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Crossover from a square to a hexagonal pattern in Faraday surface waves
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We report on surface wave pattern formation in a Faraday experiment operated at a very shallow filling
level, where modes with a subharmonic and harmonic time dependence interact. Associated with this distinct
temporal behavior are different pattern selection mechanisms, favoring squares or hexagons, respectively. In a
series of bifurcations running through a pair of superlattices the surface wave pattern transforms between the
two incompatible symmetries. The close analogy to two- and three-dimensional crystallography is pointed out.

PACS numbds): 47.54+r, 47.20.Lz, 47.20.Ma

When a fluid layer is vibrated vertically patterns of stand-  Our shaker system has a force of 4800 N and a maximum
ing waves occur at the liquid-air interface. This experimentpeak-peak elevation of 5.4 cm. It is operated at a rather low
first studied by Faradajl] in 1831, has become a paradigm drive frequency of 8—10 Hz. The combination of these pa-
for the investigation of spontaneous pattern formafigh  rameters with a filling depth of only 0.7 mm is necessary to
From an experimental point of view, the Faraday setup i€iccess the harmonic-subharmonic bicriticality. The container
particularly attractive since the characteristic length and timavith an inner diameter of 290 mrtequivalent to about 15
scales are under external control and relaxation times arfémes the wavelengthss sealed by a glass plate and tem-
typically in the order of seconds. If the vibration signal is Perature is controlled at 23°0.1 °C. At this temperature the

sinusoidal and weakly supercritical one generically observe§a@mple fluid(low viscosity silicon oil, Dow Cor_r:sing 220)0i3
well ordered standing wave patterns in the form of squares otP€cified by a kinematic viscosity=9.7x10"" m“s, a
lines, oscillating with half the frequency of the excitation SUrface tension of¢=0.0201 N/m, and a density
(subharmonic responseBy carefully tuning the drive fre- =934 kg/nt. The actual acceleration experienced by the

quency within the crossover regime between gravity an(j:ontainer is recorded by a piezoelectric device. A feedback

capillary surface waves, more complicated patterns with a pop control limits d|sFurb|ng anharmonicities to a level of

. . : . less than 0.2%. To visualize the surface profile we used a
eight- or even ten-fold rotational axis but missing transla- . : . )

. . . T : charge-coupled-device camera situated in the center of a ring
tional invariancgquasiperiodit have been predicted and ob-

: i consisting of 120 light-emitting diodes above the fluid sur-
served[3]. Edwards and Fauvg!] introduced the idea of a face. It follows from geometrical optics that only surface

two-frequency excitation signal. The resulting interplay be-gjements with a certain steepness reflect light into the cam-
tween the competing modes gave rise to unexpected ney, Although this simple light reflection technique provides
phenomena such as hexagonal, triangular, quasiperiodic, Spggh contrast pictures, the relation between the recorded light
tially localized structures and even superlattice-type pattertensity and the actual surface profile is generally too com-
[5,6]. However, the large number of control parameters of gjicated to allow a reconstruction. Nevertheless, for simple
multifrequency drive signal renders such an experimenturface patterns we have solved this “inverse problem” by
problematic as far as a systematic exploration of parametehe following method: Starting from an estimated surface
space is concerned, and it lacks an intuitive understanding gfrofile composed of a small number of spatial Fourier
the fundamental principles. By use of a viscoelastic liquid, itmodes, we computed the light distribution of the expected
has been showp7] that the familiar subharmonic Faraday video image by means of a ray tracing algorithm. Then we
resonance can be preempted by a synchroribaemoni¢  adapted the mode amplitudes and their relative phases to
response, leading to a bicriticality as well. However, suchoptimize the agreement between the calculated and recorded
fluids are more complicated than Newtonian liquids and thevideo pictures.

characterization of their nonlinear rheology is incomplete. The linear stability theory[12] evaluated for our fluid
For Newtonian fluids the parameter region in which the reredicts that the bicritical threshold, at which the system
sponse switches from subharmonic to harmonic is difficult tochanges from the harmonic instability at lower frequencies to
accesg8—11] since it requires a very shallow filling depth, the subharmonic instability at higher frequencies, occurs at a
large shaking elevations and thus a powerful vibrator. Thiglrive frequency of(Qg/2m=8.7 Hz. This is in good agree-
Rapid Communication describes a systematic investigatioment with the present results. Figure 1 depicts a calculated
of a Newtonian liquid under a single-frequency drive that isneutral stability diagram(acceleration amplitude versus
operated close to the bicritical crossover. The interesting feawave number k) for an excitation frequencyQ/2xw

ture is a “phase transition” from a square pattern to a struc=9.5 Hz slightly above{)g. The minimum of the left
ture of hexagonal symmetry. The symmetry change proceedsight) resonance tongue defines the wave nunibefk;) of

via a sequence of superlattices with twofold and sixfold pointthe subharmonicS (harmonicH) instability. The absolute
symmetry. minimuma, corresponds to the onset of Faraday waves. Fig-
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FIG. 1. Neutral stability diagram for an excitation frequency ®© ® ® ©® ©
0=27x9.5 Hz slightly above the bicritical pointlg=2m ) © @ @

X 8.7 Hz. Within the left(right) resonance tongue plane wave per- .

turbations(wave numbetk) with a subharmoni¢harmonid time FIG. 3. (3 and (b) Photograph and related Fourier spectrum of

dependence become unstable. The absolute minimwp the subharmonic square pattdragion Il in Fig. 2. All video im-

=425 g,k,=423 m ') determines the threshold for the onset of ages show the central region of the cylindrical container, whose

Faraday waves. The dashed horizontal lines indicate the drive an‘}i-""_‘meter Is about_ twice as larg&) Computed video image simu-

plitudes at which the patterns of Figs. 3 and 4 are taken. lating the ray tracing techniquéd) Grey level plot of the associated
2D surface profile. By comparing) and (d) it follows that in (a)

) o the maxima of the surface profile are marked by our visualization
ure 2 presents a phase diagram classifying the surface pagchnique.

terns as observed during a quasistatic amplitude ramp at
fixed drive frequencies. Starting from a subcritcal drive The focus of the present paper is on the subharmonic
=ala,—1=—2% the amplitudea is increased by steps of region 1>, where the onset patterfregion ll) is of
0.2%. After each increment the scan is suspended for 240 sgguare symmetry, while hexagofregion V) occur at rather
and a surface picture is taken thereafter. Having reaeghed elevated shaking amplitudes as a higher bifurcation. Our aim
=20% the ramp is reversed. There is no noticeable hysteiis to describe the bifurcation sequence, which results from an
esis for the primary onset between upward and downwar@gmplitude scan at the fixed drive frequency@f=9.5 Hz
scans. (gravity wave regimg The primary Faraday pattefnegion
Within the drive frequency region of the harmonic Fara-1l in Fig. 2) has a subharmonic time dependence and exhibits
day instability 2<<Qpg) the bifurcation scenario is rather a perfect fourfold symmetry as shown in FigaB The as-
conventional: Entering subregion V from beldsee Fig. 2,  sociated spatial power spectrifig. 3(b)] indicates the fun-
we find a perfect hexagonal surface tiling which persists uglamental wave vectoksy; andkg, but also pronounced con-

to the maximum drive amplitude. tributions from higher harmonics, in particulag; + ks,. The
appearance of square patterns in low viscosity gravity waves
50 . . . agrees with a small amplitude theory expanded around the
Ve // subharmonic instability thresho[@]. At those small values
./|V /’ of ¢ the competing harmonic Faraday modes do not notice-
__asl Y * | ably affect the pattern selection process. The shallow filling
% // / E/\, level used in our setup makes the surface elevation profile
g :/’/ very anharmonic with high, narrow tips but broad, shallow
% 46 ?A/A | hollows. We have reconstructed the surface profile belonging
£ '//: ; I to Fig. 3@ by. our ray tracing aIgon@hm. The spatial depen'—
o . dence of the interface deformation is decomposed according
B 44} e ] to
L | .\.\\
42 . . . 7(1)=2 A cogki-r+¢)), (D
8.0 8.5 9.0 95 10.0 :
forcing frequency (2r. () where kie{ks;, K, (ksi*kg), 2Kgp, 2Ksp, (2Kg

FIG. 2. Phase diagram of the observed nonlinear patterns. Ret Ks2), (2ksz*Ksy)} andr=(x,y). A density plot with the
gion 1, flat surface; I, subharmonically oscillating squares as dedray level proportional to the local surface elevation is given
picted in Figs. 8) and 3b); Ill, v2x 2 superlatticFigs. 4a) in Fig. 3(d) together with the related video imade) as
and 4b)]; IV, 3|3 superlatticFigs. 4e) and 4f)]; V, har- ~ computed by ray tracing the reflected light.
monically oscillating hexagongFig. 4g) and 4h)]. The symbols With increasing drive amplitude the harmonic Faraday in-
mark the experimental observed transition points between thétability gradually gains influence upon the pattern selection
phases. dynamics. When entering region lll we observe a continuous
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lines in Fig. 3a)] are displaced in opposite directions as
indicated by the arrows. The displacive mddg, is excited

by a pair of wave vector triads according to the geometrical
relations kp; =k — kg and kp;=ky,—ks. The modes
Ku1, Ky oscillate synchronously with the drive. Their con-
tribution to the triad-couplings becomes energetically effi-
cient since|kyy|=[ky,|=5/2=1.58 coincides almost ex-

actly with the wave numbek,=1.59 associated with the
harmonic Faraday instabilitgFig. 1).

The transition from region Il to IV is accompanied by a
very slow rearrangement of the pattern and the occurrence of
defects. A snapshot taken during this crossover process is
shown in Fig. 4c). As ¢ is increased, the displacive mode
Kp1 gradually dies out and thug,; andk,,, enter into a new

_ : 3 5 L triad together with the nonlinear harmonic mokig;=Kks,
CACACACAS) OGQOO‘;?; i f —ks;. Even thoughlkys|= 2 does not exactly match the
unstable wave number band arougd(see Fig. 1, the drive
amplitude is apparently high enough to allow this detuning.
The six-armed star of wave vectokg; shown in Fig. 4d)
already suggests a sixfold rotational invariance, but the true
symmetry of this “quasihexagonal” transient state is still
two-fold: The angles betweén,; andky, and betweelk,;,
andk,; are 56° and 62°, respectively, rather than 60°. From
the horizontal streaks of the Fourier spectrum of Figl) 4
can be seen that the translational coherence ix tligection
is in a process of disintegration, while the spatial periodicity
in they direction and the twofold point symmetry are still
preserved. Nevertheless the mutual resonance amorig;the
is the precursor of the hexagonal symmetry, which will fol-
low.

FIG. 4. Photographs and related Fourier spectra taken at drive The transient reorientation process comes to a halt when

amplitudes as indicated in Fig. (a) and(b), V2 \2 superlattice the pattern has a_ccomphshed the ideal _hexagonal symmetry
corresponding to region 111 of Fig. Zg) and(d), “quasihexagonal”  [region IV and Figs. &) and 4f)]. At this stage the har-
transient at the crossover between regions Ill and(&;and (f), =~ monic Faraday modes govern the pattern selection process.
V3% /3 superlattice(region 1V); (g) and (h), hexagonal pattern The structure depicted in Figs(e} and 4f) can be under-
(region V). stood as a/3x /3 superlattice of the hexagonal lattice of the
final state(regionV). Apparently, the subharmonic contribu-
transition to a superlattice, characterized by a new subhations to the Fourier spectrum are dynamically slaved, since
monic mode with wave vectdip, [see Figs. &) and 4b)|.  the 6-fold symmetry dictated by tHg,-modes is recovered
Since |kpy|=|kgl/\/2 this new structure is denoted 82  in number as well as in orientation by the new subharmonic
X /2 superlattice. Even though the associated Fourier speset{ks;, ks, kss}. Note that the subharmonic time depen-
trum gives evidence of a second mddg, orthogonal to the dence does not allow a mutual resonance amonggheThe
first one, the amplitude ratidp; /Ap,=4 indicates thakp, relative 30°-orientation between the S-star and the H-star
is strongly prevailing. Therefore the 90°-rotational invari- results from the triad cross-coupling between harmonic and
ance of the original square pattern gives way to the simplesubharmonic modes. The appropriate geometrical resonance
twofold symmetry. Assumingpg; = ¢<,=0 (by a proper conditionsks; +ks,=ky, €tc., also enforce the length of the
choice of the origii our ray tracing technique suggests thatsubharmonic wavevectors to reduce from unity |tg
the modekp, enters Eq(1) in the form coskp;-r—¢p;)  =+/5/6=0.91. It can be shown that the fundamental modes
with ¢p,= /2. This result is supported by considering the contributing to they3x /3 superlattice enter Eq. 1 with
amplitude equation foAp,;, which allows stationary solu- equal spatial phaseg;= ¢5;=0: The equalityd ;= du>
tions with either¢p; =0 or ¢py=m/2. The respective sta- = ¢p,;=0 follows from the mutual resonance among the
bility depends on the sign by which the nonlinearity k,,-modes. The cross-coupling betwekg and k,;-modes
AsiAsAG; enters the equation forAp;. Since ¢p;  enforces¢g; = ¢ = dgs. Finally, the remaining condition
=ml2 (¢p,=0) is related to a spatial displacemémntodu-  ¢5;=0 is established only at quintic order in the associated
lation) of the wave crests, we denote the mode as displacivamplitude equation. With the reasoning outlined in R&8§]
(modulationa). For our system the mode,, is of displacive  one obtains eithelpg; + 5o+ pg3=0 or 7/2. Since the
character. This is easy to see by comparing the video imagdermer (latter) case is associated with a sixfolthreefold
depicted in Figs. @) and 4a): With increasing order param- symmetry, we conclude from Fig& that ¢5;=0 applies to
eterAp the rows of elevation maxim@onnected by dashed our system.
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If the drive amplitude is raised into phase regidrthe  patterns. At the same stage along the phase sequence from Il
long wavelength modulation of th¢3x /3 superlattice dis- to IV there has to be a reconstructive transition involving
appears and the pure hexagonal state as depicted in(Bjg. 4 defects. In fact the pattern of Fig(e} taken just at the 11—
survives. Simultaneously tHe/2-component in the temporal 1V-boundary shows such as line deféotinning in the ver-
power spectrum of the surface oscillation dies out. tical direction in the right half of the pictuyeln contrast to

In summary, the present paper reports a Faraday expefihe hcp-fce transition, the transition between the two incom-
ment in a very thin fluid layer. Drive frequency and filling patible symmetries of our system does not occur in a single
depth are adjusted such that waves with subharmonic angtep, but involves two intermediate phases. Transition of the
harmonic time dependence become simultaneously unstabl@,Ioe lI-11l and V—IV are also known in 2D crystallography.

selection mec_hanism.s, Whi.Ch favor eith(_ar_ squares or hexao-f C,F5Cl adsorbed on graphi{d4]. The displacive transi-
gons. In a series of blfurcat|on_s the transition from one SYMzion 1=l is analogous to the reconstruction of t&00)
metry to the other takes place in a surprisingly coherent man-

. . . surface of Wolfram crystals Ref15]. Here the surface at-
23;;1'23;23 through a displacive2x V2 and a3 3 oms are displaced in exactly the same way as the elevation

. . . .. maxima of the surface profile in the present study. In terms
A comparison to crystallographic phase transitions is in

. . f 2D h ition is f 2mg im-
order. Hexagonal structures on one side and sq(iar2D) ° space groups the transition Is frgpd to p2zmg im

or cubic(in 3D) structures on the other side are incompatibleplylng a doubling of the unit cell. The rectangulpmg

ince there is no ar bar relation connecting th difsymmetry calls for a rectangular metric, that is for different
since here 1S no group-subgroup refation connecting th€ il ;o parameters along two orthogonal directions but this
ferent space groups. Hence, such transitions involve a reco

struction of the lattice via the formation of lattice defects.rﬂas not been observed in our experiment, presumably be-

" . : . -~ cause of the insufficient resolution.
The hcp-fcc transition, occuring, e.g., in solid 4He, is a
prominent 3D example. Here, the relevant defects are stack- We thank J. Albers for his support. This work is sup-
ing faults. The same principles hold of course for the presenported by the Deutsche Forschungsgemeinschatft.
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