RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 62, NUMBER 3 SEPTEMBER 2000
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The phenomenon of exponential instability, arising in certain nonautonomous linear oscillators, motivates
the question about the boundedness of amplitude and energy of the oscillators describing many physical
situations. We present a rigorous result ensuring the boundedness for a class of generalized classical oscillators,
characterized by symmetric potentials with only one equilibrium point. The key elements turn out to be the
oscillating nature of the solutions and the presence of an autonomous part in the potential, divergirigan

quadraticallywith the coordinate.

PACS numbsefs): 05.45-a, 45.50.Dd, 02.30.Hq

I. INTRODUCTION function of time fluctuating without limit. We call this effect

“exponential instability” (El). When the fluctuation of

By generalizectlassical oscillator, we mean a systémot ~ Q?(t) is periodic the El is known as “parametric reso-
necessarily Hamiltonign described by a single real degree nance”[1,2] and occurs if and only if the mean value of the

of freedomgq(t), with first time derivativey(t), moving back ~ fluctuation over a period falls into certain intervaisfinite
and forth about a stable equilibrium position. Without loss ofin humbey, depending on the fluctuation period itself. On the
generality, the equilibrium position can be assumed to be th@ther hand, a bounded buindom fluctuation always pro-
coordinate origin. Mathematically, the conditions for a sys-duces El for arbitrary amplitudes and independently of any

tem to be a generalized oscillator read as follows: condition of resonancéexponential localization in one di-
mension; see, for instance, RE3]). This example motivates
The instantgt,,} and{t/} at which q(tn)=O,Q(tr’1)=0 the interest in th_e asympt(_)tic properties of generalized non-
autonomous oscillators, with special reference to the bound-
form two unbounded sequences, such that edness properties.
. o If it can be done, the construction of arvariant function
Jmtnzgmtnzm- (18 of momentum, coordinate, and time is the best possible ap-
proach to the exact integration of the equation of motion.
Furthermore, Important results have been obtairfddb] by expanding the
invariants in series of recursively connected terms. However,
q(t)) andq(t’, ,) have opposite signs, and the asymptotic properties of those series are in general un-
known, so that the boundedness of the solutions is usually an
t,<t,<t,,, for eachn. (1b)  open question. The present method does not require the use

Properties(1) must be

- o N of invariants.
satisfied for all initial conditions ex-  |n Sec. II, we studynonautonomous symmetritamilto-

cept, at most, for those yielding lim..q(t)=0. Generalized njans of the form
Hamiltonian oscillators withnonautonomouserms form a

class of nontrivial problems in which the boundedness of the pz
energy is the most important question to be addressed. In Hegen = — + Wi(q%,t) + Waut(g?), (33
fact, the asymptotic behavior of their nonconserved energy 2~ ~ -
may depend in a complicated way on the structure of th&yith equation of motion Wig*)
equations of motion and on the initial conditions. Typical
examples are thénear oscillators described by the Hamil- g+ 2q [8qut + 8q2 aut] =0, (3b)
tonian ~ ~ ad
h giti —F(q,t)
02+ 02(1) P under the conditions
M=% @ W@ D: deWe(aP); Waul @)
It is well known that the Hamiltonian of Eq2) can diverge I@Wau(0%)=0 Vi, (48)
exponentiallyin time if the linear frequency is a bounded 2
- Wau(9%)
lim — =T, (4b)
2 e}
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W,(0,t)bounded. (4d)  given thatq=p. Therefore, the only possibility for, sag?
to diverge in envelope more rapidly thad, would be

Conditions (4) mean that the potential energy is non-
negative, with arautonomougerm diverging more rapidly limcog ¢(t)=0= limsir?¢(t)=1(wrong). (8)
thang?, and withonly oneequilibrium position inq located t—e t—e
at g=0. In addition, the zero-point potential energy of the . .
nonautonomous part must be a bounded function of the timd."om the second E@8), it follows that there should exist a
By means of condition$4a and (4c), it can be easily seen timet and a positive numbes<1 such that
that the solutions of Eq3b) do actually satisfy the condi- R
tions (1) for the system to be a generalized oscillator. We sif¢(t)=6>0 Vt>t(wrong. 9
prove the following theorem: _ _ -

(i) Under conditions(4), q(t), q(t), and Hyer(t) are On squaring the second E@®), the strict positiveness dft)

bounded and of sif¢(t) would imply that g%(t)=p?3(t) is in turn
In proving Theorenti), it will be seen that conditiofdb)  strictly positive fort>t. This violates the conditiori1a),
plays a special role: which proves that the envelope qft) divergesat mostas

(ii) If the other conditiong4) are satisfied, an (autono-
mous, attractive) force divergingiore than linearlwith the
coordinate issufficientfor boundedness

q(t) for any oscillator such thad|= p. The same reasoning
can be applied to show thaf(t) diverges in envelope at

most agy(t). The only difference in the proof is exchanging
the two trigonometric functions in E@8) with each other.
For the last step of the theorem, we use the Hamilton

The main difficulty with Theorenti) is the complicated equation for the energy itselEq. (3a)]:
interplay between the rapid oscillations and the smooth av- ,
erage trend of the solutionsvhat we call the “envelope) Hged ) = aWi (g%, 1), (10
that determines the boundedness properties. Other authors
have faced the same difficulty with different methgdss]. ~ and write Eq.(3b) in the equivalent form,
In particular, the boundedness has been proven by Diecker- .
hoff and Zehnde(DZ) in Ref.[7], via the so-called “twist 2 ' 24\ 2 )
theorem,” for the equation of motion a th-atlwtdt 2Wa% ) = 2Wa( 07)+ 2E,,

IIl. BOUNDEDNESS THEOREM

. (11

q+q?mii+ > a()g!=0; ej(t+7)=a;(t), (5  whereE; is the energy at the initial instagt. In each point
I=0 of the sequenced,} and{t,}, defined by propertie€l), Eq.

with time-periodic coefficients and integer powers of the co—(ll) yields

ordinate. The elegant method of R¢7] makes use of a

formalism that might look rather sophisticated to nqnspecial-qz(tn) = Zf t;'9,W,(g2,t)dt — 2W,(0t,) — 2W,,( 0) + 2E;,

ists in dynamical systems. The present approach is more el- (123

ementary and a little bit more flexible, since we can gener-

alize the boundedness theorem to nonperiodic cases and to ,

noninteggr powers as well. However, our Hami!tpnqaa) is _ 0:th”&twt(qz,t)dt—2Wt(q2(tr'1),tr’,)

symmetric by definition and has only one equilibrium posi- ti

tion, g=0. In this sense the case studied by DZ is more . 2,01 .

general, 2Woi(q=(tp)) + 2E; . (12b
Our approach is based on properti@s, characterizing

the generalized oscillators. Let us introduce the so-calle

action-angle variablesg(,J), and apply the canonical trans-

formation:

he integral on the rhs of Eq12hb) can be expressed in
erms of Eq.(12a, which yields

q%(ty) —2 f t,"atwt<q2,t>dt+zwt(0,tn>+2Wam<0>
(q,p)—(,d); gq=+2Jcosp, p=—+2Jsine. (6) t)

_ 2741 AN 274/ —
We prove the following statement: 2W(@7(tn) 1) = 2Wau( G7(t)) = 0. (133

4. On settingd,W,=W,—2(d;2W,)qq into the integral on the

If properties(1) apply and dt) is assumed to be unbounde
prop (1) apply av lhs of Eq.(138), then dividing byg?(t/), one gets

then o(t) = p(t)diverges with the same envelope ds)q (7)

qz(tn) 4 tn .
In fact, it is clear from Eq(6) thatJ(t) is strictly positive, WJF Wft (9g2Wy)qqdt
otherwiseJ(t)=0 for eacht. This is because Eq3b) en- . noen
sures thag(t)=0 Vt is a solution of the problem. In addi- W, G2(t)) W, (O)
tion, J(t) must contain anyeventually diverging envelope - + =0. (13b

of the squared solution and of its squared first derivative, g?(tp) 9°(ty)
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By definition[property(1a)], g(t,) are the relativanaxima  boundednessgor stability) problem. This is especially rel-
of g2(t). Hence, ifg?(t) is assumed to diverge in envelope, evant for a wide class of physical problems, whose origin is
there exist two unbounded subsequences{t/}C{t'}, the exponential instabilityEl) of certainlinear oscillators
{f.1C{t.}, such that [Eq. (2)]. Just to give a few examples, we mention here: the
n ni» problem of the stability of beams in acceleratf8s-12], the

confinement of charged particle®aul traps[13]), the
squeezing effects in quantum optidsA—17, and acoustics
[6]. In all these cases, E@R) represents an approximation,
and neglecting higher-order nonlinear effects, that are unavoid-

- able in practical applications. As far as Eg) is concerned,

{q (t)

lim g2(t/) =+ (wrong), (14)

n—oo

we stress that theandomly fluctuating frequency is a par-
211 bounded, (15 ticularly intriguing case. On one hand, it seems to outline the
q solution of a long-standing technological problem, i.e., using

as implied by property7). From the condition¢4a) and (4b) the environment as an infinite source of randomly fluctuating
and from Eq.(14) it follows that the third term on the Ihs of €Nergy; to be extracted and concentrated in a controllable

Eq. (13b should divergenegativelyand the fourth term system. On the other hand, the same effect will sound alarm-
ing, in some circumstances. For example, the energy of the

transversal modes of an elastic bar, under the action of lon-
‘gitudinal time-varying forces [2], Chapter 17is just deter-
mined by Eq.(2). In this case the fluctuating part 6(t) is
proportional to the longitudinal force. As a structural part of
4 . a vehicle or a building, a bar can be influenced by random-
lim 2—"f n(anWt)qthI +oo(wrong). (16)  Vvarying forces, even in quite normal conditions. The conse-
(tp) /1, guences should be alwaysr could have been, sometimes
o . catastrophic, if some contrasting mechanisms did not sup-
However, in each intervdlt/ ,t,], the functionq(t)q(t) is  press the El. Statemefit) addressed the nonlinearity as an
manifestlynonpositive In fact, due to propertylb), in such  important mechanism contrasting the E8]. The present
intervalsq(t) increasegdecreasesfrom a relativenegative ~ communication should stimulate guantitative analysison

minimum (positivemaximumn) to zero. Hencey(t) andq(t)  the ability of the nonlinear effects to suppress the El, under

: L a2 ; . listic (though extreme physical conditions. To our
have necessarily opposite signs[it},,t,]. Since d2W, is rea ;
non-negative by definitioicondition (4a], the Ihs of Eq. knowledge, this problem was presumably addressed long ago

(16) turns out to be negative. It is thus proven by reduction to[lg] for the structural §tap|llty of a|rcr§ft, In th_e casequra-
metric resonancegperiodical fluctuations It is not clear,

the absurd thag(t) andq(t) are both bounded. Condition hoyever, if the same question has been considered in the

(4d) completes the boundedness Theor@m ~ case ofrandomfluctuations too, in more recent times. If this
At this stage, it is useful to discuss the hypothesis ofyasnotthe case, the present communication should sound as

Theorem(i) on a more physical ground. The crucial points gy g1arm bell for engineers and technologists.

for the boundedness are the oscillating nature of the solutions |, 5 forthcoming paper, we will go beyond the bounded-

and the presence of @utonomousermWa, diverging more  ness theorem proven above, by studying the classical Hamil-

than quadratically with the coordinatecondition (4b)].  ignian

Should this term be eliminated, the third term on the Ihs of

Eq. (13b would disappear in turn, and the next arguments P2+ 02«

would not apply anymore. Thus, the presencalyf,; satis- =—F+—|q]"; vy>2, a7

fying condition(4b) is asufficientcondition for boundedness 2 Y

[statementii)]. In contrast to the DZ approadf], there is

no need here to assume tvif, is themost divergingerm. ~ @S @ special case of E(Ba), satisfying conditions4). The
interplay between EI and nonlinearity is expressed by Eq.

(17) in the simplest possible form. Indeed, if the quadratic
part is exponentially unstable, the low-energy dynamics re-

The present Rapid Communication clarifies some aspectsulting from the nonlinear terms exhibits a very rich struc-
of the interplay between nonautonomous arwhlinear ef-  ture, including acritical transition, driven by the initial en-
fects in generalized oscillators, with special reference to thergy of the generalized oscillator.

should vanish fon—c, whent/, is replaced byt/ . Further-
more, Eq.(15) ensures that the first term is bounded. There
fore, the only possibility for Eq(133 to be satisfied asymp-
totically would be

n—o
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