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Analytical study of spatiotemporal chaos control by applying local injections
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Spatiotemporal chaos control by applying local feedback injections is investigated analytically. The influ-
ence of gradient force on the controllability is investigated. It is shown that as the gradient force of the system
is larger than a critical value, local control can reach very high efficiency to drive the turbulent system of
infinite size to a regular target state by using a single control signal. The complex Ginzburg-Landau equation
is used as a model to confirm the above analysis, and a four-wave-mixing mode is revealed to determine the
dynamical behavior of the controlled system at the onset of instability.

PACS number~s!: 05.45.2a, 47.27.Rc, 47.27.Eq
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Chaos control and synchronization have attracted m
attention in the last decade@1#. We extend the idea of chao
control to spatiotemporal chaos. Local injection is one of
approaches most extensively used for spatiotemporal c
control @2#. Recently, it has been found numerically that t
existence of gradient force is of crucial importance for e
hancing the control efficiency@3#. Nevertheless, no analyti
cal results have been obtained in this aspect. In the pre
Rapid Communication, we will study this problem by a
eigenvalue analysis of the controlled distributed syste
The mechanism underlying the influence of gradient force
the control efficiency will be generally clarified.

First, we consider a simple system of coupled oscillat
with nearest couplings and periodic boundary condition

xi5 f ~xi !1
«

2
~xi 111xi 2122xi !1

r

2
~xi 212xi 11!,

~1!
xi 1N5xi , i 50,1,2, . . . ,N21,

where « is the diffusive coupling whiler is the gradient
coupling. Assuming the system is chaotic, we hope to con
spatiotemporal chaos by driving the system to a wanted re
lar state, e.g., a homogeneous state of

xi50, i 50,1,2, . . . ,N21, ~2!

which is supposed to be the solution of the system and
stable without control. We apply negative feedback inject
to the first oscillator for controlling the system

ẋi5 f ~xi !1
«
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~3a!
i 51,2, . . . ,N21,

ẋ05 f ~x0!1
«

2
~x11xN2122x0!1

r

2
~xN212x1!2lx0 .

~3b!

Let us take a large feedbackl→`, then the first site can be
surely pinned to the target statex050, this pinning reduces
Eqs.~3b! to
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x05xN50. ~4!

Linearizing Eqs.~1! against the target~2!, we obtain

ẋ5Ax, x5~x0 ,x1 , . . . ,xN21!T,

A51
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With control, Eqs.~3a! and ~4! can be linearized to

ẋ5Bx, x5~x1 ,x2 , . . . ,xN21!T,
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FIG. 1. Schematic figures of eigenvalue distribution of Eq.~8!. ~a! r 50. As N,` the eigenvalue distribution is discrete and the larg
eigenvalue is smaller thanD f . As N→` , the distribution becomes continuous and the largest eigenvaluel(m) approachesD f , and then the
gap betweenD f and the eigenvalue distribution is zero.~b! 0,r ,r c . As N→`, there appears a gap betweenD f andl(m). However, the
target state is still unstable because this gap is smaller thanD f „l(m).0…. ~c! r .r c . The gapD f 2l(m).D f andl(m),0, the target
state is stable.
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A is aN3N first order circulation matrix, of which theN
eigenvalues can be easily worked out as

l j5D f 2«~12cosu j !1 ir sinu j ,
~7!

u j5
2p j

N
, j 50,1,2, . . . ,N21.

The gradient couplingr influences the imaginary part ofl j
only, thus does not affect the stability of the system. T
largest LE of the reference state isl(m)5l05D f .0.
Therefore the homogeneous state~2! of the coupled system
~1! is unstable if the local dynamicsẋ5 f (x) is unstable.

With control, the matrixB is no longer circulated due to
the vanishing of the up-right and down-left terms. TheN
21 eigenvalues ofB can be also computed,

l j5D f 2«1A«22r 2 cos
j p

N
, j 51,2, . . . ,N21. ~8!

Two essential differences between the eigenvalues oB
@Eqs.~8!# andA @Eqs.~7!# are of crucial significance for the
control efficiency. First, with control the gradient couplingr
definitely changes the real part of the eigenvalues, and
influences the stability of the target state. Second, the lar
LE, l(m), of Eq. ~8!, becomes smaller thanD f . And larger
« and r and smallerN correspond to lowerl(m). We are
particularly interested in the possibility whether we can co
trol spatiotemporal chaos with infinite size by injecting
single site i 50 only. Mathematically, we are intereste
whether l(m) in Eq. ~8! can be smaller than zero whe
D f .0 and N→`. For r 50, the answer is definitely no
because we havelN5`(m,r 50)5 lim

N→`
l15D f .0. This

situation is schematically shown in Fig. 1~a!.
However, nonzeror dramatically changes the control e

ficiency. ForN→`, rÞ0, we have

lN5`~m,rÞ0!5 lim
N→`

l15D f 2~«2A«22r 2!. ~9!

Now there appears an eigenvalue gap betweenD f and
lN5`(m) @see Figs. 1~b! and 1~c!#,

D5«2A«22r 2. ~10!
e
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If this gap is larger than the local LE,D f , the target state can
be stabilized by a single injection, though the system s
has infinitely many positive LEs forN→` in uncontrolled
situations. This is the case of Fig. 1~c!.

The analysis from Eqs.~1! to ~10! can be easily extende
to coupled map lattices and nonlinear partial different
equations, and can be also extended to the cases with sp
time-dependent target states. Now we apply the above
to a model extensively investigated, the one-dimensio
complex Ginzburg-Landau equation~CGLE! of system size
L with periodic boundary condition@4–6#

] tA5A1~11 ic1!]x
2A1r ]xA2~11 ic2!uAu2A,

~11!
A~x1L !5A~x,t !.

where A(x,t) is a complex quantity, and the term of firs
spatial derivativer ]xA represents gradient force. Equatio
~11! admits traveling wave solutions

Â~x,t !5A0 exp@ i~kx2vt !#, k5
2mp

L
,

~12!
A05A12k2, v5c21~c12c2!k22rk.

As 11c1c2,0 and forL@1, all the solutions~12! are un-
stable. Here, we fixc152.1, c2521.5, the system is then
deeply in the defect turbulence region. Our task is to con
this violent turbulence by injecting a feedback signal to t
system at a single pointx50 and driving the system to on
of the periodic states of Eq.~12!. We will discuss the con-
trollability based on the eigenvalue analysis. The impos
control input is given by

] tA5A1r ]xA1~11 ic1!]x
2A2~11 ic2!uAu2A

1«d~x!@Â~x,t !2A#, ~13!

where the final term is the negative feedback injection ba
on the deviation from the target state.

First we perform the linear stability analysis of the targ
state. Inserting

A~x,t !5A0@12a~x,t !#exp$ i @kx2vt1f~x,t !#%, ~14!
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FIG. 2. c152.1, c2521.5, k
50. These parameters are used
all the following figures.~a! The
largest Lyapunov exponent Resm

vs r for different L. ~b! Resm vs
L for different r. Note, asL→`,
Resm crosses zero atr 5r c

'1.735.
f

-

n

d

m
et

p-

be

ve

q.
into Eq. ~13! and consideringuau, ufu!1, we reach a set o
linear equations

at5axx1~r 22kc1!ax22~12k2!a2c1fxx

22kfx2«d~x!a,
~15!

f t5fxx1~r 22kc1!fx1c1axx12kax

22c2~12k2!a2«d~x!f.

Assuming an eigenfunction (f
a ), corresponding to an eigen

values, we have

S a

f D 5(
i 51

4 S ai

f i
D estepix, ~16!

with all quantities s and ai ,f i ,pi ,i 51,2,3,4, being un-
known complex constants. Inserting Eq.~16! to Eq. ~15! we
obtain the coefficient relations

f i5
pi

21~r 22kc1!pi22~12k2!2s

c1pi
212kpi

ai , i 51,2,3,4,

~17!

and the eigenvalue relations

s5
1

2
~F11

( i )1F22
( i )!1

1

2
A~F11

( i )1F22
( i )!224~F11

( i )F22
( i )2F12

( i )F21
( i )!,

F11
( i )5pi

21~r 22kc1!pi22~12k2!, F12
( i )52c1pi

222kpi ,
~18!

F21
( i )5c1pi

212kpi22c2~12k2!, F22
( i )5pi

21~r 22kc1!pi ,

i 51,2,3,4.

In Eq. ~16! there are 13 unknown complex constants a
we need 12 constraints to fix them~one constant, saya1, is
arbitrary!. Apart from the eight equations of Eqs.~17! and
~18!, we have four more equations for the boundary con
tions atx50 andL,

a~0,t !5a~L,t !, f~0,t !5f~L,t !,

ax~0,t !2ax~L,t !2c1fx~0,t !1c1fx~L,t !5«a~0,t !,
~19!

fx~0,t !2fx~L,t !1c1ax~0,t !2c1ax~L,t !5«f~0,t !.
d

i-

Then the eigenvalues and eigenvector can be solved fro
Eqs.~17!–~19!. As «→`, the system is pinned to the targ
state at the injecting point, Eq.~13! is then reduced to a
boundary-injecting modelA(0,t)5A(L,t)5Â(0,t), and the
constraints~19! is simplified to

a~0,t !5a~L,t !5f~0,t !5f~L,t !50. ~20!

FIG. 3. ~a! The space-time evolution of Eq.~13! for «→` at

L580, r 51.72. DA(x,t)5A(x,t)2Â(x,t) with Â(x,t) given in
Eq. ~12! for k50. As t goes on the turbulence is successfully su
pressed in the whole system.~b! The same as~a! with r reduced to
r 51.65. A turbulent tail exists in the left side, which can never
eliminated for infinite time.~c! The controllability distribution in
L-r plane. Turbulence can be well controlled in the region abo
the curves. Solid line, theoretical prediction of Eqs.~17!, ~18!, and
~20!; black disks, numerical simulation of Eq.~13! by taking initial
condition in the vicinity of the target; crosses, simulation of E
~13! from arbitrary initial condition.
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To end our theoretical analysis, let us make a brief d
cussion on the form of eigenfunction~16!. Without control
the eigenfunction is always assumed to have a single m

S a

f D 5S a1

f1
D estep1x,

with p1 being an imaginary valuep15(2pn/L) i @4–6#,
given by the periodic boundary condition. With control th
assumption should be replaced by the four-wave-mix
eigenfunction ~16! to meet thed-function control at the
boundaryx50. And the wave numberspi become complex.
The real parts represent the spatial amplifications~or contrac-
tions! of perturbation, which are crucial for the convectiv
instability. In the limit «→0 we will find a1 ,f1Þ0, p1
5(2pn/L) i , and ai ,f i→0, i 52,3,4, which recover the
well known results without control. Thus, at the onset
instability, four waves~they together serve as an unstab
mode! are amplified simultaneously, this is essentially diffe
ent from the single wave instability without control. We fin
that this four-wave-mixing mode satisfactorily predicts t
system behavior in the controlled systems at the onse
instability.

The above computation is exact. However, no explicit
lution like Eqs.~8! and~9! can be available. We should pe
form numerical computation, based on the analytical res
of Eqs.~17!–~19!. For simplicity, we consider«→` and the
target statek50, and then solve Eqs.~17!, ~18!, and~20! for
obtaining eigenvalues and eigenvectors. In Figs. 2~a! and
2~b! we calculate the largest LE of the system, i.e., the la
est real part of the eigenvalues of the system, for differer
andL. Two important features can be observed in the figu
First, increasing the gradient forcer is favorable for reducing
the largest LE of the system, and for any givenL we can
always stabilize the target state~i.e., reduce Res to nega-
tive! by increasingr. Second, there is a criticalr, r c , for r
.r c , such that we can control the system with infinite
long size by injecting a single point. In our case,r c'1.735
s.
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@in Fig. 2~a! the crossing points of the Res curves on ther
axis accumulate tor c asL→`#.

In order to confirm the analytical prediction in Figs. 2~a!
and 2~b!, we numerically simulate Eq.~13! with «→` by
taking the homogeneous oscillation,k50 in Eq. ~12!, as our
targetÂ(x,t). In Figs. 3~a! and 3~b! two parameter combina
tions, corresponding to small positive and negative larg
LE’s, respectively, are used. The numerical simulations fu
agree with the stability analysis. In Fig. 3~c! we study the
controllability in the r -L plane. In the region above th
curves the target homogeneous oscillation can be stabil
and the defect turbulence of the uncontrolled system can
successfully suppressed. It is striking, that the linear stab
analysis~solid line! can perfectly agree with the global be
havior of the system~crosses! in the whole parameter plane
In Fig. 3~c! the curves obviously saturate to a finiter value,
r c'1.735, above which controlling turbulence in infini
CGLE system by injecting a single space point becomes p
sible, this confirms the prediction of Fig. 1.

In summary, we have analytically studied the influence
gradient force on the control efficiency of spatiotempo
chaos. The possibility of controlling spatiotemporal chaos
infinitely long system by injecting a single control signal
the upper string point is revealed, based on the eigenv
analysis. This analytical computation is applied to cont
CGLE turbulence, and a four-wave-mixing mode is obtain
to predict the system dynamics at the onset of the instab
of the controlled system.

The investigation in this work is mainly based on the loc
control in the infinite dissipation limit@see Eqs.~4! and
~20!#. This limit is appled only for the convenience of an
lytical computation. An analysis for general finite feedba
control @Eqs.~3! and~19!#, which are more realistic in prac
tical cases, will appear in a forthcoming paper publicatio
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