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Crossover from a square to a hexagonal pattern in Faraday surface waves
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We report on surface wave pattern formation in a Faraday experiment operated at a very shallow filling
level, where modes with a subharmonic and harmonic time dependence interact. Associated with this distinct
temporal behavior are different pattern selection mechanisms, favoring squares or hexagons, respectively. In a
series of bifurcations running through a pair of superlattices the surface wave pattern transforms between the
two incompatible symmetries. The close analogy to two- and three-dimensional crystallography is pointed out.

PACS number~s!: 47.54.1r, 47.20.Lz, 47.20.Ma
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When a fluid layer is vibrated vertically patterns of stan
ing waves occur at the liquid-air interface. This experime
first studied by Faraday@1# in 1831, has become a paradig
for the investigation of spontaneous pattern formation@2#.
From an experimental point of view, the Faraday setup
particularly attractive since the characteristic length and t
scales are under external control and relaxation times
typically in the order of seconds. If the vibration signal
sinusoidal and weakly supercritical one generically obser
well ordered standing wave patterns in the form of square
lines, oscillating with half the frequency of the excitatio
~subharmonic response!. By carefully tuning the drive fre-
quency within the crossover regime between gravity a
capillary surface waves, more complicated patterns with
eight- or even ten-fold rotational axis but missing trans
tional invariance~quasiperiodic! have been predicted and ob
served@3#. Edwards and Fauve@4# introduced the idea of a
two-frequency excitation signal. The resulting interplay b
tween the competing modes gave rise to unexpected
phenomena such as hexagonal, triangular, quasiperiodic,
tially localized structures and even superlattice-type patte
@5,6#. However, the large number of control parameters o
multifrequency drive signal renders such an experim
problematic as far as a systematic exploration of param
space is concerned, and it lacks an intuitive understandin
the fundamental principles. By use of a viscoelastic liquid
has been shown@7# that the familiar subharmonic Farada
resonance can be preempted by a synchronous~harmonic!
response, leading to a bicriticality as well. However, su
fluids are more complicated than Newtonian liquids and
characterization of their nonlinear rheology is incomple
For Newtonian fluids the parameter region in which the
sponse switches from subharmonic to harmonic is difficul
access@8–11# since it requires a very shallow filling depth
large shaking elevations and thus a powerful vibrator. T
Rapid Communication describes a systematic investiga
of a Newtonian liquid under a single-frequency drive that
operated close to the bicritical crossover. The interesting
ture is a ‘‘phase transition’’ from a square pattern to a str
ture of hexagonal symmetry. The symmetry change proce
via a sequence of superlattices with twofold and sixfold po
symmetry.
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Our shaker system has a force of 4800 N and a maxim
peak-peak elevation of 5.4 cm. It is operated at a rather
drive frequency of 8–10 Hz. The combination of these p
rameters with a filling depth of only 0.7 mm is necessary
access the harmonic-subharmonic bicriticality. The contai
with an inner diameter of 290 mm~equivalent to about 15
times the wavelengths! is sealed by a glass plate and tem
perature is controlled at 25°60.1 °C. At this temperature the
sample fluid~low viscosity silicon oil, Dow Corning 200! is
specified by a kinematic viscosityn59.731026 m2/s, a
surface tension ofs50.0201 N/m, and a densityr
5934 kg/m3. The actual acceleration experienced by t
container is recorded by a piezoelectric device. A feedb
loop control limits disturbing anharmonicities to a level
less than 0.2%. To visualize the surface profile we use
charge-coupled-device camera situated in the center of a
consisting of 120 light-emitting diodes above the fluid su
face. It follows from geometrical optics that only surfac
elements with a certain steepness reflect light into the c
era. Although this simple light reflection technique provid
high contrast pictures, the relation between the recorded l
intensity and the actual surface profile is generally too co
plicated to allow a reconstruction. Nevertheless, for sim
surface patterns we have solved this ‘‘inverse problem’’
the following method: Starting from an estimated surfa
profile composed of a small number of spatial Four
modes, we computed the light distribution of the expec
video image by means of a ray tracing algorithm. Then
adapted the mode amplitudes and their relative phase
optimize the agreement between the calculated and reco
video pictures.

The linear stability theory@12# evaluated for our fluid
predicts that the bicritical threshold, at which the syste
changes from the harmonic instability at lower frequencies
the subharmonic instability at higher frequencies, occurs
drive frequency ofVB/2p58.7 Hz. This is in good agree
ment with the present results. Figure 1 depicts a calcula
neutral stability diagram~acceleration amplitudea versus
wave number k) for an excitation frequencyV/2p
59.5 Hz slightly aboveVB . The minimum of the left
~right! resonance tongue defines the wave numberks (kh) of
the subharmonicS ~harmonicH) instability. The absolute
minimumac corresponds to the onset of Faraday waves. F
R33 ©2000 The American Physical Society
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ure 2 presents a phase diagram classifying the surface
terns as observed during a quasistatic amplitude ram
fixed drive frequencies. Starting from a subcritcal drive«
5a/ac21522% the amplitudea is increased by steps o
0.2%. After each increment the scan is suspended for 240
and a surface picture is taken thereafter. Having reache«
520% the ramp is reversed. There is no noticeable hys
esis for the primary onset between upward and downw
scans.

Within the drive frequency region of the harmonic Far
day instability (V,VB) the bifurcation scenario is rathe
conventional: Entering subregion V from below~see Fig. 2!,
we find a perfect hexagonal surface tiling which persists
to the maximum drive amplitude.

FIG. 1. Neutral stability diagram for an excitation frequen
V52p39.5 Hz slightly above the bicritical pointVB52p
38.7 Hz. Within the left~right! resonance tongue plane wave pe
turbations~wave numberk) with a subharmonic~harmonic! time
dependence become unstable. The absolute minimumac

54.25 g,ks5423 m21) determines the threshold for the onset
Faraday waves. The dashed horizontal lines indicate the drive
plitudes at which the patterns of Figs. 3 and 4 are taken.

FIG. 2. Phase diagram of the observed nonlinear patterns.
gion I, flat surface; II, subharmonically oscillating squares as
picted in Figs. 3~a! and 3~b!; III, A23A2 superlattice@Figs. 4~a!
and 4~b!#; IV, A33A3 superlattice@Figs. 4~e! and 4~f!#; V, har-
monically oscillating hexagons@Fig. 4~g! and 4~h!#. The symbols
mark the experimental observed transition points between
phases.
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The focus of the present paper is on the subharmo
region V.VB , where the onset pattern~region II! is of
square symmetry, while hexagons~region V! occur at rather
elevated shaking amplitudes as a higher bifurcation. Our
is to describe the bifurcation sequence, which results from
amplitude scan at the fixed drive frequency ofV59.5 Hz
~gravity wave regime!. The primary Faraday pattern~region
II in Fig. 2! has a subharmonic time dependence and exhi
a perfect fourfold symmetry as shown in Fig. 3~a!. The as-
sociated spatial power spectrum@Fig. 3~b!# indicates the fun-
damental wave vectorskS1 andkS2 but also pronounced con
tributions from higher harmonics, in particularkS11kS2. The
appearance of square patterns in low viscosity gravity wa
agrees with a small amplitude theory expanded around
subharmonic instability threshold@3#. At those small values
of « the competing harmonic Faraday modes do not not
ably affect the pattern selection process. The shallow fill
level used in our setup makes the surface elevation pro
very anharmonic with high, narrow tips but broad, shallo
hollows. We have reconstructed the surface profile belong
to Fig. 3~a! by our ray tracing algorithm. The spatial depe
dence of the interface deformation is decomposed accor
to

h~r !5(
i

Ai cos~k i•r1f i !, ~1!

where k iP$kS1 , kS2 , (kS16kS2), 2kS1 , 2kS2 , (2kS1
6kS2), (2kS26kS1)% and r5(x,y). A density plot with the
gray level proportional to the local surface elevation is giv
in Fig. 3~d! together with the related video image~c! as
computed by ray tracing the reflected light.

With increasing drive amplitude the harmonic Faraday
stability gradually gains influence upon the pattern select
dynamics. When entering region III we observe a continuo
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FIG. 3. ~a! and ~b! Photograph and related Fourier spectrum
the subharmonic square pattern~region II in Fig. 1!. All video im-
ages show the central region of the cylindrical container, wh
diameter is about twice as large.~c! Computed video image simu
lating the ray tracing technique.~d! Grey level plot of the associate
2D surface profile. By comparing~c! and ~d! it follows that in ~a!
the maxima of the surface profile are marked by our visualizat
technique.
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transition to a superlattice, characterized by a new sub
monic mode with wave vectorkD1 @see Figs. 4~a! and 4~b!#.
Since ukD1u5ukSu/A2 this new structure is denoted asA2
3A2 superlattice. Even though the associated Fourier s
trum gives evidence of a second modekD2 orthogonal to the
first one, the amplitude ratioAD1 /AD2.4 indicates thatkD1
is strongly prevailing. Therefore the 90°-rotational inva
ance of the original square pattern gives way to the sim
twofold symmetry. AssumingfS15fS250 ~by a proper
choice of the origin! our ray tracing technique suggests th
the modekD1 enters Eq.~1! in the form cos(kD1•r2fD1)
with fD15p/2. This result is supported by considering t
amplitude equation forAD1, which allows stationary solu
tions with eitherfD150 or fD15p/2. The respective sta
bility depends on the sign by which the nonlinear
AS1AS2AD1* enters the equation forAD1. Since fD1

5p/2 (fD150) is related to a spatial displacement~modu-
lation! of the wave crests, we denote the mode as displa
~modulational!. For our system the modekD1 is of displacive
character. This is easy to see by comparing the video ima
depicted in Figs. 3~a! and 4~a!: With increasing order param
eterAD1 the rows of elevation maxima@connected by dashe

FIG. 4. Photographs and related Fourier spectra taken at d
amplitudes as indicated in Fig. 1:~a! and ~b!, A23A2 superlattice
corresponding to region III of Fig. 2;~c! and~d!, ‘‘quasihexagonal’’
transient at the crossover between regions III and IV;~e! and ~f!,
A33A3 superlattice~region IV!; ~g! and ~h!, hexagonal pattern
~region V!.
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lines in Fig. 3~a!# are displaced in opposite directions
indicated by the arrows. The displacive modekD1 is excited
by a pair of wave vector triads according to the geometri
relations kD15kH12kS1 and kD15kH22kS2. The modes
kH1 , kH2 oscillate synchronously with the drive. Their con
tribution to the triad-couplings becomes energetically e
cient sinceukH1u5ukH2

u5A5/2.1.58 coincides almost ex

actly with the wave numberkh.1.59 associated with the
harmonic Faraday instability~Fig. 1!.

The transition from region III to IV is accompanied by
very slow rearrangement of the pattern and the occurrenc
defects. A snapshot taken during this crossover proces
shown in Fig. 4~c!. As « is increased, the displacive mod
kD1 gradually dies out and thuskH1 andkH2 enter into a new
triad together with the nonlinear harmonic modekH35kS2

2kS1. Even thoughukH3u5A2 does not exactly match th
unstable wave number band aroundkh ~see Fig. 1!, the drive
amplitude is apparently high enough to allow this detunin
The six-armed star of wave vectorskHi shown in Fig. 4~d!
already suggests a sixfold rotational invariance, but the t
symmetry of this ‘‘quasihexagonal’’ transient state is s
two-fold: The angles betweenkH1 andkH2 and betweenkH2

andkH3 are 56° and 62°, respectively, rather than 60°. Fr
the horizontal streaks of the Fourier spectrum of Fig. 4~d! it
can be seen that the translational coherence in thex direction
is in a process of disintegration, while the spatial periodic
in the y direction and the twofold point symmetry are st
preserved. Nevertheless the mutual resonance among thkHi

is the precursor of the hexagonal symmetry, which will fo
low.

The transient reorientation process comes to a halt w
the pattern has accomplished the ideal hexagonal symm
@region IV and Figs. 4~e! and 4~f!#. At this stage the har-
monic Faraday modes govern the pattern selection proc
The structure depicted in Figs. 4~e! and 4~f! can be under-
stood as aA33A3 superlattice of the hexagonal lattice of th
final state~regionV). Apparently, the subharmonic contribu
tions to the Fourier spectrum are dynamically slaved, si
the 6-fold symmetry dictated by thekH-modes is recovered
in number as well as in orientation by the new subharmo
set $kS1 , kS2 , kS3%. Note that the subharmonic time depe
dence does not allow a mutual resonance among thekSi . The
relative 30°-orientation between the S-star and the H-
results from the triad cross-coupling between harmonic
subharmonic modes. The appropriate geometrical reson
conditionskS11kS25kH1, etc., also enforce the length of th
subharmonic wavevectors to reduce from unity toukSiu
5A5/6.0.91. It can be shown that the fundamental mod
contributing to theA33A3 superlattice enter Eq. 1 with
equal spatial phasesfHi5fSi50: The equalityfH15fH2
5fH350 follows from the mutual resonance among t
kH-modes. The cross-coupling betweenkS- and kH-modes
enforcesfS15fS25fS3. Finally, the remaining condition
fSi50 is established only at quintic order in the associa
amplitude equation. With the reasoning outlined in Ref.@13#
one obtains eitherfS11fS21fS350 or p/2. Since the
former ~latter! case is associated with a sixfold~threefold!
symmetry, we conclude from Fig.4~e! thatfSi50 applies to
our system.
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If the drive amplitude is raised into phase regionV the
long wavelength modulation of theA33A3 superlattice dis-
appears and the pure hexagonal state as depicted in Fig.~g!
survives. Simultaneously theV/2-component in the tempora
power spectrum of the surface oscillation dies out.

In summary, the present paper reports a Faraday exp
ment in a very thin fluid layer. Drive frequency and fillin
depth are adjusted such that waves with subharmonic
harmonic time dependence become simultaneously unst
The different time dependencies imply distinct wavelengt
but they are also responsible for different nonlinear patt
selection mechanisms, which favor either squares or he
gons. In a series of bifurcations the transition from one sy
metry to the other takes place in a surprisingly coherent m
ner running through a displaciveA23A2 and aA33A3
superlattice.

A comparison to crystallographic phase transitions is
order. Hexagonal structures on one side and square~in 2D!
or cubic~in 3D! structures on the other side are incompati
since there is no group-subgroup relation connecting the
ferent space groups. Hence, such transitions involve a re
struction of the lattice via the formation of lattice defec
The hcp-fcc transition, occuring, e.g., in solid 4He, is
prominent 3D example. Here, the relevant defects are st
ing faults. The same principles hold of course for the pres
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patterns. At the same stage along the phase sequence fr
to IV there has to be a reconstructive transition involvi
defects. In fact the pattern of Fig. 4~c! taken just at the III–
IV-boundary shows such as line defect~running in the ver-
tical direction in the right half of the picture!. In contrast to
the hcp-fcc transition, the transition between the two inco
patible symmetries of our system does not occur in a sin
step, but involves two intermediate phases. Transition of
type II–III and V–IV are also known in 2D crystallography
The transition from a simple hexagonal lattice to aA33A3
superstructure has been observed for instance in monola
of C2F5Cl adsorbed on graphite@14#. The displacive transi-
tion II–III is analogous to the reconstruction of the~100!
surface of Wolfram crystals Ref.@15#. Here the surface at
oms are displaced in exactly the same way as the eleva
maxima of the surface profile in the present study. In ter
of 2D space groups the transition is fromp4 to p2mg im-
plying a doubling of the unit cell. The rectangularp2mg
symmetry calls for a rectangular metric, that is for differe
lattice parameters along two orthogonal directions but t
has not been observed in our experiment, presumably
cause of the insufficient resolution.
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