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Reductive use of renormalization group
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It has been recognized that singular perturbation and reductive perturbation can be unified from the renor-
malization group~RG! theoretical point of view. However, the recognition has been only formal in the sense
that it has not given us any new insight nor provided any new technical advantage over the usual RG approach.
With our approach, the proto RG method proposed here, we can clearly show that system reduction is the key
to singular perturbation methods. The approach also makes the calculation of singular perturbation results more
transparent than the conventional RG approach. Consequently, for example, a consistent and easy RG deriva-
tion of the rotational covariant Newell-Whitehead-Segel equation is possible.

PACS number~s!: 64.60.Ak
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Suppose we apply to a system a perturbation, e.g., we
to the equation governing the system some nonlinear te
dissipative terms, a new boundary, etc. The system is usu
not structurally stable against such perturbations, so the
turbation results are, if computed naively, plagued with s
gularities ~secular terms!. It has been recognized for som
time @1# that these singularities in the naive perturbati
theories can be renormalized away by the modificat
~renormalization! of the parameters in the unperturbed st
~amplitude, phase, etc.!. The renormalized results agree wi
or are sometimes~numerically at least! better than those tra
ditionally computed with the aid of singular perturbatio
methods@2#. The modified parameters are governed by
renormalization group~RG! equations that turn out to be
e.g., large-scale slow-motion equations~reduced equations!
@3# ~often one of the famous named equations such as
Burgers equation, the Kuramoto-Sivashinsky equation, or
Boltzmann equation@4#!.

These equations were traditionally derived with the aid
the reductive perturbation theory@5,6#. Let us call the
method to obtain space-time large scale equations as
equations theRG theoretical reduction~or the reductive RG
method!. Thus, a close relation between reductive pertur
tion and singular perturbation has been recognized. Als
more fundamental nature of reductive perturbation than
gular perturbation has been suggested because the key
tures of singular perturbation results are governed by redu
equations5 RG equations. However, the derivation of R
equations required singular perturbation results in the c
ventional RG approach@3,2#, so the truly fundamental natur
of reductive RG could not be demonstrated.

The main purpose of this Rapid Communication is to fr
the RG theoretical reduction from the necessity of expl
secular terms as much as possible. As a consequence, w
now clearly claim that extraction of global features of t
systems through reduction is the key to singular pertur
tions. As an illustration of this transparent approach a c
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sistent RG reduction of the Swift-Hohenberg equation to
rotationally covariant Newell-Whitehead-Segel~NWS! equa-
tion is presented; this resolves the dispute about its der
tion by means of the RG method@7,8#.

Our general strategy of the reductive RG explained in t
paper may be summarized with the following five steps:

~1! Solve the zeroth order equation, and set up pertur
tion equations.

~2! Write down the general form of the secular terms.
~3! Find the equation governing resonant secular term
~4! Construct the proto RG equation.
~5! Reduce the proto RG equation to the RG equation

We will explain the undefined terminology ‘‘proto RG equ
tion’’ in due course. Here we discuss only the lowest no
trivial order, but the method works to higher orders. A
though they require some information about the solutions
the perturbation equations, still the procedure is much s
pler than the RG calculations given in, e.g.,@2#.

First, we illustrate our proposal with a very simple e
ample, the van der Pol equation:

d2y

dt2
1y5e~12y2!

dy

dt
. ~1!

We expand the solution naively asy5y01ey11e2y21•••.
Step~1! gives just

y05Aeit1A* e2 i t . ~2!

The termy1 is governed by

S d2

dt2
11D y15~12y0

2!
dy0

dt
, ~3!

so that y1 must have the general formy15P1eit1Q1e3i t

1c.c., where c.c. implies complex conjugate terms@step~2!#.
Equation~3! gives

LtP15 iA~12uAu2!, ~4!
R4501 ©2000 The American Physical Society
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where

Lt[
d2

dt2
12i

d

dt
. ~5!

This is the end of step~3!. Let us defineP1 without the
constant term. Then this is the secular term itself and mus
renormalized into the modification of the integration const
of the zeroth order result~renormalization ofA to AR). Thus,
the renormalized perturbation result can be written as

y~ t !5AR~t!eit1e@P1„t,AR~t!…2P1„t,AR~t!…#eit

1•••1c.c. ~6!

In the conventional RG approach@2# we say thaty has noth-
ing to do with the variablet which we introduced, so
]y/]t50. The resultant equation is the RG equation~in this
simple case!. In this conventional RG, we do not use th
properties of the problem under study at all; the procedur
quite blind.

We should interpret the generic procedure of apply
]/]t as an attempt to characterize the function sp
spanned by singular solutions. Our crucial observation is
it is natural to use an operator governing the secular ter
The operator is that in Eq.~4!. Let Lt be the same operator a
Lt defined in Eq.~5!, with t being replaced byt. Then,
obviouslyLty(t)50, so with the aid of Eq.~4! we immedi-
ately obtain~to this order we may identifyAR in P1 with A,
a constant!

05Lty5@LtAR2LtP1~t,AR!#eit , ~7!

or with the aid of Eq.~4! ~we replacet with t in the result!

S d2

dt2
12i

d

dtD AR~ t !5e iAR~12uARu2!. ~8!

This is step~4!. We call such an equation aproto RG equa-
tion. Notice that no explicit solution~other than the unper
turbed solution! has ever been used. This turns out to be
crucial feature for partial differential equations~PDE!.

The last step is to reduce this formal result to a consis
equation to the relevant order~the lowest nontrivial order in
the present exposition!. Equation~8! tells us that differentia-
tion raises the power ofe, so to ordere we may discard the
second order derivative. This is the final step~5!:

dAR

dt
5

1

2
eAR~12uARu2!, ~9!

which is the standard RG equation and is an amplitude eq
tion. Higher order systematic calculation along this line
possible with slightly more calculations@9# ~some of which
are used below! @10,11#. Thus, obtaining the RG equatio
can be made largely independent from singular perturba
results, as conceptually expected: system reduction is the
to singular perturbation.

In the case of ODE, the secular terms due to the per
bation seem unambiguously identifiable, but for PDE
situation is usually complicated, because many differ
be
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modes of singular behaviors are possible. Therefore, i
almost mandatory to avoid any particular perturbation res

Let us illustrate the proto RG approach for PDE with t
two-dimensional Swift-Hohenberg equation@12# that has
caused some controversy@2,7,8#:

]u

]t
5e~u2u3!2S ]2

]x2
1

]2

]y2
1k2D 2

u. ~10!

We consider this on the whole plane for all positivet. As a
zeroth order solution, we choose a roll solution along thy
axis: Aeikx1c.c., whereA is a complex numerical constan
We expandu around this solution as

u5Aeikx1eu11e2u21•••1c.c. ~11!

The first order correction obeys

]u1

]t
1S ]2

]x2
1

]2

]y2
1k2D 2

u15~123uAu2!Aeikx2A3e3ikx.

~12!

This is a linear PDE, so we may write the solution in t
following form:

u15P1~ t,r!eikx1Q1~ t,r!e3ikx, ~13!

where r5(x,y). Since eikx is a null solution to the linear
operator, P1 must contain spatially secular~that is, un-
bounded or not integrable! terms. This is step~2!.

The step~3! is as follows. Since

F ]

]t
1S ]2

]x2
1

]2

]y2
1k2D 2GP1eikx5~123uAu2!Aeikx,

~14!

we have

F ]

]t
1

]4

]x4
14ik

]3

]x3
12

]2

]y2

]2

]x2

1S 24k2
]2

]x2
14ik

]2

]y2

]

]x
1

]4

]y4D GP1

[LP15~123uAu2!A. ~15!

From this, we clearly see thatP1 can never be a constan
We can readQ152A3/64k4 off from the equation forQ1.

The renormalized perturbation series reads

u5AR~t,r!eikx1e@P1~ t,r!2P1~t,r!#eikx1•••1c.c.
~16!

Hence, the proto RG equation can be obtained with the ai
Eq. ~15! as

Lt,rAR~t,r!5e~123uARu2!AR , ~17!

whereLt,r is L with the replacementt→t, r→r. Notice that
we have never used any explicit solutions of the perturba
equation. This is the end of step~4!. The reader may wonde
how unique the choice of the operatorL is; to map the un-
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wanted secular term, any operator mapping it to zero sho
do. We do not have a general answer to this question. H
ever, since we are interested in the global features of
system, the operator must be as low order differential op
tor as possible. With this requirementL is unique in practice,
and is given by Eq.~15!.

L contains much more terms than the standard result
reduce the equation further, we must choose the way
observe the system. If we wish to derive an equation gove
ing isotropic evolution of the pattern, we must assumex and
y ~or ]/]x and ]/]y) to scale in the same way, so]/]t
;]2/]x2;]2/]y2;e. That is, to ordere with isotropy re-
quirement we obtain the following RG equation:

S ]

]t
24k2

]2

]x2D AR5e~123uARu2!AR . ~18!

This is step 5.
To obtain the next order, we need the equation for

second order term:

F ]

]t
1S ]2

]x2
1

]2

]y2
1k2D 2Gu2

5$~126uAu2!P123A2P1* 23A* 2Q1%e
ikx

1$~126uAu2!Q123A2P1%e
3ikx23A2Q1e5ikx.

~19!

The general form of the solution is given by@step~2!# ~we
assume all the solutions to the corresponding homogen
equation are taken care of by the zeroth order considera!

u25P2~ t,r!eikx1Q2~ t,r!e3ikx1R2e5ikx. ~20!

Here,P2 is obviously secular.Q2 is also secular because th
inhomogeneous term withe3ikx is already secular in Eq.~19!.
LP2 is given by@step~3!#

LP25~126uAu2!P123A2P1* 23A* 2Q1 . ~21!

However, to use this equation to remove the secular t
from the second order result, we may ignore all the sec
terms on the right-hand side of Eq.~21! that will be gone
ic
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anyway @13#. Thus, we need onlyQ152A3/64k4 obtained
already. Hence, the proto RG equation reads

LAR5e~123uARu2!AR1e2
3

64k4
uARu4AR . ~22!

To ordere2 this is actually the RG equation, and is the rot
tionally covariant NWS equation first obtained by Gunara
et al. @14#. Note that Eq.~22! includes all possible terms u
to ordere2, while the result in@7# did not contain the last
term on the left-hand side of Eq.~22!.

The key element of singular perturbation is to separate
global systematic effects of perturbations. If we can char
terize the function space spanned by the solutions, the m
important results of singular perturbation can be captur
Our observation is that the proto RG operator is the oper
characterizing the function space, although we still ne
clearer mathematical characterization of our procedure
this way, reductive perturbation is the essence of singu
perturbation@15#.

In example~10! studied above, the smallness ofe repre-
sents perturbations whose collective effects we are c
cerned with. Fore not small but at a late stage of the ro
formation, ]u/]t becomes the only small perturbation th
enters the equation. The phase dynamics is now the rele
slow motion. In this case the proto RG method works ag
@16#, and the reduced equation is the Cross-Newell ph
equation@17#.

In summary, we have considerably freed the RG theo
ical reduction from explicit perturbation results with the a
of the proto RG equation, demonstrating the fundamen
nature of system reduction in singular perturbation proble
Our procedure also simplifies system reduction. As an ill
tration we have resolved the controversy as to the RG red
tion of the Swift-Hohenberg equation to the isotrop
Newell-Whitehead-Segel equation.
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