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Analytic solution for two bubbles in a Hele-Shaw cell
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A four-parameter family of exact solutions is reported for two unequal bubbles moving steadily in a
Hele-Shaw cell when surface tension is neglected. The solutions are given in closed form in terms of elliptic
integrals and are found to be in good agreement with shapes observed in the experiments by Ikeda and
Maxworthy[Phys. Rev. Ad1, 4367(1990]. An analytic solution for a finger with a bubble is also obtained as
a special case of the general two-bubble solution. The relevance of these exact solutions for a selection theory
for the cases of a finger with a bubble and a pair of bubbles is also briefly discussed.

PACS numbds): 47.55.Dz, 47.15.Hg, 47.54r

The displacement of a more viscous fluid by a less vis- Before we present our solutions, it is perhaps worth men-
cous one in a Hele-Shaw cell, where the fluids are confinetioning that these analytic solutions at zero surface tension
between two closely spaced plates, has attracted a great deak of practical relevance in relation to the selection problem
of attention in the past two decadgl. This research effort for a finger with a small bubble at the tip as well as for a
has been motivated in large part by the fact that the dynamidérge bubble with a small one at the nose. As already men-
of interfaces in a Hele-Shaw cell exhibits mathematicaltioned, a selection theory has been proposed for these two
analogies with other important moving-boundary problemsgcases[11,12 that has as starting point the zero surface-
such as dendritic growth and directional solidificatic}, ~ tension solutions for a pure finger and a single bubble, re-
while being more amenable to analytical and experimentagpectively. This theory, however, is somewhat unsatisfactory
investigation. In particular, the so-callestlection problem in that the effect of the small bubble is taken into account
for a finger in a Hele-Shaw channel has been extensiveljhrough a rather unphysical condition, namely, that the inter-
studied; this problem refers to the fact that, although therdéace has a cusp at the leading fréine., the finger tip and the
exists a whole family of solutions when surface tension islarge-bubble nose, respectivilyn light of the exact solu-
neglected, a unique finger is observed in the experimentdions reported here, a more rigorous solvability analysis
The selection problem for a finger dates back to the seminaiould in principle be carried out. Given that these solutions
paper by Saffman and Tayl§8] but only more recently it are expressed in terms of elliptic integrals, such an analysis
has been fairly well understodd—8]. Experimental studies IS expected to be more mathematically challenging and will
[9] have also been performed on a finger moving with anot be attempted in the present paper.
bubble attached at the tip, and here it was found that the Here we consider the problem of two unequal bubbles
finger became considerably narrower that the usual Saffmarinoving with the same velocity in a Hele-Shaw cell with
Taylor finger. A similar effect has been observed forthe channel geometry. Without loss of generality, we assume
bubbles: when a small bubble attaches to the nose of a largétat the viscous fluid has a unity velocity at infinity in front
bubble, the larger bubble becomes more elongated and i&f and behind the bubbles. We suppose that the fluid inside
velocity increase§10]. Although an approximate solvability the bubbles has negligible viscosity so that the pressure in-
theory has been proposed for the cases of a finger with side is constant. We will also neglect the interfacial tension,
bubble at the tig11] and a large bubble with a small one at and hence, the fluid-pressure will be taken as constant along
the nosdg12], the selection mechanisms in these two situathe bubble interface. We concern ourselves here with the
tions have not yet been completely elucidated. case in which the bubbles are symmetrical about the channel

In this Rapid Communication we report a four-parametercenterline. For convenience, we will work in a reference
family of exact solutions for two unequal bubbles moving frame in which the bubbles are stationary and choose our
steadily in a Hele-Shaw cell when surface tension is nesystem of coordinates so that the origin is placed at the nose
glected. Our solutions for the bubble shapes are written i®f the first bubble, with the channel walls beingyat +1;
closed form in terms of elliptic integrals and are found to besee Fig. 1.
in excellent agreement with the shapes observed in the ex- The exact solutions presented below are obtained via con-
periments by lkeda and Maxwort§¢t0]. The solutions dis- formal mapping techniques. The idea here is to consider the
play the usual degeneracy of solutions with zero surface terconformal mappingz=x+iy="f({) from the { complex
sion: fixing the bubble area@nd their relative separatipn plane onto the fluid region, with the two half-lines {m
does not determine the bubble velocity. We also present a0, |{|=1 being mapped onto the two channel walls, re-
analytic solution for the case of a finger penetrating into aspectively. In the, plane the bubbles correspond to two slits
Hele-Shaw channel with a bubble moving ahead of the fingeon the real axis along the intervalsl<s,<Re{<0 and
tip. This finger-bubble solution is obtained as a special cas®@<s,<Re{=s;<1, for givens;, s,, andsz. Using a vari-
of our two-bubble solution in the limit that one of the bubble ant of the method described in R¢fL3] one can construct
becomes infinitely elongated. explicitly the mapping functiorf({) from which the inter-
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1 y(s)==—U""H(gx(s) k*/p,k*/q,k), )

—q+(p+
pats)=sin 1 [P PIDS ©

and the additional constar, in Eq. (7) reads

where

[
\_/ X

-1

FIG. 1. Two bubbles in a Hele-Shaw cell.

U—l
faces are obtained in parametric form(s)+iy(s)=f(s), Xo=—[F(Bp . K') =F(Bq.K)], (10
where the two bubbles correspond to the interglss<0
and s,<s<s;, respectively. Here, owing to lack of space, with
we will not expound the conformal mapping formulation and
will simply quote the final result for the bubble shapes. A ., [1-p
complete derivation of our solution will be presented in a Bp=sin W (11)

forthcoming publicatiorj14].
In order to simplify our notation let us first define the and similarly for Bq. Here k'= J1—K? is the so-called
following function: complementary modulusThe parametes for the second
bubble takes values in the intengl<s<s;, where

H(e,p,a.k)=G(¢,p,k) —G(¢,q,k), ()
~g-p . g-p
where Sz_p+q’ 53_—p+q—2k2' (12
G(,n,k)=+(1—n)(1—Kk?/n)|[II(¢,n,k) In the solution abovek, p, andq are free parameters satis-
fying the following condition:
H(nvk) 2
K F(e,k)|. 2 0<k*<p<g<l. (13

Besides the velocity, the other relevant physical param-
HereF(¢,k) andlI(¢,n,k) are the normal elliptic integrals eters are the areas of the two bubbles and the separation
of first and third kinds, respectively, wittK=K(k)  petween them. Since the solutions above have four free pa-
=F(w/2k) and II(n,k)=II(7/2,n,k) being the complete rameters, namelyJ, k, p, andq, it is clear that fixing the
elliptic integrals of first and third kinds, respectively. In the pypple sizeqand their relative separatipmoes not deter-

above we have adopted Legendre’s notation for the elliptignine the bubble velocity. This is the usual degeneracy of
integrals in whichp is theargumentk is called themodulus

andn is referred to as thparameter{15].

solutions with zero surface tensi98,16]. Such degeneracy
is expected to be removed by the effect of surface tension, as

~ We are now in position to describe our two-bubble solu-is the case for a fingdsee, e.g., Ref2]) and a single bubble
tion. The first bubble is given by the following parametric [17]. This issue, however, will not be addressed in the

equations:

B 2U-1
x(s)—; U

tanh 's, (3

2
y(S)=t;U*H(cpl(S),p,q,k), (4

qol(s)=sin‘1\/L, (5)
p—q+(p+a)s

and the parametexranges over the interval<s<0, with

where

q-p

Sl=m- (6)

For the second bubble we have similar expressions:

—1
¥ tanh *s, (7)

B 2
x(s)—x0+;

present paper.

For completeness, we wish to point out here that in the
limit that the separation between the two bubbles vanishes
(so that they merge into a single bubbleur two-bubble
solution above correctly reproduces, as it must, the single
bubble solution originally found by Taylor and Saffmfd®].

This limit is achieved by letting the parametérg, andq all
approach 1 but in such way that the quantities= (k>
—p)/(1—p) andn=(k?—q)/(1—q) remain finite and sat-
isfy the relationmn=1. (This corresponds to taking,=0
ands;= —s;.) Using the special values for the elliptic inte-
grals in these limits we can show that E¢3) and (4) do
indeed yield the solution given in E¢LO) of Ref.[16]. We

will not, however, present the mathematical details of such
calculation here.

Comparison with experiment&xperiments on the motion
of two bubbles in a Hele-Shaw cell have been performed by
Ikeda and Maxworthy[10]. In their experiment a large
bubble, injected at the bottom of an inclined Hele-Shaw cell,
would rise to meet and attach to a small bubble that had been
injected at a point further up the cell. The subsequent motion
of the bubbles was recorded on video from which the bubble
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0.25 =1. (This corresponds to taking;=—1.) Using the fact
that I1(¢,1K) remains finite for 6<k<1 and O<¢<<w/2
and that lim_,I1(n,k)=a/2k’J1—n, one obtains that
G(¢,1k)=—7F(¢,k)/2K. In addition we have that
G(¢,k? k)=0. From these results, it immediately follows
that forq=1 Egs.(4) and(8) respectively become

Y o000t 1
-1 2 -1
yi(s)==U""—G(e(s),p,k)+ K F(er,k) |, (19
2 -1 2
yb(s)zi;U G(ep(s),k/p,k), (16
-0.25 ‘ ‘ :
-1.2 -0.8 -0.4 0.0
X where

FIG. 2. A large bubble with a small bubble at the no§gne - 2s
bubbles are moving to the rightThe circles represent an observed @¢(s)=sin" m (17)

shape taken from Fig.(4) of Ref.[10], while the solid line is an P P

exact solution withU’=3.4, s;=-0.9857, 52=10’5, and s;
—1+(p+1)s

=0.0746. op(S)=sin ! %_ (19

shapes and velocity were obtained. Before we present a com- h introduced th bscri db to d
parison between our solutions and the observed shapes, re we have mtyo uced t e su scriptand b to denote
note that for the experimental setup used by Ikeda and MaxEXPlicitly the solutions for the finger and the bubble, respec-

worthy [10] the velocityU appearing in the formulas above tively. Thg parametes for the finger and the bubbl_e runs
must be replaced witfg] over the intervals—1<s<0 and s,<s<s;, respectively,

where nows,=(1—p)/(1+p), sz=(1—p)/(1+p—2k?),

and 0<k?<p<1. The coordinates(s) for the finger and
U'=1+ VER (14 the bubble remain as given in Eq8) and(7), respectively,
the only difference being that now the constagteads sim-

where U* =(b%g sina/12u;)(p1—p,). Hereb is the cell  ply
gap,g is the gravitational acceleration, is the tilting angle, F(B,.K)
p is the fluid densityu is the fluid viscosity, and the sub- OZL,
scripts 1 and 2 denote the fluids outside and inside the UK

bubbles, respectively. In Fig. 2 we show one of the shapes. .
reported in Ref[10], to which we superimpose a member of W'th Bp as n Eq.(ll). We thus have a t.hree-parameter fam-
the family of analytic solutions described above. As one caﬁIy of analytic solutions for a finger with a bubbléExact

see in this figure, the exact solution describes remarkabIg()lult'obnstfhOr aftlﬂgrelrg]lw':)h E)tlhbble?hhavel bt_een reported_grew-
well the observed shape for the large bubble, the only notice21S!Y bY the authopLs], but there the Solutions were written

able deviation occurring at the lower region behind the small" m_tegral form and no representatmn n .CIOSEd .form was
bubble. This small discrepancy is probably due to the fac .btalned} As already mentioned, the analytic solutions for a

that the smaller bubble is slightly off the nose of the larger inger W'tht a bubble pref_sented ab]?ve a(rjebrelgvarétef?r the
one, thus breaking slightly the centerline symmetry. Indeedex]perlmen S On harrow Tingers performed by Loueteal.

for the small bubble in Fig. 2 the best agreement between th[;ag I lusi h ted a f ter famil

theoretical curve and the experimental shape was obtainedf h conclusion, we have presented a four-parameter family
when the former was shifted slightly upward. We note fur-Of exact solutions for two unequal bubbles moving steadily

thermore that according to E¢L4) our valueU’=3.4 (see " @ Hele-Shaw cell when surface tension is neglected. Al-
the caption of Fig. 2 corresponds tdJ/U* =2.4 Wi’]iCh is though these solutions are for the idealized case of zero sur-

indeed very close to the value reported in RaD)]. [Rigor- face tension, they nevertheless describe remarkably well
: - * ; shapes observed in actual experiments, particularly when the
ously speaking, our definition o™ given above differs bubble size is much greater than the cell gap. An analytic
from that used by Ikeda and Maxworth$0] by a correction solution for a finger ng]th a bubble was alsog Fr)(.esented 1¥he
factor (D/L),-». However, for the bubble shown in Fig. 2 9 P '

such a factor is approximately equal to uriity exact solutions reporte_d in the_present paper opens up the
Finger with a bubble at the tipin the limit that the first prospect for more detailed studies on the selection problem

N : for a finger with a bubble as well as for a pair of bubbles.

bubble becomes infinitely elongatédhile the second one N .

. S ; o . Here again it is expected that a small amount of surface will
remains of finite size we arrive at a situation in which a

finger penetrates into the channel with a bubble rnoVingremove the degeneracy of the zero surface-tension solutions.

ahead of the finger tip. An explicit solution for this case can This work was supported in part by FINEP, CNPq, and
be obtained from our general solution above if we get PRONEX Project No. 76.97.1004.00.
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