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It has been recognized that singular perturbation and reductive perturbation can be unified from the renor-
malization group(RG) theoretical point of view. However, the recognition has been only formal in the sense
that it has not given us any new insight nor provided any new technical advantage over the usual RG approach.
With our approach, the proto RG method proposed here, we can clearly show that system reduction is the key
to singular perturbation methods. The approach also makes the calculation of singular perturbation results more
transparent than the conventional RG approach. Consequently, for example, a consistent and easy RG deriva-
tion of the rotational covariant Newell-Whitehead-Segel equation is possible.

PACS numbeps): 64.60.Ak

Suppose we apply to a system a perturbation, e.g., we adsistent RG reduction of the Swift-Hohenberg equation to the
to the equation governing the system some nonlinear termsotationally covariant Newell-Whitehead-Se@&WS) equa-
dissipative terms, a new boundary, etc. The system is usualljon is presented; this resolves the dispute about its deriva-
not structurally stable against such perturbations, so the petion by means of the RG methdd,8].
turbation results are, if computed naively, plagued with sin- Our general strategy of the reductive RG explained in this
gularities (secular terms It has been recognized for some Paper may be summarized with the following five steps:
time [1] that these singularities in the naive perturbation
theories can be renormalized away by the modification[iO
(renormalization of the parameters in the unperturbed state
(amplitude, phase, ejc.The renormalized results agree with
or are sometimeumerically at leagtbetter than those tra-
ditionally computed with the aid of singular perturbation
methods[2]. The modified parameters are governed by the
renormalization grougRG) equations that turn out to be, We will explain the undefined terminology “proto RG equa-
e.g., large-scale slow-motion equatiofteduced equations tion” in due course. Here we discuss only the lowest non-
[3] (often one of the famous named equations such as theivial order, but the method works to higher orders. Al-
Burgers equation, the Kuramoto-Sivashinsky equation, or théhough they require some information about the solutions to

(1) Solve the zeroth order equation, and set up perturba-
n equations.

(2) Write down the general form of the secular terms.

(3) Find the equation governing resonant secular terms.
(4) Construct the proto RG equation.

(5) Reduce the proto RG equation to the RG equation.

Boltzmann equatiof4]). the perturbation equations, still the procedure is much sim-
These equations were traditionally derived with the aid ofpler than the RG calculations given in, e ®].
the reductive perturbation theor}s,6]. Let us call the First, we illustrate our proposal with a very simple ex-

method to obtain space-time large scale equations as R&mple, the van der Pol equation:

equations thékG theoretical reductioifor thereductive RG

method. Thus, a close relation between reductive perturba- d?y , dy

tion and singular perturbation has been recognized. Also a EJFY:E(l_y )a- @
more fundamental nature of reductive perturbation than sin-

gular perturbation has been suggested because the key f&ge expand the solution naively gs-yo+ ey, + e2y,+ - - -.
tures of singular perturbation results are governed by reduce§tep(1) gives just

equations= RG equations. However, the derivation of RG

equations required singular perturbation results in the con- Yo=Ad!+A*e 't 2
ventional RG approacl8,2], so the truly fundamental nature _
of reductive RG could not be demonstrated. The termy; is governed by
The main purpose of this Rapid Communication is to free
the RG theoretical reduction from the necessity of explicit d? . dYo
- —+1ly1=(1-yo)—— )
secular terms as much as possible. As a consequence, we can de2 1 0/ gt

now clearly claim that extraction of global features of the

systems through reduction is the key to singular perturbaso thaty, must have the general fory, =P,e''+Q,e3'

tions. As an illustration of this transparent approach a con-c.c., where c.c. implies complex conjugate tefstep(2)].
Equation(3) gives

*Permanent address. LP1=iA(1-]A?), 4
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where modes of singular behaviors are possible. Therefore, it is
almost mandatory to avoid any particular perturbation result.
d? d Let us illustrate the proto RG approach for PDE with the
L= F+2| at (5)  two-dimensional Swift-Hohenberg equatidi?] that has
caused some controvergy,7,8]:
This is the end of stef3). Let us defineP; without the 2 2 2
A . Jau d 1%
constant term. Then this is the secular term itself and must be —=e(u—ud)—| —+—+K?| u. (10
renormalized into the modification of the integration constant ot ax2  ay?
of the zeroth order resu{tenormalization ofA to Ag). Thus, _ ) _
the renormalized perturbation result can be written as ~ We consider this on the whole plane for all positiveé\s a
' _ zeroth order solution, we choose a roll solution alongythe
y(t)=Ag(7)€" + e[ P1(t,Ar(7))— P1(7,AR(7))]e" axis: A€¥*+c.c., whereA is a complex numerical constant.
We expandu around this solution as
+...+c.c. (6)

u=Ae**+ eu; + €u,+ - - - +c.c. (12)

In the conventional RG approa¢B| we say thay has noth-
ing to do with the variabler which we introduced, so The first order correction obeys
dylat=0. The resultant equation is the RG equationthis 5
simple casg In this conventional RG, we do not use the duy 3 ) oy ikx n3.3ikx
properties of the problem under study at all; the procedure is ¢ @4' &_szrk uy=(1-3[A[%)Ae™~ A%,
quite blind. (12)

We should interpret the generic procedure of applying
dldr as an attempt to characterize the function spacehis is a linear PDE, so we may write the solution in the
spanned by singular solutions. Our crucial observation is th&following form:
it is natural to use an operator governing the secular terms. _ _
The operator is that in Eq4). LetL , be the same operator as up=Py(t,n)e**+Qy(t,rned (13
L, defined in Eq.(5), with t being replaced byr. Then, . ) ) )
obviouslyL y(t)=0, so with the aid of Eq(4) we immedi- Wherer=(x,y). Sincee’* is a null solution to the linear

ately obtain(to this order we may identifAg in P, with A, operator, P, must contain spatiall_y _secula(rthat is, un-
a constant bounded or not integrableerms. This is ste§2).

The step(3) is as follows. Since

2

ikx

0=L,y=[LAr—L,Pi(7,Ag)]€", (7 2
g (92 (92 2 ikx 2 ikx
or with the aid of Eq.(4) (we replacer with t in the result E+ ﬁjL (9_y2+k P,e"=(1-3[A[")Ae™,
(14)
2 d , )
@+2| Ot Ar(t) = €iAR(1—|Agl?). (8  we have
o i 4 P 92 52
This is step(4). We call such an equation@oto RG equa- 4 A K— 42—
tion. Notice that no explicit solutiorfother than the unper- gt gx? ax3  ay? ox?
turbed solutioh has ever been used. This turns out to be a ) ) .
crucial feature for partial differential equatiofBDE). N —4k2&—+4'k0—i+ K P
The last step is to reduce this formal result to a consistent ox2 ! ay? X gy? 1
equation to the relevant ordéhe lowest nontrivial order in
the present expositionEquation(8) tells us that differentia- =LP,;=(1-3|A?A. (15)
tion raises the power of, so to ordere we may discard the
second order derivative. This is the final st&p From this, we clearly see th&,; can never be a constant.

We can read), = —A%/64k* off from the equation foQ;.
dAR 1 5 The renormalized perturbation series reads
FZEGAR(1_|AR| ), 9

u=Ag(7,p) e+ e[ Py(t,r)—Py(7,p)]e*+- .- +c.c.
which is the standard RG equation and is an amplitude equa- (16)

tion. Higher order systematic calculation along this line iSyence, the proto RG equation can be obtained with the aid of
possible with slightly more calculatiori8] (some of which  gq (15) as

are used below[10,11]. Thus, obtaining the RG equation

can be made largely independent from singular perturbation L, AR(T.p)=e(1-3|Agl?)Ag, (17
results, as conceptually expected: system reduction is the key
to singular perturbation. whereL ; , is L with the replacemertt— 7, r— p. Notice that

In the case of ODE, the secular terms due to the perturwe have never used any explicit solutions of the perturbative
bation seem unambiguously identifiable, but for PDE theequation. This is the end of stéf). The reader may wonder
situation is usually complicated, because many differenhow unigue the choice of the operatoiis; to map the un-
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wanted secular term, any operator mapping it to zero shouldnyway[13]. Thus, we need onlQ,=—A3%64k* obtained
do. We do not have a general answer to this question. Howalready. Hence, the proto RG equation reads
ever, since we are interested in the global features of the
system, the operator must be as low order differential opera- LAg= €(1—3|Ag|2)Art € 3
tor as possible. With this requiremenis unique in practice, R REJTRTT saks
and is given by Eq(15).

L contains much more terms than the standard result. T80 ordere” this is actually the RG equation, and is the rota-
observe the system. If we wish to derive an equation goverrt al. [14].2Note_ that Eq(22) includes all possible terms up
ing isotropic evolution of the pattern, we must assunand (O order €, while the result in[7] did not contain the last

y (or d/9x and 9/dy) to scale in the same way, sddt ter_rphonkthe :eft-hanfsiQe Olf E(sz' bation is t e out
~ 3l 9x?~ 3%l 9y>~ €. That is, to ordere with isotropy re- © key element of singuiar perturbation 1S to separate ou

. ) : . global systematic effects of perturbations. If we can charac-
quirement we obtain the following RG equation: terize the function space spanned by the solutions, the most

Arl*Ar. (22

P P important res_ults. of singular perturbation can be captured.
(——4k2— Ag=e(1-3|Ag/?)AR. (189  Our observation is that the proto RG operator is the operator
ot ax? characterizing the function space, although we still need
clearer mathematical characterization of our procedure. In
This is step 5. this way, reductive perturbation is the essence of singular
To obtain the next order, we need the equation for theyerturbation[15].
second order term: In example(10) studied above, the smallness eofepre-

sents perturbations whose collective effects we are con-
cerned with. Fore not small but at a late stage of the roll
formation, Ju/dt becomes the only small perturbation that
enters the equation. The phase dynamics is now the relevant
={(1—-6|A|?)P;—3A%P} —3A*2Q,}e' slow motion. In this case the proto RG method works again
. . 1 nd the r ion is th ross-Newell ph
F{(1-6|A1?)Q, — 3A7P,16¥kx_ 3420, 65", [eqﬂét?or?[lt?f educed equation is the Cross-Newell phase
(19 In summary, we have considerably freed the RG theoret-
ical reduction from explicit perturbation results with the aid
The general form of the solution is given pstep(2)] (we  of the proto RG equation, demonstrating the fundamental
assume all the solutions to the corresponding homogeneouture of system reduction in singular perturbation problems.
equation are taken care of by the zeroth order considepatiorOur procedure also simplifies system reduction. As an illus-
: . . tration we have resolved the controversy as to the RG reduc-
Up=Po(t,Ne"*+Qy(t,r) e+ Rye™. (200 tion of the Swift-Hohenberg equation to the isotropic

. . . Newell-Whitehead-Segel equation.
Here,P, is obviously secularQ, is also secular because the

inhomogeneous term wit'** is already secular in EG19). Y.O. is grateful to Fred Furtado and Sin-ichi Sasa for
LP, is given by[step(3)] useful discussions, corrections, and correspondence, and to
Yoichiro Takahashi for his hospitality at Research Institute
LP,=(1—-6|A|®)P,—3A?P} —3A*2Q,.  (21) for Mathematical Sciences in Kyoto and for a partial finan-
cial aid. The present work is, in part, supported by the Na-
However, to use this equation to remove the secular termional Science Foundation Grant No. NSF-DMR 99-70690,
from the second order result, we may ignore all the seculaand by the Japan Society for Promotion of Science Grant-in-
terms on the right-hand side of E(R1) that will be gone  Aid for Scientific ResearcliA) 09304022.

o [ P 2
—+|—+—+K?| |u
gt \ox?  gy? 2

[1] N. D. Goldenfeld, O. Martin, and Y. Oono, J. Sci. Compyt. [10] If we wish to have a singular perturbation resuyit)

355(1989. =Ag(t)e''+Q,e* +c.c. to ordere explicitly, then we need
[2] L.-Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Re\b4 376 the solutionAg(t) to this RG equation an@1=iA§/8 that can
(1996. be obtained by inspection of E@). For linear problems, the
[3] L.-Y. Chen, N. Goldenfeld, Y. Oono, and G. Paquette, Physica proto RG method works to all ordefsind actually beyond
A 204, 111(1994). them[9,11]).
[4] O. Pashko and Y. Oono, Int. J. Mod. Phys4B 3290(2000. [11] Y. Oono, Int. J. Mod. Phys. Bto be published (Gakushuin
[5] T. Taniuti, Suppl. Prog. Theor. Phys5, 1 (1974). International Summer School of Mathematical Physics special
[6] H. Mori and Y. KuramotoDissipative Structures, and Chaos issue, edited by H. Ezawa and H. Araki.
translated by G. C. Paquett8pringer, Berlin, 1998 [12] J. Swift and P. C. Hohenberg, Phys. Rev1B, 319(1977.
[7] R. Graham, Phys. Rev. Let?6, 2185 (1996; 80, 3888E) [13] Since the renormalization to ordershould have removed all
(1998. the secularities froniP4, in the final result, this quantity must
[8] K. Matsuba and K. Nozaki, Phys. Rev. LeB0, 3886(1998. vanish. Thus, we may ignore all the nonconstant terms in the

[9] K. Nozaki and Y. Oondunpublished perturbation equations when we use it in the derivation of



RAPID COMMUNICATIONS

R4504 K. NOZAKI, Y. OONO, AND Y. SHIWA PRE 62

proto RG equations. A general discussion is givefi9ih
[14] G. H. Gunaratne, Qi Ouyang, and H. L. Swinney, Phys. Rev. E
50, 2802(1994. modulation problems have no fundamental difference. This is
[15] The reader may wonder whether there is any use of our RG  why system reduction is the universal key.
reduction in boundary layer type problems. In the RG ap-[16] Y. Shiwa (unpublishedgl
proach of[2] inner problems are solved and their global fea-[17] M. C. Cross and A. C. Newell, Physica I, 299 (1984).

ture determines the boundary layaithout inner-outer match-
ing), so these problems and long-time or global slow



