetric mode (b). There are two
intervals of instability of the symmetric stationary stat
when 0.99,L,1.26 the instability is due to the breathin
internal mode. In this part of the curveN(L) ~dashed line in
the inset! dN/dL,0 and the instability agrees with th
Vakhitov-Kolokolov stability criterion@24#. When 0.84,L
,0.99 the stationary state is unstable with respect to
Peierls mode~the corresponding part ofN(L) is marked by
the dotted line!. In this latter casewe observe a violation o
the Vakhitov-Kolokolov stability criterionbecause this insta
bility interval corresponds to a part of the curveN(L) where
dN/dL.0 ~see Fig. 2!.

The energy of the symmetric as well as asymmetric loc
ized states is monotonically decreasing function of the c
vature~see Fig. 4!. Thus, one may expect that thenonlinear
localized excitation may facilitate bending of flexible m
lecular chain. For N.Nth(k), when symmetric and asym
metric stationary states coexist, theasymmetric state is al-
ways energetically more favorable. Taking into account that
in the linear limit the ground state of the model is symmet
with respect to the center of symmetryn50 one can con-
clude thatcombined action of the finite curvature and no
linearity provides the symmetry breakingin the system. A
typical evolution of the curved NLS model in the case wh
the symmetric stationary state becomes unstable is show
Fig. 5. One can see that the two-humped initial symme
state evolves into an asymmetric state with an excited bre
ing internal mode.

FIG. 3. Spectrum of linear excitations around the symme
stationary statefn(L) for a52, J56.4, andk53. There are two
internal localized modes: Peierls antisymmetric (p) and breathing
symmetric (b). In the inset the dependenceN(L) is shown.

FIG. 4. Energy of symmetric (s) and asymmetric~as! nonlinear
excitations vs the curvaturek for a52, J56.4, andN54.
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Apart from the smooth bending we studied the case of
edge: yn5uxnu tan(u). Qualitatively the same results wer
obtained for this case, too.

To clarify the physical meaning of obtained results w
pass to the continuum limit of Eq.~2!, where the Hamil-
tonianH can be represented as

H5E
2`

` S 1

2
L2~ l !U]c

]l
U2

1U~ l !ucu22
1

2
ucu4Ddl . ~3!

Here l is the arclength~the continuum analog ofn),
L2(l )5*2`

` (l 82l )2Jl ,l 8dl 8 is the square of the disper
sive length of the excitation, andU(l )52*2`

` Jl ,l 8dl 8 is
the energy shift due to the coherent interaction. The inve
length L21(l ) and attractive potentialU(l ) are generally
double-well functions. At the bottom of Fig. 1 the discre
analogue ofU(l ), Un52(mJn,m , is shown. In the vicinity
of the bend there are two symmetric sections of the chai
which the number of neighbors entering into the range of
dispersive interaction, 1/a, is higher than anywhere else o
the chain. In this way a double-well potential structure
sults. The positions and depths of the wells are determi
by the range of the dispersive interaction and the peculi
ties of the bending geometry. For example, in the case of
edge,yn5uxnutan(u), we get for smallu

L2~ l !'
J

a3
$41@~a2ul u11!211#~e2aul ucos(2u)2e2aul u!%

and

U~ l !'2
J

a
~21e2aul ucos(2u)2e2aul u!.

It is worth noting that the Hamiltonian similar to Eq.~3! with
U(l )[0 was introduced in Ref.@25# to study the effects of
the DNA bending on breather trapping. The step funct
dependence of the dispersive lengthL(l ) was postulated
there. In all cases bending manifests itself as a trap for n
linear excitations. To obtain an analytical solution of t
problem one can approximateL(l ) by a constant andU(l )
by two d-functions. Then we arrive at the following minima
model:

FIG. 5. Switching from the symmetric state to the asymme
state ata52, J56.4, k54, andN53.96.
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]c

]t
1

]2c

]l 2
1e@d~ l 2a!1d~ l 1a!#c1ucu2c50, ~4!

where the parametere is the depth of the well. Introducing
into Eq. ~4! the stationary state ansatzc(l ,t)
5f(l )exp(iLt) we find that the corresponding nonlinear e
genvalue problem can be easily reduced to an algebraic
The results of the analytical consideration are shown in F
6. The stationary state (s) is unique and symmetric for sma
number of quantaN. But when the number of quanta excee
some critical value there are two stationary states: symme
(s) and asymmetric~as!, with the asymmetric state bein
energetically more favorable. Thus, similarly to the origin
model, the minimal model demonstrates a symmetry bre
ing effect ~localization in one of the wells!.

We conclude that in the NLS model the interplay of cu
vature and nonlinearity leads to the symmetry breaking w
the asymmetric stationary state becomes energetically fa
able than the symmetric one. We have found that the ene
of localized states decreases with the increasing of curvat
One may expect that the nonlinear localized excitation m
facilitate bending of a flexible molecular chain. In all cas
bending manifests itself as a trap for nonlinear excitatio
For the curved NLS model in the case of the physic
ly important dipole-dipole dispersive interactionJnm

5urWn2rWmu23 qualitatively the same properties are foun
Using as an example the Davydov-Scott model@26,27# with
the dipole-dipole coupling between sites@28# for the param-
eters which characterize the motion of the amide-I excitat
in proteins~they correspond toN50.64 in our model! de-
creasing of the ground state energy due to a trapping by
bending with k51 (k53) comprise 10% (46%) of the
whole excitation energy. This may also be important for t
dynamics of DNA molecule, where, as was mention
above, the vibration-excitations are described by Eq.~1! with
the dipole-dipole dispersive interaction@29#. Finally, a vio-
lation of the Vakhitov-Kolokolov stability criterion in the
case when the instability is due to the softening of the Pei
internal mode is found.

We thank A. C. Scott for helpful discussions. Yu.B.G
and S.F.M. would like to express their thanks to the Depa
ment of Mathematical Modelling, Technical University o
Denmark, where the major part of this work was done.

c

FIG. 6. DependenceN(L) for symmetric (s) and asymmetric
~as! nonlinear excitations in the two-impurity minimal model~4!
with e50.7 anda51.
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