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Critical behavior of the one-dimensional annihilation-fission process 2— 0, 2A—3A
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Numerical simulations and cluster mean-field approximations with coherent anomaly extrapolation show
that the critical line of the d annihilation-fission process is separated into two regions. In both the small and
high diffusion cases, the critical behavior is different from the well known universality classes of nonequilib-
rium phase transitions to absorbing states. The high diffusion region seems to be well described by the
cyclically coupled directed percolation and annihilating random walk. Spreading exponents show nonuniversal
behavior.

PACS numbeps): 05.70.Ln, 82.20.Wt

Nonequilibrium phase transition may take place even in AAQD, DAA—AAA withrate (1—p)(1—d)/2,
one-dimensional systems. However, the ordered phase lacks
fluctuations that could destroy the state. If the system has

evolved into that state it will be trapped there. We call this AA—OO withrate p(1-d), @
transition to an absorbing state. First order transitions among

these are very rare; there have been only a few systems AD—OA withrate d.

found that exhibit a discontinuous jump from the active to

the absorbing phadd —4). Carlonet al. suggested that the phase diagram can be sepa-

Continuous phase transitions have been found to belontated into two regions. For low values df (less than ap-
to a few universality classes, the most robust of which is thgoroximately 0.3, they found a continuous phase transition
directed percolatioiDP) class. According to the hypothesis belonging to the PC universality class. For large valued, of
of [5,6], all continuous phase transitions to a single absorbhowever, a first order transition was reported. This claim is
ing state in homogeneous systems with short ranged interaased on mean-field, pair mean-field, and density matrix
tions belong to this class provided there is no additional symte€normalization group methotOMRG) [25] calculations.
metry and quenched randomness present. The mo&" even more recent preliminary numerical sti@g] found
prominent system exhibiting phase transition of this class i§0N-PC classlike critical exponents and posed the question if
the branching and annihilating random walk with one of- there is a new type of nonequilibrium phase transition occur-

spring (BARW). Furthermore, systems with infinitely many ring here. In this paper | report more detailed numerical re-

absorbing states were also found to belong to this clasguns.: S|mulat|ops and generalized mean-fieEMF) ap-
[7—9] proximations with coherent anomalZAM) extrapolations

. . . hat give numerical eviden f a rich ph iagram with
An important exception from the DP class is the so-calle at give numerical evidence of a rich phase diagra

. . . wo different kinds of universality classes in the lahand
parity-conservindPC) class where particles follow a branch- y

: L2 . .~ highd regions.
ing and ‘annihilating random walk with two offSpring "o simulations a parallel update version of the AF pro-

(BARW2) A—3A, 2A— @ that conserve the parity of their cegs was used since the model can effectively be mapped on
number[10-13. Particles following BARW2 may also ap- 4 massively parallel processor rifgj7]. To avoid collisions
pear as kinks between ordered domains in systems exhibitingy synchronous updates, the lattice is divided in such a way
two absorbing statelsl4—18. However, it was realized that that annihilation and exchange steps are done on two-
the BARW2 dynamics alone is not a sufficient condition for syplattices with ratep(1—d) and d, respectively, while
a transition in this class, but an exatt symmetry between creation is performed on three-sublattices with the rate
the two absorbing states is necessary,[b519-23. (1-p)(1—d). Thus ind=1 three-sublattices are defined
Recently, a study on the annihilation-fissighF) process 3s shown on Fig. 1 and updated in a circular way
2A— 0, 2A—3A [23] suggested that neither the BARW2 (A B,C,A, ...). This algorithm is faster than the random
dynamics nor th&, symmetry but simply the occurrence of sequential one because we do not have to generate the ran-
two absorbing states can result in a PC class transition. Th@om sites. The critical point has been determined dor
model without the diffusion of single particles was intro- =0,05,0.1,0.2,0.5,0.9 by following the decay of the particles
duced first by[7]. The renormalization group analysis of the from a uniform, random initial statép(t) <t~ %). The local
corresponding bosonic field theory was given[By]. This  sjopes curve of the density
study predicted a non-DP class transition, but it could not tell
to which universality class this transition really belongs. A B C A B
A fermionic version of the AF process introduced 28]
is controlled by two parameters, namely, the probability of I I } I I
pair annihilationp and the probability of particle diffusiod.
The dynamical rules are FIG. 1. Three sublattices.
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FIG. 2. Local slopes of the particle density decay in the parallel FIG. 3. The same as Fig. 2 dt=0.5. Different curves corre-
update model atl=0.2. Different curves correspond to 0.248 07, spond top=0.2796, 0.27958, 0.27955, 0.279Bom bottom to
0.24805, 0.24802, 0.248, 0.247 9§om bottom to top. The  top).
simulations were performed on a ring of sike=24 000 up to 4
X 10° MCS. Throughout the whole papeis measured in units of
Monte Carlo sweep&MCS).

is of first order. The present study cannot confirm those pre-
dictions based on extrapolations to DMRG results of small
system sizesl(<100). The first order transition fa>0.3
appears to be unlikely also because the mean-field approxi-
2 mation of the model exhibits a continuous phase transition
(with Bye=1) and that corresponds to the strong diffusion
limit without fluctuations.

—In[p(t)/p(t/m)]
In(m)

Oeri(t) =

(where we usually usen=8) at the critical point goes to
exponents by a straight line, while in subcritical or super-  The differences from PC class and from first order transi-
critical cases it veers dowfup), respectively. As Fig. 2 tion can be seen even more clearly by direct measurements
shows atd=0.2 andp=0.248 02, this quantity scales with- Of the order parametgs exponen{p(=) < e”). By looking at

out any relevant correctior(ge., the straight line is horizon- the effective exponent defined as

tal) and in the 1—0 limit goes to6=0.26§2).

Very similar results have been obtained fb#0.05 and
d=0.1, showing that the expone#tis close to the corre-
sponding value of the PC clag8.285(10)[11]], but appears
to be significantly smaller. Thi$ is in agreement within
error margin with the valu¢~0.272(18) one can obtain
from DMGR calculationd 23] using scaling lawss= g/,

Inp(e)—Inp(ei-1)
In Ei_ln €1

Beti( €)= ) (3

on Fig. 4 one can observe two regions again:der0.3 the

=Blv, Iz
For stronger diffusion rated=0.5 andd=0.9 one can
observe slower density decays with exponért0.215(10) 0.68 | % ,

(Fig. 3. Note that | checked that changing the abscissa on
the local slopes graphs fromt1b In(t)/t does not eliminate
the differences between small and ladyleehaviors. Also by
assuming strong correction to scaling | could not get coher- ;55 |
ent estimates foB and § that would be in agreement with %
DP or PC classes. This value éfis in agreement with that = o 5
of the coupled DP plus annihilation random walk suggested o}

by [28]. This model was proposed to explain the space-time 45 | C = T
behavior of the AF with the help of a multicomponent
model, whereA particles(corresponding to pairs in Afper-
form BARW processed—2A, A— © and occasionally cre-

ateB particles(corresponding to lonely particles in Alwho 038 ‘ | ‘ ‘ ‘
follow random walk plus annihilation: B— A (ARW). The 0 0.002 0.004 0.006 0.008 0.01
€

space-time evolution picture of this model looks similar to
that of AF (and very different from that of BARW2but the FIG. 4. Order parameter exponent results of the AF model for
numerical simulations predicted somewhat different expoy=0.9 (circles, d=0.5 (squarel d=0.2 (diamond3, d=0.1 (tri-
nents as those of the AR23,26,29,3Q By approachingd  angles, d=0.05(star$. The simulations were performed on a ring
=1, corrections to scaling are getting stronger and this mighdf L=24 000 sites such that averaging was done following the
lead to the conclusion g23]—that ford>0.3 the transition steady state reached for 1000 samples
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FIG. 5. Local slopes of the particle number in seed simulationsstrong

in the parallel update model a=0.05, d=0.2, d=0.5, andd
=0.9 (from bottom to top. The simulations were performed on a
lattice of sizeL =24 000 up to 18 MCS.

Beis tends to 0.58(2) as=(p.—p)—0, while ford>0.3 it
goes to~0.4(2).

For small diffusion rates the value 0.58 is very different
from that of the PC clasg0.94(10)| [11,22)) and from that
of DP class[0.2765(1) [6], but is in agreement with pre-
liminary simulation results of26] and[30]. For strong dif-
fusion it coincides fairly well with the value 0.38(6) that was
found for the coupled DPARW model[28].

The results for the order parameter exponent have be
verified by generalized mean-field approximatidrdd,32
with coherent anomaly extrapolati¢B3]. This method has
been proven to give precise estimates for the[ B4 and PC
[2] classes. The details of the method are describg@2h
and a forthcoming pap€i35] will discuss the results and
show estimates for other exponents as well.

For technical reasons a variant of the AF model was in
vestigated where the creation is symmetWdDA— AAA.
This does not change the essence since ARD/OAA
—AAA process can be decomposed intAA@— QA ex-

change and a symmetric creation. One can easily check the

the mean-field approximatiorN(=1) and its result are trivi-
ally the same as that for model 1, namely,

p(*)=(1-3p)/(1-p). 4
Higher order approximations fdd=2,3, ... ,7converge to
the simulation results of this variafFig. 5 and the phase
diagram qualitatively agrees with that of REZ3]. The lead-
ing order singularity at critical point remains mean-field
type, i.e.,Beue=1. Furthermore, dynamical MC simulation
of this variant gives the same critical decay behavior as th
original AF model. According to CAM, the amplitudes of
these singularitiea(N) scale in such a way that

a(N)x(pe(N) —p)f~Awr (5
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TABLE I. Summary of results. The nonuniversal critical param-
eterp. of the parallel model is shown here.

d 0.05 0.1 0.2 0.5 0.9
Pe 0.25078 0.24889 0.24802 0.27955  0.4324
Beam 0.586) 0.582)  0.424)

B 0572) 0581 0581 0402 0.392

s 0.2732) 0.2754) 0.2682)  0.21(1) 0.201)

7 0.102) 0.141) 0232 0.481)

s 0.0046) 0.0046) 0.0089) 0.01(1)

els of approximations N=4,5,6,7) and resulted iBcam
values in agreement with those of simulatidsee summa-
rizing Table ).

Note that the CAM extrapolation does not work fdr
>0.5 andd<0.1, because corrections to scaling are getting
and it is very difficult to find the steady state solu-
tions of the GMF equations faX>7. Time dependent simu-
lations from a single active seed for these models have been
proven to be a very efficient methd@6] since the slowly
spreading clusters do not exceed the allowed system sizes
and hence do not feel finite size effects. Very precise esti-
mates for the cluster “mass” exponemi(t)«t”? and the

cluster survival probability exponem(t)octfﬁ' have been
obtained in DP and PC classee references {187]). How-
ever, for example, in the case of systems with infinitely
many absorbing states these exponents seem to depend on
initial conditions[7—-9]. A rigorous explanation is still miss-
ing. The simulation results for the cluster méggy. 6) show
strong dependence of ond. Ford=0.05 andd=0.2, » is
close to 0.15, while it increases tp=0.23(2) ford=0.5
and reaches=0.48(1) ford=0.9. The survival probability
exponentd’ is roughly zero, expressing the fact that a single
particle survives with finite probabilitysee Table)l

The continuously changing exponentis in agreement
with the preliminary observations ¢26]; however,3 and
the 5 seem to be constant in the region Gs0%<0.2 and

1

€

FIG. 6. GMF approximations of the particle density in the sym-

and the exponent of true singular behavior, can be estimateghetrized AF model atd=0.5 forN=1,2, . . ., 7(from right to left
The CAM extrapolation has been applied for the highest leveurves.
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0.5=d=0.9, suggesting two different universality classes.is not completely frozen, but a single particle diffuses in
The nonuniversal behavior of the cluster exponent may noit.My results do not support the conclusions[@8] for a PC
be so surprising since it was also observed indke limit  class transition without a BARW2 process atsymmetry
of the AF in the pair contact procefz—9]. nor the first order transition for largé but the exponents do

In conclusion, numerical simulations and analytical GMFNot contradict those df23] within numerical precision. It is
+CAM calculations suggest two different universality likely that the two exponent ratios determined [88] are
classes in the AF model along the phase transition line. Foflose to those of PC class accidentally. The cluster exponent
small diffusion, single particles cannot escape clusters wherd P€haves nonuniversally like in the pair contact process, the
pair annihilation and creation dominates. For larger diffu-d=0 limit of the AF. Deeper understanding of this model
sions these single particles will wander among pair creationthat would reveal hidden symmetries responsible for the
annihilation clusters and the coupled BARVKRW descrip- strange critical behavior of AF would be highly desirable.

tion of [28] will be valid. These unknown universal  The author would like to thank E. Carlon, P. Grassberger,
behaviors may sound uneasy following two decades whey. Henkel, H. Hinrichsen, and J. F. F. Mendes for helpful
the DP hypothesis has been found to describe almost evedliscussions. Support from Hungarian research fund OTKA
continuous transition to absorbing state, but they do not condiNos. T-25286 and T-23552and from Bdyai (No. BO/
tradict it at all. In the AF model the absorbing state is not00142/99 is acknowledged. The simulations were performed
singlet, there are twghonsymmetrit absorbing states where on Aspex’s System-V parallel processing syst@mvw.asp-

the system can evolve with equal probabilities. One of thermex.co.uk.
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