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Soliton stability versus collapse
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Nonlinear Schrdinger equations with positive potentials are investigated. Stability of their stationary
ground states is confronted with properties of nonlinear blow-up. The stability condition for these soliton
modes is shown to involve restrictions on the potential slope, which do not forbid the collapse. We prove that
stable ground states must have a power integral below their counterpart with no potential.

PACS numbds): 42.65.Wi, 03.65.Ge, 42.65.Jx

The nonlinear Schidinger(NLS) equation belongs to the having no growing modes, when they act on any solution
class of universal models, which can be derived for describelose to the soliton orbit. Therefore, any initial datufg
ing the propagation of dispersive, nonlinear wave-packetsiearbyy exp(\z) does not collapse, but remains close to the
[1]. It is often met in nonlinear optick2], plasma physics ground state ag increases. In view of this, three pertinent
[3], field theory[4], and physics of matter wavéS] as well.  questions arisgi) Does Eq.(3) hold for potentialdJ includ-
The fundamental nature of NLS becomes apparent in thing nonlinearities ir4|>? (i) What must the potential shape
universal methods for soliton stabilif$]. Solitons are sta- be to produce stable ground stat€i? What is the role of
tionary nonlinear bound states, to which solutions to the NLShe “free” NLS ground state defined fdd =0 with respect
equation to the bound states of E¢L)?
. The goal of this Rapid Communication is to answer the
P9+ A+ | 27— U(r,| 4P =0, (1)  above points. For technical convenience, we employ the no-
tations introduced irf7]: A is the D-dimensional Laplace
may relax and evolve on long scales,_ when they are staple. Igperatorziaz/ax? for VeCtorr = (Xy.%,, . . . Xp). HL is the
Eq. (1), ¢ represents the slowly varying envelope of a high- R 12 - 2
frequency wave field propagating along thexis within a  SoPolev spaced”={f:(1—A)** <L} with norm [l
diffraction/dispersion space of dimension numir The  =|fll5+|Vf|5 involving the LP spaces LP={f:|f],
nonlinearity | 4|27y is a power-law nonlinearity with expo- =(J|f|Pdr)P< +o0}. We shall assume thatty(r) e H! and
nento>0, which reduces to cubic with=+1 for, e.g., an U is derived fromGe L?!:
optical Kerr materia[2]. The real functionJ is a potential,
depending on the space variables and/or the wave field in- R e
tensity, which can either stand for corrections to the nonlin- G(fy|¢|2)5f
ear power-law response, or for some inhomogeneities in the 0
medium. Soliton solutions, also termed as “ground states,”
are defined by the stationary solutionap(F ,Z)
=x(r,\)exp(\z), where x is solution to the differential
equation

u(r,s)ds. (4)

First, we discuss sufficient conditions for collapse and
consider potentials with a positive slope, for which blow-up
can occur. Second, we determine some integral relations sat-
isfied by the solitons and compare them with the require-
ments for collapse. We deduce that tifenorm of y must be
below that of free NLS ground states. Finally, we solve the
stability problem for the solitons of Eql) and show that the
potential U, although appropriate for the collapse, can also

—Ax+ V2 [x[27x = U(r x| x=0. 2

For U=0, it is well-known that nostable soliton solution
exists wherD satisfiesD=2/o, and that any initial solution . o
assure their stability.

$o(r)=9o(r,0) is condemned to either collapse or spread 1 congitions for blow-upEquation(1) preserves thé.2
out[1]. In contrast, for a bounded, space-dependent potentig}y - (so-called mass or power integral

U(r) vanishing at infinity, Rose and Weinstdii] demon-

strated that nonlinear ground states of Eb.exist and can .

be stable, when- A+ U already supports a bound state. In NE||¢||§ZJ | 2dr=lyol3 (5
that case, the theorem for orbital stability, first established by

Vakhitov and Kolokolov in[8] for saturable nonlinearities,
applies: the ground stajg .,\) is orbitally stable if and only
if

and the Hamiltonian
B, 1 . .
H=HLI=I T l3-—Iw I3 5+ [ o lu Par
d)\J |x(r,\)[2dr>0 (d,=d/d)). 3) 6)

Orbital stability means that, modulo the elementary symmeStandard computation9] furthermore yield the following
tries of Eq.(1), the shape ofy is preserved by perturbations identity for the integralr2)= [r2||?dr/N:
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421 = 4 oH +2— oD 12D HamiltonianH[Rlz(l—2/0D)||€R||§. Soliton solutions are
z N o+1 2(e+1) functions ofr=|r| alone and exist for B<o<2/(D—-2)

when D=2 [7,10]. They also possess the lowdst norm

N N N _ 2 H —
X 14 2ID)G(T, || — | #2U(r, || 1dr No=|/Roll5 computed from Eq(2) with A=1, asR(r,\)
f[( ([l )] =\Y2Ry(VAr). This constant nornN, intervenes in the
L . R Sobolev inequality
_J fO rarU(r’S)dS dr]' (7) 2(c+1 Vi D 2+o(2-D
[ 153 =C(No)IVylisPl¢l57*™™, (10)

while the center of mas&entroid of the solution, defined

by(F)zfﬂ z/flzdF/N, evolves with the acceleration where, e.9.,C(Ng)=(o+1)/Ng at the critical dimension

D=2/oc. When U is space-dependent, the existence of
ground states may proceed from analogous minimization

- 2 2, -
d(r)y=— NJ J'W Xjdy U(X;,s)ds|dr. (8)  principles performed on functionals such as
0 1
In these expressionsg,U (r=|r|) and 4, U denote partial |\€f||§+f G(r,|f[>)dr+\|f[3
differentiations ofU with respect to its explicit dependencies JIMf]= TE (13)
2(s+1)

on the space variables only, whereas in what follwis

. . . = _" ’ = 2 N
will refer to the total derivativeVU=xg, U+U'V[y[%, example, withu =U(r), the minimum ofJ* is attained

where U'=4U/d|y|?>. Equation (8) shows that, with a at a positive solution of Eq2), which is nothing else but the
space-dependent potentia) the trajectory of a wave-packet ground statey [7]. This solution also minimizesi[ f] under
governed by Eq.(1) is displaced alongz through the constraint, when it is stable. More general potentials in the
D-dimensional space and translational invariance is lost. Berorm U(F,x2) have been investigated 1], for which, with
sides, Eq(7) .i“digates that the.wavefunctiqm can undergo suitable érowth conditions od, Eq.(2) waé shown to’ admit

a cqllgpse W'tr(.r. )—0 at a finite propagat_|on distancg,. positive solutions that realize critical points for Hamiltonian-
S_uff|c_;|ent cond|t|on§o_r collapse are then given by the com- type functionals. Here, it is clear that[f] has at least one
bination of the following four requirements: critical point on the ground-state solutign In light of these

N results, we henceforth conjecture tha(F |#]?) allows for
(i) H<0 ’ the existence of ground states, defined as the unique, positive
’ - - solutions of Eq.(2) realizing aminimumfor J*[f]. From a
(!”) (1+%/D)G(r,s)>su(r,s), Vs=0, practical point of view, these solutions can numerically be
(iv) 9,U(r,s)=0, Vs=0. identified by means of classical shooting techniques.

N _ ) Direct calculations yield the values of the gradient and
When the above conditions are all realized for a given| 2(v+1) norms of the solitory, namely,

initial datum g, the integrakr2) inevitably tends to zero as

z—z.. By applying the estimat®dl<(4/D?)|V 4|%(r?) [1], - o ) o
(r?)—0 implies the divergence of the gradient notf/, “VXH2_2(<7+ 1)—oD [)\”X”2+J I Usdr}
in the same limit. As a result, the solution blows up and

cannot survive inH! [9]. Other sufficient conditions for (o+1)
blow-up can be established with positive Hamiltonians, pro- 2(c+1)—0oD
vided that s, possesses an initial prefocusind(r?2)|,—o

<0) related to the gradient of its pha&ee, e.g.[1]). How- 1 2e+1) 5 ) R
ever, we shall disregard them, as we are rather interested in m”)(”z(gn):m[)\”)(”ﬁf |x|*Udr

the fate of initial states being close to stationary bound states

with no spatially dependent phase. Wishing to confront the N P -

stability of these states with their possibility of blowing up, + zf |x|°r-vVuddr|. (13
we shall moreover suppose that the constraint of multidimen-

sionality (i) holds and that the potential already satisfi#s.  For some positive potentials satisfying, eglJ=0, \ may
This precludes negative functiot$ and saturating nonlin- ot thus be restrained to>0 for insuring the positiveness
earitiesU~[y|*” with y>o as well. So, for technical con- of the norms(12) and (13), unlike the caseJ=0. Next,
venience, we consider these expressions lead to the Hamiltonian

f|X|2F.€USdF, (12)

0<U'(r,s)<os” !, Vs=0, andU(r,00=0. (9) oD—2
Hs= 2o+ 1)—oD

_ | ! N3+ [ 1x2u.gi
2. Soliton properties versus conditions for collapser

the “free” NLS equation U=0), the existence of ground o L . . .
states follows from minimizing appropriate functional, when + mj |X|2r-VUSdr+f G(r,|x|?dr.
A>0 only [10]. The minimum of this functional is then re- (o 7

alized on the positive solution of ER), denoted byR, with (14
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Here,Hs andUj are the Hamiltonian and potential evaluated =||VR||2. Consequently, to avoid the blow-up, the norm
on the soliton solution. By using the previous relations, th
soliton is readily found to have a stationary mean-squa
radius, i.e.,dX(r?);=0, as expected. Solitonlike ground IV x|2< |V R2 (17)
states thus correspond to boundary solutions lying in be- 2 2

tween the sufficient condition for collapséXr?)<0) and since ||V x|I2/|VRIZ= x| ¥|R|? from Eq. (12), we finally
other spreading behaviord§<r2)>0). By expanding’ U in deduce

Eq.(14), Hy is found to be always positive under the require-

ments(i), (iii), and (iv), and, therefore, it never fulfilli). Ns=llxI3=<[RI3=No/\"/* . (18
Be5|d§ S thﬁe z{ccele.ran(?jﬁ) of the centro.|d(r)_ m.ust §at|sfy This result shows that, if stable ground states exist, th&ir
J1x|?VUdr=0, which imposes a spatial distribution &  orm must be lower tharR||2, except in the limit\
compatible with that of x|?: if |x|? is an even, bell-shaped — + o, for which Eq.(2) suggests thaly|2 can attain|R|2
function, then the gradient d must be odd in the spatial from below. While N, is bounded by a fixed constant at

variables. critical dimension, this norm always vanishes at laxgir

. t'V\/.e tnow |d|sc;ustsbtlhe co(rjnpat|3|tl'|ty b?tweelrll the Ctl\‘fj‘r"’mteréupercritical dimensions, and may, for appropriate potentials,
istic integrals of stabley and conditions for collapse. A nec- ,.coss high values whenapproaches zero.

essary condition for collapse at critical dimensiarD(=2) 3. Stability criterion We now perturb the around st
can be obtained by bounding the Hamiltonian ' ity critern S now periu . grou ae
and employ ¢(r,z)=[x(r,\)+v(r,z) +iw(r,z)]expi\2),
. _ . wherey, v andw are real functions satisfying,w<<y. In-
H>\|V¢||§(1—N"/Ng)+f G(r,|y|?dr, serting this solution into Eg.1) and linearizing it lead to

ﬁév*xug must satisfy the opposite inequality,

=Low, —w,=Lqv, 19
with the inequality(10). As GeL*, the blow-up of the gra- vam o 2w 19

dient norm can only occur foD =2/o-, wheneverN>N,. where the operators
Conversely, the minimum oH is attained on the soliton _
solution if H[x]>—=, which is ensured forNs=|x|3 Lo=A—A—x*"+U(F,x?), (20)
<No=|RI3 only.

At supercritical dimensiondD>2/o, the same result
holds: stable ground states haveZnorm below their coun-
terpart forU=0. To show this, we argue on gradient norms

Li=Lo—20x?"+2U"(r,x%)x?, (21)

have the properties

and Hamiltonian domains. First, in the dom&lis= H[Rl, all ax A ;
ground states withtH,<H[R] immediately verify ||V x5 Lox=0, L15=—X, L Vx=—x - U, (22
<||VR|?, as inferred from relation§12) and (14). Second,
let us rewrite Eq(7) as with V y=(r/r)d,x. Conditions(9) ensure that the infimum
40D e LU 20 0, The ™ operator Lo
dx(r)= N (H=FL 9 —r;toloV[XZVX‘l] é positive semidefinitepwitrLo)(:O(j

wherey has no node since it is positive. This, is positive
B 2 5 1 1 - definite when operating on all functionsw orthogonal to
F(p)=|1-—5|IVylz+| 1+ — der— _J' [¥1?Udr By combining Eqs(19) for functionsv_ x, a sufficient
and necessary condition for orbital stability readily follows
N if from the sign of Infu|L,v)/(v|Ly *v), which must be posi-
oD tive in the class of perturbations perpendiculantpl2]. By
convention, brackets denote the’ scalar product(a|b)
Under the current assumptiofisi) and (iv), F(¢) satisfies = fa*bdr. Stability proof then results from determining the
F()=(1—2/0D)||Vy¢|2 and it converges tdd, as ¢ re-  €igenvaluex entering the spectral probletmnv = av + By,
laxes to =y exp(r2). Thus, all initial datag, verifying  WhereB#0 is a Lagrange multiplier related to the orthogo-
H < H, will produce collapse at a finite propagation distance.hality constraint(v|x)=0. Settingv=(L;~a) *Bx and
In the complementary domali=H>H[R], it is then suf-  applying(v|x)=0, we have to analyze the variations of the
ficient to choose initial data withV yl|2>|VR|2, for con-  function 9(@)=(x|(L1—a) "x). This function is well

_ . X - defined and monotonically increasing fate[Ag,\1],

2 2 [OREANN
demning any solution to blow up wit{r)—0 and ||V ¢ where o<\, are the first two discrete eigenvalues lof.
— +o. Indeed, from

With Ag<0 and\;>0, solitonsy are then stable whenever
g(0)=(x|L;*x) is negative, which can be rewritten as Eq.
IV )2<H—-H[R], (3) by means of relation§22).
oD Here,L, verifiesL; <L, together with

(oa

w2 - -
ro,U(r,s)ds|dr. (16)

0

oD-2

N
N 22y
40'DdZ<r><H

collapse systematically arises in this Hamiltonian range for 2(0+1) N
gradient norms|¥ {|2>H/(1— 2/oD)>H[R]/(1— 2/oD) <X|L1X>"2"”X”2(<r+1>+2f U x9)x7dr, (23
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> N R r N
(VXILle>=—%f Vx? -l a:udr. (24)

From Eq.(23), L, has thus at least one negative eigenvalue
No<<0, such that ;o= \oibo, Whereyy, is nodeless. Ax?
decreases with almost everywhere, relatiof24) moreover
shows that this eigenvalue may be uniquélJikatisfies the
item (iv) for collapse, i.e..,d,U=0. In the opposite case,

2,U<0, the integralg x|L;x) and(V x|L;Vx) both attain
negative values, and sin&x and y are orthogonal to each

other, we can always construct an eigenvectol pfwith
negative eigenvalue, being orthogonal #g. With o,U

<0, L, has thus two distinct negative eigenvalues, WhiChposed

certainly leads to instability. Hencé,U=0 guarantees soli-
ton stability. Note that stability is not excluded U is
locally negative in some bounded regions of space, but stil
insures the positiveness of E@4). By assumingJ with a
positive slope, uniqueness 8§<<0 proceeds from the sec-
ond variation of)*[ f] defined in Eq(11). This second varia-
tion is computed fromd?/de?|._oJ* x+ en] for any con-
tinuous real functiony and it leads to

A I"TxImy =(nlLyim) +(r.ln),

with A=3||x]3,+1)>0 and

(29

2(o+1)

20+1\ , 20+1
2(c+1) >X .

ri=[2a/| x| Klx
Since the minimum o8 f] is attained on the soliton solu-
tion, J"[ x] is non-negative under the constaif®. AJ"[ x|
moreover expresses &s+r,, wherer; is a rank one per-
turbation. Consequently, for any eH! orthogonal to
x2?*1, L, reduces toAJ"[ x], which is positive. Suppose
now that there exist two orthogonal eigenstated pfwith
two distinct negative eigenvalues. We can always combin
them linearly for constructing a vectar perpendicular to
x?°*1. This would certainly lead tdv|L,v)<0, which is
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impossible. Thereforel.; has exactly one negative eigen-
value, provided tha#,U=0.

Finally, we need to clear up the condition fog to have
its second eigenvalue being positive. Let us suppose that
there existsf; #0 such thatl ¢, =X\,¢1,=0. Then, neces-
sarily, (4|L,Vx)=0 leads to(yy|x(r/r)d,U)=0. Here,
1 is perpendicular toy [see EQ.(22)]. Also, becausd.;
<L andy is nodelessy; has one nodée.g., ¢, is odd for
radially symmetric ground statesThus, the existence of
A1=0 implies (| x(r/r)a,U)=0, which has no reason to
be realized. Fory even and f/r)arU odd, this statement
indeed holds foD =1 with ¢, being zero at center for sym-
metry reasons. At higher dimensiong; must be decom-
into  spherical harmonics  asy4(r,0,¢)
=2 mPm(N)Ym(6,¢). It corresponds to the first spherical

parmonics¢/1=¢1(r)r7r with 7 odd and¢4(r) even inr,
wheneverL;+(D—1)/r? is non-negative[12], which we
admit. In that case, the former result holds with,|xd,U)
#0, so that\,>0.

In summary, we have shown that the soliton solutions of
Eq. (1) are orbitally stable when the potentidlverifies Eq.
(9) with 9,U=0. Stable ground states of E{) are charac-
terized byNg=<||R|5=Ny/\P"2"Y whereR is the soliton
mode of Eq.(2) with U=0. From a physical viewpoint, our
result means that when a potentiat>0 exhibits a positive
curvature near the point where a stationary wave-packet lies
with a mass below standard thresholds for self-focusing, it
can arrest the natural spreading of free NLS solutions and
produce a stable nonlinear waveguide. Reversely, with
higher norms, the wave-packet is capable of collap&ster
than forU=0. As application examples, we emphasize po-
tentials in the forms, e.gl)=r? for Bose-Einstein conden-

sateg 5,13 and other potentials such &k=V(r)| |2 with
an increasing even functiovi(r) >0 andy<a.

e
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