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Soliton stability versus collapse
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Nonlinear Schro¨dinger equations with positive potentials are investigated. Stability of their stationary
ground states is confronted with properties of nonlinear blow-up. The stability condition for these soliton
modes is shown to involve restrictions on the potential slope, which do not forbid the collapse. We prove that
stable ground states must have a power integral below their counterpart with no potential.

PACS number~s!: 42.65.Wi, 03.65.Ge, 42.65.Jx
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The nonlinear Schro¨dinger~NLS! equation belongs to the
class of universal models, which can be derived for desc
ing the propagation of dispersive, nonlinear wave-pack
@1#. It is often met in nonlinear optics@2#, plasma physics
@3#, field theory@4#, and physics of matter waves@5# as well.
The fundamental nature of NLS becomes apparent in
universal methods for soliton stability@6#. Solitons are sta-
tionary nonlinear bound states, to which solutions to the N
equation

i ]zc1Dc1ucu2sc2U~rW,ucu2!c50, ~1!

may relax and evolve on long scales, when they are stabl
Eq. ~1!, c represents the slowly varying envelope of a hig
frequency wave field propagating along thez axis within a
diffraction/dispersion space of dimension numberD. The
nonlinearity ucu2sc is a power-law nonlinearity with expo
nents.0, which reduces to cubic withs511 for, e.g., an
optical Kerr material@2#. The real functionU is a potential,
depending on the space variables and/or the wave field
tensity, which can either stand for corrections to the non
ear power-law response, or for some inhomogeneities in
medium. Soliton solutions, also termed as ‘‘ground state
are defined by the stationary solutionsc(rW,z)
5x(rW,l)exp(ilz), where x is solution to the differential
equation

2lx1¹2x1uxu2sx2U~rW,uxu2!x50. ~2!

For U50, it is well-known that nostable soliton solution
exists whenD satisfiesD>2/s, and that any initial solution
c0(rW)[c0(rW,0) is condemned to either collapse or spre
out @1#. In contrast, for a bounded, space-dependent pote
U(rW) vanishing at infinity, Rose and Weinstein@7# demon-
strated that nonlinear ground states of Eq.~1! exist and can
be stable, when2D1U already supports a bound state.
that case, the theorem for orbital stability, first established
Vakhitov and Kolokolov in@8# for saturable nonlinearities
applies: the ground statex(.,l) is orbitally stable if and only
if

dlE ux~rW,l!u2drW.0 ~dl[d/dl!. ~3!

Orbital stability means that, modulo the elementary symm
tries of Eq.~1!, the shape ofc is preserved by perturbation
PRE 621063-651X/2000/62~3!/3071~4!/$15.00
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having no growing modes, when they act on any solut
close to the soliton orbit. Therefore, any initial datumc0
nearbyx exp(ilz) does not collapse, but remains close to t
ground state asz increases. In view of this, three pertine
questions arise:~i! Does Eq.~3! hold for potentialsU includ-
ing nonlinearities inucu2? ~ii ! What must the potential shap
be to produce stable ground states?~iii ! What is the role of
the ‘‘free’’ NLS ground state defined forU50 with respect
to the bound states of Eq.~1!?

The goal of this Rapid Communication is to answer t
above points. For technical convenience, we employ the
tations introduced in@7#: D is the D-dimensional Laplace
operator( i]

2/]xi
2 for vector rW5(x1 ,x2 , . . . ,xD). H1 is the

Sobolev spaceH15$ f :(12D)1/2f PL2% with norm i f iH1
2

5i f i2
21i¹W f i2

2, involving the Lp spaces Lp5$ f :i f ip

[(* u f updrW)1/p,1`%. We shall assume thatc0(rW)PH1 and
U is derived fromGPL1:

G~rW,uc u2![E
0

ucu2
U~rW,s!ds. ~4!

First, we discuss sufficient conditions for collapse a
consider potentials with a positive slope, for which blow-
can occur. Second, we determine some integral relations
isfied by the solitons and compare them with the requ
ments for collapse. We deduce that theL2 norm ofx must be
below that of free NLS ground states. Finally, we solve t
stability problem for the solitons of Eq.~1! and show that the
potentialU, although appropriate for the collapse, can a
assure their stability.

1. Conditions for blow-up. Equation~1! preserves theL2

norm ~so-called mass or power integral!

N[ic i2
25E uc u2drW5ic 0i2

2 ~5!

and the Hamiltonian

H5H@c#[i¹W c i2
22

1

s11
ic i2(s11)

2(s11)1E G~rW,uc u2!drW.

~6!

Standard computations@9# furthermore yield the following
identity for the integral̂ r 2&[*r 2ucu2drW/N:
R3071 ©2000 The American Physical Society
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dz
2^r 2&5

4

N H 2H1
22sD

s11
ic i2(s11)

2(s11)2D

3E @~112/D !G~rW,ucu2!2ucu2U~rW,ucu2!#drW

2E F E
0

ucu2
r ] rU~rW,s!dsGdrWJ , ~7!

while the center of mass~centroid! of the solution, defined
by ^rW&[*rWucu2drW/N, evolves with the acceleration

dz
2^rW&52

2

NE F E
0

ucu2
x̂i]xi

U~xi ,s!dsGdrW. ~8!

In these expressions,] rU (r[urWu) and ]xi
U denote partial

differentiations ofU with respect to its explicit dependencie
on the space variables only, whereas in what follows¹W U

will refer to the total derivative¹W U5 x̂i]xi
U1U8¹W ucu2,

where U8[]U/]ucu2. Equation ~8! shows that, with a
space-dependent potentialU, the trajectory of a wave-packe
governed by Eq.~1! is displaced alongz through the
D-dimensional space and translational invariance is lost.
sides, Eq.~7! indicates that the wavefunctionc can undergo
a collapse witĥ r 2&→0 at a finite propagation distance,zc .
Sufficient conditionsfor collapse are then given by the com
bination of the following four requirements:

~i! D>2/s,
~ii ! H,0,
~iii ! (112/D)G(rW,s)>sU(rW,s), ;s>0,
~iv! ] rU(rW,s)>0, ;s>0.

When the above conditions are all realized for a giv
initial datumc0, the integral̂ r 2& inevitably tends to zero a
z→zc . By applying the estimateN<(4/D2)i¹W ci2

2^r 2& @1#,

^r 2&→0 implies the divergence of the gradient normi¹W ci2
in the same limit. As a result, the solution blows up a
cannot survive inH1 @9#. Other sufficient conditions for
blow-up can be established with positive Hamiltonians, p
vided thatc0 possesses an initial prefocusing (dz^r

2&uz50
,0) related to the gradient of its phase~see, e.g.,@1#!. How-
ever, we shall disregard them, as we are rather intereste
the fate of initial states being close to stationary bound st
with no spatially dependent phase. Wishing to confront
stability of these states with their possibility of blowing u
we shall moreover suppose that the constraint of multidim
sionality ~i! holds and that the potential already satisfies~iii !.
This precludes negative functionsU and saturating nonlin-
earitiesU;ucu2g with g.s as well. So, for technical con
venience, we consider

0,U8~rW,s!<sss21, ;s>0, and U~rW,0!>0. ~9!

2. Soliton properties versus conditions for collapse. For
the ‘‘free’’ NLS equation (U50), the existence of ground
states follows from minimizing appropriate functional, wh
l.0 only @10#. The minimum of this functional is then re
alized on the positive solution of Eq.~2!, denoted byR, with
e-

n

-

in
es
e

-

HamiltonianH@R#[(122/sD)i¹W Ri2
2. Soliton solutions are

functions of r 5urWu alone and exist for 2/D<s,2/(D22)
when D>2 @7,10#. They also possess the lowestL2 norm
N05iR0i2

2 computed from Eq.~2! with l51, as R(r ,l)
5l1/2sR0(Alr ). This constant normN0 intervenes in the
Sobolev inequality

ic i2(s11)
2(s11)<C~N0!i¹W c i2

sDic i2
21s(22D) , ~10!

where, e.g.,C(N0)5(s11)/N0
s at the critical dimension

D52/s. When U is space-dependent, the existence
ground states may proceed from analogous minimiza
principles performed on functionals such as

Jl@ f #5

i¹W f i2
21E G~rW,u f u2!drW1li f i2

2

i f i2(s11)
2

. ~11!

For example, withU5U(rW), the minimum ofJl is attained
at a positive solution of Eq.~2!, which is nothing else but the
ground statex @7#. This solution also minimizesH@ f # under
constraint, when it is stable. More general potentials in
form U(rW,x2) have been investigated in@11#, for which, with
suitable growth conditions onU, Eq. ~2! was shown to admit
positive solutions that realize critical points for Hamiltonia
type functionals. Here, it is clear thatJl@ f # has at least one
critical point on the ground-state solutionx. In light of these
results, we henceforth conjecture thatU(rW,ucu2) allows for
the existence of ground states, defined as the unique, pos
solutions of Eq.~2! realizing aminimumfor Jl@ f #. From a
practical point of view, these solutions can numerically
identified by means of classical shooting techniques.

Direct calculations yield the values of the gradient a
L2(s11) norms of the solitonx, namely,

i¹W xi2
25

sD

2~s11!2sD Flixi2
21E uxu2UsdrW G

1
~s11!

2~s11!2sDE uxu2rW•¹W UsdrW, ~12!

1

s11
ixi2(s11)

2(s11)5
2

2~s11!2sD Flixi2
21E uxu2UsdrW

1 1
2 E uxu2rW•¹W UsdrW G . ~13!

For some positive potentials satisfying, e.g.,] rU>0, l may
not thus be restrained tol.0 for insuring the positivenes
of the norms~12! and ~13!, unlike the caseU50. Next,
these expressions lead to the Hamiltonian

Hs5
sD22

2~s11!2sD Flixi2
21E uxu2UsdrW G

1
s

2~s11!2sDE uxu2rW•¹W UsdrW1E G~rW,uxu2!drW.

~14!
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Here,Hs andUs are the Hamiltonian and potential evaluat
on the soliton solution. By using the previous relations,
soliton is readily found to have a stationary mean-squ
radius, i.e., dz

2^r 2&s50, as expected. Solitonlike groun
states thus correspond to boundary solutions lying in
tween the sufficient condition for collapse (dz

2^r 2&,0) and

other spreading behaviors (dz
2^r 2&.0). By expanding¹W U in

Eq. ~14!, Hs is found to be always positive under the requir
ments~i!, ~iii !, and ~iv!, and, therefore, it never fulfills~ii !.
Besides, the acceleration~8! of the centroid̂ rW& must satisfy
* uxu2¹W UsdrW50W , which imposes a spatial distribution ofU
compatible with that ofuxu2: if uxu2 is an even, bell-shape
function, then the gradient ofU must be odd in the spatia
variables.

We now discuss the compatibility between the charac
istic integrals of stablex and conditions for collapse. A nec
essary condition for collapse at critical dimension (sD52)
can be obtained by bounding the Hamiltonian

H>i¹W ci2
2~12Ns/N0

s!1E G~rW,ucu2!drW,

with the inequality~10!. As GPL1, the blow-up of the gra-
dient norm can only occur forD52/s, wheneverN.N0.
Conversely, the minimum ofH is attained on the soliton
solution if H@x#.2`, which is ensured forNs[ixi2

2

,N05iRi2
2 only.

At supercritical dimensionsD.2/s, the same resul
holds: stable ground states have aL2 norm below their coun-
terpart forU50. To show this, we argue on gradient norm
and Hamiltonian domains. First, in the domainH<H@R#, all
ground states withHs<H@R# immediately verify i¹W xi2

2

<i¹W Ri2
2, as inferred from relations~12! and ~14!. Second,

let us rewrite Eq.~7! as

dz
2^r 2&5

4sD

N
$H2F~c!%, ~15!

F~c![S 12
2

sD D i¹W ci2
21S 11

1

s D E GdrW2
1

sE ucu2UdrW

1
1

sDE F E
0

ucu2
r ] rU~rW,s!dsGdrW. ~16!

Under the current assumptions~iii ! and ~iv!, F(c) satisfies
F(c)>(122/sD)i¹W ci2

2 and it converges toHs as c re-
laxes toc5x exp(ilz). Thus, all initial datac0 verifying
H,Hs will produce collapse at a finite propagation distan
In the complementary domainHs>H.H@R#, it is then suf-
ficient to choose initial data withi¹W c0i2

2.i¹W Ri2
2, for con-

demning any solution to blow up witĥr 2&→0 and i¹W ci2
2

→1`. Indeed, from

N

4sD
dz

2^r 2&<H2
sD22

sD
i¹W ci2

2,H2H@R#,

collapse systematically arises in this Hamiltonian range
gradient normsi¹W ci2

2.H/(122/sD).H@R#/(122/sD)
e
e

-

-

r-

.

r

[i¹W Ri2
2. Consequently, to avoid the blow-up, the nor

i¹W xi2
2 must satisfy the opposite inequality,

i¹W xi2
2<i¹W Ri2

2 . ~17!

Since i¹W xi2
2/i¹W Ri2

2>ixi2
2/iRi2

2 from Eq. ~12!, we finally
deduce

Ns5ixi2
2<iRi2

25N0 /lD/221/s. ~18!

This result shows that, if stable ground states exist, theirL2

norm must be lower thaniRi2
2, except in the limit l

→1`, for which Eq.~2! suggests thatixi2
2 can attainiRi2

2

from below. While Ns is bounded by a fixed constant a
critical dimension, this norm always vanishes at largel for
supercritical dimensions, and may, for appropriate potenti
access high values whenl approaches zero.

3. Stability criterion. We now perturb the ground statex

and employ c(rW,z)5@x(rW,l)1v(rW,z)1 iw(rW,z)#exp(ilz),
wherex, v andw are real functions satisfyingv,w!x. In-
serting this solution into Eq.~1! and linearizing it lead to

vz5L0w, 2wz5L1v, ~19!

where the operators

L05l2D2x2s1U~rW,x2!, ~20!

L15L022sx2s12U8~rW,x2!x2, ~21!

have the properties

L0x50, L1

]x

]l
52x, L1¹W x52xS rW

r
D ] rU, ~22!

with ¹W x[(rW/r )] rx. Conditions~9! ensure that the infimum
of the continuum spectrum ofL0 and L1 is positive with
limr→1`$l1U12U8x2%.0. The operator L0
[2x21¹@x2¹x21# is positive semidefinite withL0x50,
wherex has no node since it is positive. Thus,L0 is positive
definite when operating on all functionsv,w orthogonal to
x. By combining Eqs.~19! for functionsv'x, a sufficient
and necessary condition for orbital stability readily follow
from the sign of Inf̂vuL1v&/^vuL0

21v&, which must be posi-
tive in the class of perturbations perpendicular tox @12#. By
convention, brackets denote theL2 scalar product̂ aub&
5*a* bdrW. Stability proof then results from determining th
eigenvaluea entering the spectral problemL1v5av1bx,
wherebÞ0 is a Lagrange multiplier related to the orthog
nality constraint^vux&50. Setting v5(L12a)21bx and
applying^vux&50, we have to analyze the variations of th
function g(a)5^xu(L12a)21x&. This function is well-
defined and monotonically increasing foraP@l0 ,l1#,
wherel0,l1 are the first two discrete eigenvalues ofL1.
With l0,0 andl1.0, solitonsx are then stable wheneve
g(0)5^xuL1

21x& is negative, which can be rewritten as E
~3! by means of relations~22!.

Here,L1 verifiesL1,L0 together with

^xuL1x&522sixi2(s11)
2(s11)12E U8~rW,x2!x4drW, ~23!
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^¹W xuL1¹W x&52 1
2 E ¹W x2S rW

r
D ] rUdrW. ~24!

From Eq.~23!, L1 has thus at least one negative eigenval
l0,0, such thatL1c05l0c0, wherec0 is nodeless. Asx2

decreases withr almost everywhere, relation~24! moreover
shows that this eigenvalue may be unique ifU satisfies the
item ~iv! for collapse, i.e.,] rU>0. In the opposite case
] rU,0, the integralŝ xuL1x& and ^¹W xuL1¹W x& both attain
negative values, and since¹W x andx are orthogonal to each
other, we can always construct an eigenvector ofL1 with
negative eigenvalue, being orthogonal toc0. With ] rU
,0, L1 has thus two distinct negative eigenvalues, wh
certainly leads to instability. Hence,] rU>0 guarantees soli
ton stability. Note that stability is not excluded if] rU is
locally negative in some bounded regions of space, but
insures the positiveness of Eq.~24!. By assumingU with a
positive slope, uniqueness ofl0,0 proceeds from the sec
ond variation ofJl@ f # defined in Eq.~11!. This second varia-
tion is computed fromd2/de2ue50Jl@x1eh# for any con-
tinuous real functionh and it leads to

A^huJ9@x#h&5^huL1h&1^r 1uh&, ~25!

with A5 1
2 ixi2(s11)

2 .0 and

r 1[@2s/ixi2(s11)
2(s11)#^hux2s11&x2s11.

Since the minimum ofJl@ f # is attained on the soliton solu
tion, J9@x# is non-negative under the constaints~9!. AJ9@x#
moreover expresses asL11r 1, wherer 1 is a rank one per-
turbation. Consequently, for anyvPH1 orthogonal to
x2s11, L1 reduces toAJ9@x#, which is positive. Suppose
now that there exist two orthogonal eigenstates ofL1 with
two distinct negative eigenvalues. We can always comb
them linearly for constructing a vectorv perpendicular to
x2s11. This would certainly lead tôvuL1v&,0, which is
ett

s

,

h

ill

e

impossible. Therefore,L1 has exactly one negative eigen
value, provided that] rU>0.

Finally, we need to clear up the condition forL1 to have
its second eigenvalue being positive. Let us suppose
there existsc1Þ0 such thatL1c15l1c150. Then, neces-
sarily, ^c1uL1¹W x&50W leads to ^c1ux(rW/r )] rU&50W . Here,
c1 is perpendicular tox @see Eq.~22!#. Also, becauseL1
,L0 andx is nodeless,c1 has one node~e.g.,c1 is odd for
radially symmetric ground states!. Thus, the existence o
l150 implies ^c1ux(rW/r )] rU&50W , which has no reason to
be realized. Forx even and (rW/r )] rU odd, this statemen
indeed holds forD51 with c1 being zero at center for sym
metry reasons. At higher dimensions,c1 must be decom-
posed into spherical harmonics asc1(r ,u,w)
5( lmf lm(r )Ylm(u,w). It corresponds to the first spherica
harmonicsc15f1(r )rW/r with c1 odd andf1(r ) even inr,
wheneverL11(D21)/r 2 is non-negative@12#, which we
admit. In that case, the former result holds with^f1ux] rU&
Þ0, so thatl1.0.

In summary, we have shown that the soliton solutions
Eq. ~1! are orbitally stable when the potentialU verifies Eq.
~9! with ] rU>0. Stable ground states of Eq.~1! are charac-
terized byNs<iRi2

25N0 /lD/221/s, whereR is the soliton
mode of Eq.~2! with U50. From a physical viewpoint, ou
result means that when a potentialU.0 exhibits a positive
curvature near the point where a stationary wave-packet
with a mass below standard thresholds for self-focusing
can arrest the natural spreading of free NLS solutions
produce a stable nonlinear waveguide. Reversely, w
higher norms, the wave-packet is capable of collapsingfaster
than forU50. As application examples, we emphasize p
tentials in the forms, e.g.,U5r 2 for Bose-Einstein conden
sates@5,13# and other potentials such asU5V(rW)ucu2g with
an increasing even functionV(rW).0 andg,s.

The author thanks Dr. Anne de Bouard for her judicio
advice on this topic.
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