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Analytical study of spatiotemporal chaos control by applying local injections

Hu Gang'? Xiao Jinghua Gao Jihud, Li Xiangming? Yao Yugui* and Bambi Hd
China Center of Advanced Science and Technology (CCAST), P.O. Box 8730, Beijing 100080, China
°Department of Physics, Beijing Normal University, Beijing 100875, China
3Department of Basic Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
“YInstitute of Physics, Academy of Science of China, Beijing 100080, China
SCenter for Nonlinear Studies and Department of Physics, Hong Kong Baptist University, Hong Kong, China
(Received 26 May 2000

Spatiotemporal chaos control by applying local feedback injections is investigated analytically. The influ-
ence of gradient force on the controllability is investigated. It is shown that as the gradient force of the system
is larger than a critical value, local control can reach very high efficiency to drive the turbulent system of
infinite size to a regular target state by using a single control signal. The complex Ginzburg-Landau equation
is used as a model to confirm the above analysis, and a four-wave-mixing mode is revealed to determine the
dynamical behavior of the controlled system at the onset of instability.

PACS numbegps): 05.45-a, 47.27.Rc, 47.27.Eq

Chaos control and synchronization have attracted much Xo=Xn=0. (4
attention in the last decadé]. We extend the idea of chaos
control to spatiotemporal chaos. Local injection is one of the Linearizing Eqs.(1) against the targgR), we obtain
approaches most extensively used for spatiotemporal chaos

control [2]. Recently, it has been found numerically that the X=AX, X=(Xg, X1, ... Xn_1)
existence of gradient force is of crucial importance for en-
hancing the control efficienc)3]. Nevertheless, no analyti- e+r e—r
cal results have been obtained in this aspect. In the present Df-e 2 0 0 2
Rapid Communication, we will study this problem by an
eigenvalue analysis of the controlled distributed systems. e—r Df—¢g etr 0 ... 0
The mechanism underlying the influence of gradient force on 2 2
the control efficiency will be generally clarified. e—T e+r
First, we consider a simple system of coupled oscillatorspA=| 0 Df—e ,
with nearest couplings and periodic boundary condition 2 2
€ r : : : .. etr
xi=f(x)+ 5 (XitaF X1 = 2X) + 5 (Xi-1 7 Xi41), : : : : 2
(1) e+r e—r
Xiin=Xi, 1=0,1,2... N—1, 0 0 Df-e
2 2
where ¢ is the diffusive coupling whiler is the gradient df (x)
coupling. Assuming the system is chaotic, we hope to control Df= >0. (5)
spatiotemporal chaos by driving the system to a wanted regu- dx X=0
lar state, e.g., a homogeneous state of _ _ _
x=0, i=0,1,2 ... N-1, @) With control, Eqs.(3a and(4) can be linearized to
which is supposed to be the solution of the system and un- X=BX, X=(X1,Xz, - - - Xn-1)",
stable without control. We apply negative feedback injection
to the first oscillator for controlling the system Df—g 842” 0 0 .0
. € r
Xi= () + 5 (Xir 1 T Xi-1=2X) + 5 (X -1 = Xi+1), e—r etr
Df-¢ 0 -0
. (33 2 2
i=1,2,...N—-1, et etr
B=| O Df—¢
. & r 2
Xo=F(Xo) + 5 (X1 +Xn—172%0) + 5 (Xn-17X1) = MXo. . _ ' . e+r
(3b) : : : . 5
Let us take a large feedbadk—, then the first site can be e—r _
. S 0 0 0 e Df-¢
surely pinned to the target statg=0, this pinning reduces 2
Egs.(3b) to (6)
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FIG. 1. Schematic figures of eigenvalue distribution of 8. (a) r =0. AsN< the eigenvalue distribution is discrete and the largest
eigenvalue is smaller thabf. AsN— o , the distribution becomes continuous and the largest eigenxéhag approache® f, and then the
gap betwee f and the eigenvalue distribution is zefb) 0<r<r.. As N—x, there appears a gap betwdah and\ (m). However, the
target state is still unstable because this gap is smallerBHat\ (m)>0). (c) r>r.. The gapDf —A(m)>Df and\(m)<O0, the target
state is stable.

A is aNXx N first order circulation matrix, of which thid I this gap is larger than the local LB, f, the target state can

eigenvalues can be easily worked out as be stabilized by a single injection, though the system state
has infinitely many positive LEs fo—o in uncontrolled
Nj=Df—e(1—cos#;)+irsing;, situations. This is the case of Fig(cL
(7) The analysis from Egg1) to (10) can be easily extended
2@ to coupled map lattices and nonlinear partial differential
‘9J:W' j=012....N-1. equations, and can be also extended to the cases with space-

time-dependent target states. Now we apply the above idea
The gradient coupling influences the imaginary part of ~ to a model extensively investigated, the one-dimensional
only, thus does not affect the stability of the system. Thecomplex Ginzburg-Landau equati¢@GLE) of system size
largest LE of the reference state (m)=\,=Df>0. L with periodic boundary conditiof4—6]
Therefore the homogeneous sté2¢ of the coupled system _ X _ ,
(1) is unstable if the local dynamios=f(x) is unstable. GA=A+ (1+ic) FA+T I A= (1+ic)|A[A,

With control, the matrix8 is no longer circulated due to (11)

the vanishing of the up-right and down-left terms. TKe AX+L)=A(X1).

—1 eigenvalues oB can be also computed, ] ) ]
where A(x,t) is a complex quantity, and the term of first

S jT spatial derivativer d,A represents gradient force. Equation
Nj=Df-e+ye—rocosr, j=12,... N=1. (8  (11) admits traveling wave solutions
Two essential differences between the eigenvalueB of A _ Ly _ 2mma
[Egs.(8)] andA [Egs.(7)] are of crucial significance for the AXD=Ag exlilkx—ot)], k L’
control efficiency. First, with control the gradient coupling (12)
definitely changes the real part of the eigenvalues, and then Ap=\1-K2, w=cy+(cy—Cyk®—rk.

influences the stability of the target state. Second, the largest

LE, A(m), of Eq. (8), becomes smaller thddf. And larger  As 1+¢;c,<0 and forL>1, all the solutiong12) are un-
e andr and smallefN correspond to lowek(m). We are  staple. Here, we fixc;=2.1, c,= — 1.5, the system is then
particularly interested in the possibility whether we can con-deeply in the defect turbulence region. Our task is to control
trol spatiotemporal chaos with infinite size by injecting athis violent turbulence by injecting a feedback signal to the
single sitei=0 only. Mathematically, we are interested System at a Sing|e poim:o and driving the System to one
whetherA(m) in Eg. (8) can be smaller than zero when of the periodic states of Eq12). We will discuss the con-
Df>0 andN—. Forr=0, the answer is definitely no, trollability based on the eigenvalue analysis. The imposed
because we hav)eN:m(m,r=0)=IimN_m)\l=Df>0. This  control input is given by
situation is schematically shown in Fig(al

However, nonzers dramatically changes the control ef- GA=A+1d,A+ (1+icy) dZA—(1+icy)|A[PA
ficiency. ForN—oo, r #0, we have

+eS(0)[AX, 1) —A], (13)
AN=Z(m,r#£0)= lim \=Df—(e—Ve’—r?). (9
( N— oo ' ( where the final term is the negative feedback injection based
on the deviation from the target state.
Now there appears an eigenvalue gap betw&dn and First we perform the linear stability analysis of the target
AN=*(m) [see Figs. tb) and Xc)], state. Inserting

A=g—\e’—r°. (10 A(x,t)=Ag[1—a(x,t)]exp{i[kx— ot + ¢(x,1)]}, (14)
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into Eq. (13) and consideringa|, |¢|<1, we reach a set of Then the eigenvalue and eigenvector can be solved from

linear equations Egs.(17)—(19). As e — oo, the system is pinned to the target
5 state at the injecting point, Eq13) is then reduced to a
= Ayt (F=2key)ac=2(1-k%)a—Cy oy boundary-injecting modeR(0t)=A(L,t)=A(0t), and the
— 2k, —e5(X)a, constraintg19) is simplified to
(15

b=yt (r —2kcy) dy+ cra+ 2kay
a(0t)=a(L,t)=¢(0t)=o¢(L,t)=0. (20
—2¢,(1—k?a—ed(x) .

Assuming an eigenfunctiorf,,l, corresponding to an eigen-
value o, we have

a ataPiX
e”tePiX, (16)

with all quantitieso and a;,¢;,p;,i=1,2,3,4, being un-
known complex constants. Inserting Ed@6) to Eq. (15 we
obtain the coefficient relations

p2+ (r —2kcy)pi— 2(1—k?) —
cip?+ 2kp;

a, i=1,2,34,
(17)

and the eigenvalue relations

2( FO+FQ)+ \/(F(') FO)2— a(FOFD—FOFD),
F{)=p2+(r—2kcy)pi—2(1-k?), Fi)=—c,p?—2kp;, o
) ) (18
Fi)=cp?+2kp—2c,(1—k?), F8)=p?+(r—2kc,)p;, 05
i=1,2,3,4. 0o 20 40 60 80

L
In Eq. (16) there are 13 unknown complex constants and

we need 12 constraints to fix thefone constant, sag;, is FIG. 3. (8) The space-time evolution of Eql3) for e —x at
arbitrary). Apart from the eight equations of Eq&l7) and  L=80, r=1.72. AA(x,t)=A(x,t) —A(x,t) with A(x,t) given in
(18), we have four more equations for the boundary condiEg. (12) for k=0. Ast goes on the turbulence is successfully sup-

tions atx=0 andL, pressed in the whole systeifin) The same aga) with r reduced to
r=1.65. A turbulent tail exists in the left side, which can never be

a(ot)=a(L,t), &(0t)=da(L,t), eliminated for infinite time.(c) The controllability distribution in
L-r plane. Turbulence can be well controlled in the region above

a,(0t)—a,(L,t)—C1dy(0t) +cid(L,t)=ea(0y), the curves. Solid line, theoretical prediction of E¢f?), (18), and

(29 (20); black disks, numerical simulation of E(L3) by taking initial
condition in the vicinity of the target; crosses, simulation of Eq.
by (0t) — dy(L,t)+cia,(0t) —cqa(L,t)=e¢p(0}). (13) from arbitrary initial condition.
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To end our theoretical analysis, let us make a brief dis{in Fig. 2(@) the crossing points of the Re curves on the
cussion on the form of eigenfunctiqgd6). Without control  axis accumulate to, asL—].
the eigenfunction is always assumed to have a single mode In order to confirm the analytical prediction in Figgap
and 2b), we numerically simulate Eq13) with e— by
ajy (& taking the homogeneous oscillatidos 0 in Eq.(12), as our
o) oy targetA(x,t). In Figs. 3a) and 3b) two parameter combina-
tions, corresponding to small positive and negative largest
with p; being an imaginary valug,=(2wn/L)i [4-6], LE’s, respectively, are used. The numerical simulations fully
given by the periodic boundary condition. With control this agree with the stability analysis. In Fig(c3 we study the
assumption should be replaced by the four-wave-mixingcontrollability in ther-L plane. In the region above the
eigenfunction(16) to meet the s-function control at the curves the target homogeneous oscillation can be stabilized
boundaryx=0. And the wave numbens, become complex. and the defect turbulence o_f the_ u_ncontrolled system calj_be
The real parts represent the spatial amplificati@nsontrac- succegsfullyl su_ppressed. It is striking, tha} the linear stability
tions of perturbation, which are crucial for the convective analysis(solid line) can perfectly agree with the global be-
instability. In the limit e—0 we will find a;,4;#0, p; hawpr of the systen(lcrosse;m the whole parameter plane.
=(27n/L)i, and a,,¢;,—0, i=2,3,4, which recover the In Fig. 3(c) the curves obviously saturate to a finitealue,

] (] ] 1 LAt B ] . . . . . .
well known results without control. Thus, at the onset offe~1.735, above_ Wh'(.:h con.trolhng turbulence in infinite
instability, four waves(they together serve as an unstablec’.gl‘E ;ystemfby |njehct|ng aé_smgle sfplgce Eomt becomes pos-
mode are amplified simultaneously, this is essentially differ- St Ie, this con wms; e pre |i:t|(_)n I(I) 'g('j. d he infl f
ent from the single wave instability without control. We find g_sumfmary, we have ana Bllt'c?f. y stu |ef the influence OI
that this four-wave-mixing mode satisfactorily predicts thegradient force on the control efficiency of spatiotempora
system behavior in the controlled systems at the onset haos. The possibility of controlling spatiotemporal chaos of
instability Infinitely long system by injecting a single control signal at

The above computation is exact. However, no explicit SO_the upper string point is revealed, based on the eigenvalue
4 analysis. This analytical computation is applied to control
CGLE turbulence, and a four-wave-mixing mode is obtained
of Egs.(17)—(19). For simplicity, we consides — and the tof {)hredlct iheHSﬁsterrl dynamics at the onset of the instability
target stat&k=0, and then solve Eq$l17), (18), and(20) for ot the controlled system. . .
obtaining eigenvalues and eigenvectors. In Figs) 2nd The investigation in this work is mainly based on the local
2(b) we calculate the largest LE of the system, i.e., the Iarg—COntrOI i_n t_he_ i_nfinite dissipation limi{see E_qs.(4) and
est real part of the eigenvalues of the system, for different (2(.))]' This limit IS appled only _for the convenience of ana-
andL. Two important features can be observed in the figuresl.yt'cal computation. An analy3|s for general f|.n|t_e feedback
First, increasing the gradient forcés favorable for reducing cpntrol[Eqs.(S) and(19)], which are more realistic In prac-
the largest LE of the system, and for any giverwe can tical cases, will appear in a forthcoming paper publication.
always stabilize the target statee., reduce Rer to nega- This research was supported by the National Natural Sci-
tive) by increasing. Second, there is a critical r, forr ence Foundation of China, the Nonlinear Science Project of
>r., such that we can control the system with infinitely China, and the Foundation of Doctoral training of Educa-
long size by injecting a single point. In our casg=~1.735 tional Bureau of China.
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