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Viscous flow and coarsening of microdomains in diblock copolymer thin films
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For thin block copolymeiBCP) films on a homogeneous substrate, a fast domain growth exponent has
recently been observed in experiments. This growth exponent is larger than what one would expect from
theoretical considerations of two-dimensional coarsening of small molecular liquid mixtures in the viscous
regime. Thus it is not clear whether the growth kinetics is truly different for block copolymer films, or if the
observed anomalous exponent is a result of a possible dimensional crossover from two to three dimensions. To
address part of this question, we have carried out numerical simulations of ordering and domain growth in a
two-dimensional system of BCP melts. The model calculations reported here explicitly include viscous, hy-
drodynamic flow and provide a scaling description of the growth of domains in a quenched BCP system. Our
results indicate that the growth kinetics of BCP melts in two dimensions belong to the same dynamical
universality class of small molecular liquid mixtures in the viscosity dominated regime.

PACS numbds): 61.41+e, 64.60.Cn, 64.60.My, 64.75g

Experimental techniques have recently been developedrowth exponent changes from the Lifshitz-Slyozov value of
[1-3] to create surfaces patterned with imprinted structuresi=1/3. Depending on whether viscous forces or inertial ef-
that can be used to guide the structure formation in thin filmdects of the fluid mixture dominate, the growth law in three
of polymer mixtures and block copolymers. A major interestdimensions can take one of the following forpd®,13) for a
in these studies is to control the morphology of thin films byliquid mixture of critical composition:
carefully choosing external parameters such as type of sub- , )
strates, film thickness, applied electric fie[d3, etc. Control R(H)~t  (viscosity controlled, @
of morphology in these thin films may lead to important
applications in diverse areas such as templating in litho-
graphic processes, optical devices, and surfaces with molec
lar recognition capabilitie$5]. Two different types of pat-
terned surfaces have been used in recent experimen
studies. In one such study, the surface pattern size is comp
rable[3] to the bulk characteristic size of the ordered block

R(t)~t¥® (fluid inertia controlleq. 2

or a two-dimensional critical liquid mixture, however, the
owth laws in the presence of hydrodynamics are different
,13-14 from the three-dimensional ones listed in E(S.
nd(2), and are given by

copolymer(BCP) lamellae. These types of nanoperiodic, pat- R(t)~tY2 (viscosity controlle, (3)
terned surfaces are created by selectively depositing metal
atoms on the grooves of a miscut silicon substrate. In another R(t)~t¥® (fluid inertia controlleq. (4

set of experiments, the patterned surface Ude6,7] con-
tains self-assembled monolayers of two different end- For symmetric BCP melts, one would resortdynamical
terminating thiols preferring either of the two subchains ofuniversality and expect that the domain growth exponents
the BCP chains. The lateral size of these surface patterns vgould be the same as in the viscosity dominated regime
much larger(of the order of micronsthan the characteristic discussed above. However, for thin BCP films ohamoge-
size of the BCP lamellae. In such a situation, viscous hydroneoussubstrate, a faster domain growth exponent has re-
dynamics is a major factor influencing domain coarsening ircently been observeb,7] for surface relief structurefis-
symmetric films. It is not totally clear though how viscous lands and holes Although two-dimensional viscous flow
flow controls the transport of copolymers and the formationdominates the kinetics in such a system, the growth exponent
of defects in such a situation. Numerical simulations ofmeasured is larger than what one would expect from theoret-
growth kinetics incorporating viscous flow in a model sys-ical considerations in the two-dimensional coarsening of
tem of BCP will be quite useful in this context. small molecular liquid mixtures in the viscous regime. Thus
In small molecular liquid mixtures, domain growth is con- many questions arise. One possibility is that the growth ki-
trolled by a variety of transport mechanisms due to the counetics is truly different for block copolymer films even in
pling of the order parameter to hydrodynam(i8s-10]. After  theoretical models for purely two-dimensional systems. It is
an initial transient, the characteristic size of the domainsalso possible that these films are actually in the crossover
R(t), grows with a power lawr(t)~t", wheren is the do-  region between two- and three-dimensional systems and this
main growth exponent. The value of depends on the yields an effective exponent that is larger than the two-
mechanism controlling the growth of domains. Domaindimensional valugbut smaller than the three-dimensional
growth atearly timesis governed by a diffusive mechanism resuly. Other possibilities include effects of an edge free
theoretically identified by Lifshitz and SlyozopM 1]. This  energy on the coarsening of islands. In this paper, we have
mechanism leads to a growth law given Byt)~t¥3. At  addressed the first question, i.e., what is the theoretical
late times, hydrodynamic effects become important and thgrowth exponent in a two-dimensional system of block co-
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polymers in the presence of viscous, hydrodynamic flowtion by Hohenberg and Halperjd0]. In this formulation the
Unless this important question is answered, any comparisoarder parameteg and the velocity fields satisfy the follow-
between theory and experiment will not be meaningful foring set of equations:

such a complex system. It should be noted, however, that for

the island domains, there is no upper limit to the lateral do- d oF
main growth while in the present simulation the kinetics of E“LU'V"b:M ‘V2%+§’ ©
copolymer domain growth ceases as the domain size ap-
proaches the equilibrium value. Ju SE
The theoretical model widely used for studying phase p E+U-VU)=77V2U—¢V 5—¢—VP+8, (10

separation is the Cahn-Hilliard-CodicHC) model[8,9]. In

CHC theory, the time variation of a conserved field variablea|0ng with the incompressibility conditior¥ - u=0. Here,

¢(r,t) representing the Iocql concentration of one of theEq_ (9) is a modified Cahn-Hilliard equation and E0) is

components of the mixture, is related to the; functional de-, \,4ified Navier-Stokes equationand s are the thermal

rivative of a coarse-grained free-energy functiofd ] plus  5ise terms.

a thermal noise term: After a suitable rescaling, the resulting equations can be
written in the following form:

b MV SF N 5
S %Jrv(f,t), 5) I .
W+V~V¢=V My (11
whereM is the mobility(assumed to be a constant heaad
v(r,t) is the Gaussiaftherma) noise term obeying the fluc- Vv=C®Vpu+VP, (12)
tuation dissipation relation:
V.v=0, (13
(v(FH)v(F' 1)) =—2kgTMV28(F —7")8(t—t'). (6)

whereCoc 1
The free-energy functional for block copolymers used in ourfollows:
numerical study is originally due to Ohta and KawadgdKki].

. . . . . 5F

This is given by(in units ofkgT) ——=—<I>+d>3—V2<I>+bj a2 G(r—r")(r").

=50
(14

, and the chemical potential is defined as

-2 1 1
2 42 a4, 2
5 ¢ +4¢> +2|V¢|

F[d;(r*,t)]:f df|
Since the fluid is highly viscous, the inertial terms in the
Navier-Stokes equation are neglected héowerdamped
(7)  limit approximation. In addition, for the deep quench cases
considered here the thermal noise terms are also not included
in the numerical calculations. The model simulation, how-
ever, does not neglect diffusion; E@.1) includes contribu-
giions from both diffusion due to imbalance in chemical po-
ential and advective flow.
We employ a fast Fourier transform meth@] to solve
e equations for the order parameter and the rescaled veloc-
ity field on a square lattice with periodic boundary condi-
tions. Our system size ik=128 in most cases, although
some runs are made with a system sizd ef256 to make
sure that finite-size effects are not important for the measure-
ments. In Fig. 1 we show a series of snapshots for a typical
wheref is the block ratio for the BCP molecule$= 1/2 for run with b=0.005. We compute the microdomain size as a
a symmetric BCP chajnThusb depends on the chain length function of time and chain length in the following way. First,
of the copolymers in the following wa18]. b~N"2. The  we calculate the pair correlation functigr,t,b) and define
parameter¢ is the correlation length of the systed?  the location of the first zero of this pair correlation function,
=B(f)/x, where B(f)=N/[4f(1-f)], x=2Nx R(t,b), as a measure of the microdomain size. When the
—s(f)/[2%(1—f)?], ands(f) is a slowly varying func-  system reaches equilibriurR(t,b) becomes independent of
tion of f with s(f=1/2)=0.9. Although the free-energy ex- time t, and we take that valuRe(b) as a measure of the
pansion used in the Ohta-Kawasaki theory has been obtainegharacteristic size of the microdomains in equilibrium. In
by using a local approximation for the higher order couplingsrig. 2, we show a log-log plot dRe, versusb. The data falls
and may not be quantitatively correft9] in the strong-  on a straight line indicating that
segregation regime, one of the main advantages of the model
is that it can be suitably revised to incorporate viscous flow Req~b‘9. (15
in the BCP melt system.
The viscous hydrodynamic flow can be taken into accoun¥Ve find that the best fit to the data yields an exponent of
in the simulation following the so-called modelformula- ~ =0.30£0.02. Note thatb~N~2 and thusRe,~N%6%0-04

+bf dr'G(r,r")¢(r,t)d(r' 1) |.

Here ¢(r,t) is the concentration field, an@ is the Green’s
function for the Laplace equation, i.8/2G=— §(F—F"). It

is possible to make a direct connection to the underlyin
molecular parameters, such gsand N, by following the
calculations of Ohta and Kawasaki. For example, the params
eterb can be written as

6
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FIG. 1. Coarsening of domains in quenched BCP melt under':Or dpmaln_growt_h Contro!led by VISCSUS hy(_jrodyna_mlcs n
. . ; two dimensionsn=1/2. This leads toy=286. Finally, since

viscous flow at various times. Hele=0.005. B . .

Req~b™ 7, one can recast the scaling expressigg. (16)] in

which compares reasonably well with the established expot-he following form:

nent of 2/3 in the strong-segregation lirh0].

A scaling hypothesis for the characteristic lengit,b)
has been proposed by Liu and Goldenfgd]. They pro-
pose a scaling form

R(t,b) = ReF(th??). (18

We show our raw data for IR(t,b) versus Irt for various
values ofb in Fig. 3 and test the above scaling fofi&q.
(18] in Fig. 4 by takingf=0.60, which was obtained earlier.
As can be seen from the above figure, the scaling works
fairly well. This strongly suggests that the domain growth
exponent i;mm=1/2 for two-dimensional models of block co-
Ffﬂ)lymers in the viscous regime.

In summary, we have carried out numerical simulations of
ordering and domain growth in a two-dimensional system of
BCP melt. The model calculations reported here explicitly

R(t,b)=b" F(tb?), (16)

whereF(x) is a scaling function independent bédndb, and
v is a crossover exponent. This scaling hypothesis has be
tested[21,22 in numerical simulations in the absence of
hydrodynamic flow. Here, we investigate the scaling behav
ior when viscous, hydrodynamic flow controls domain
growth. We note that ags—«, R(t,b)~b~ ¢ while asx

—0, R(t,b)~b". This leads to an expression feras 56 ‘
@ b=.005
-02 | mb=01
26 T T ¢ b=.02
L Ab=.03
-0.4 <b=04
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' ' In(b) - - FIG. 4. Test of the scaling forrf21] with §=0.60, which was

obtained earlier. Scaling works fairly well and this strongly sug-
FIG. 2. Log-log plot ofR., versusb. The data falls on a straight gests that the domain growth exponent fis=1/2 for two-
line indicating thaiReq~b"’. The straight line fit to the data yields dimensional models of block copolymers in the viscous redisae
an exponent of)=0.30+0.02. text).
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include viscous, hydrodynamic flow and provide a scalingdimensions. It would be extremely interesting to nu-
description for the growth of domains in a quenched BCPmerically study coarsening exponents in BCP systems as
system. Our results indicate that the growth kinetics of BCRa function of the film thickness so that a dimensional cross-
melts in two dimensions belong to the same dynamical uniover from two dimensions to three dimensions can be
versality class of small molecular liquid mixtures in the vis- gccessed.

cosity dominated regime. This suggests that the faster do-

main growth exponent recently observed in thin block Acknowledgment is made to the Donors of the Petroleum
copolymer films on a homogeneous substrate may havBesearch Fund, administered by the American Chemical So-
originated from a dimensional crossover from two to threeciety, for support of this work.
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