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Critical behavior of the one-dimensional annihilation-fission process 2A\O” , 2A\3A

Géza Ódor
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~Received 10 May 2000!

Numerical simulations and cluster mean-field approximations with coherent anomaly extrapolation show
that the critical line of the 1d annihilation-fission process is separated into two regions. In both the small and
high diffusion cases, the critical behavior is different from the well known universality classes of nonequilib-
rium phase transitions to absorbing states. The high diffusion region seems to be well described by the
cyclically coupled directed percolation and annihilating random walk. Spreading exponents show nonuniversal
behavior.

PACS number~s!: 05.70.Ln, 82.20.Wt
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Nonequilibrium phase transition may take place even
one-dimensional systems. However, the ordered phase l
fluctuations that could destroy the state. If the system
evolved into that state it will be trapped there. We call th
transition to an absorbing state. First order transitions am
these are very rare; there have been only a few syst
found that exhibit a discontinuous jump from the active
the absorbing phase@1–4#.

Continuous phase transitions have been found to be
to a few universality classes, the most robust of which is
directed percolation~DP! class. According to the hypothes
of @5,6#, all continuous phase transitions to a single abso
ing state in homogeneous systems with short ranged inte
tions belong to this class provided there is no additional sy
metry and quenched randomness present. The m
prominent system exhibiting phase transition of this clas
the branching and annihilating random walk with one o
spring ~BARW!. Furthermore, systems with infinitely man
absorbing states were also found to belong to this c
@7–9#.

An important exception from the DP class is the so-cal
parity-conserving~PC! class where particles follow a branch
ing and annihilating random walk with two offsprin
~BARW2! A→3A, 2A→O” that conserve the parity of the
number@10–13#. Particles following BARW2 may also ap
pear as kinks between ordered domains in systems exhib
two absorbing states@14–18#. However, it was realized tha
the BARW2 dynamics alone is not a sufficient condition f
a transition in this class, but an exactZ2 symmetry between
the two absorbing states is necessary, too@17,19–22#.

Recently, a study on the annihilation-fission~AF! process
2A→O” , 2A→3A @23# suggested that neither the BARW
dynamics nor theZ2 symmetry but simply the occurrence o
two absorbing states can result in a PC class transition.
model without the diffusion of single particles was intr
duced first by@7#. The renormalization group analysis of th
corresponding bosonic field theory was given by@24#. This
study predicted a non-DP class transition, but it could not
to which universality class this transition really belongs.

A fermionic version of the AF process introduced in@23#
is controlled by two parameters, namely, the probability
pair annihilationp and the probability of particle diffusiond.
The dynamical rules are
PRE 621063-651X/2000/62~3!/3027~4!/$15.00
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AAO” , O”AA→AAA with rate ~12p!~12d!/2,

AA→O”O” with rate p~12d!, ~1!

AO”↔O”A with rate d.

Carlonet al. suggested that the phase diagram can be s
rated into two regions. For low values ofd ~less than ap-
proximately 0.3!, they found a continuous phase transitio
belonging to the PC universality class. For large values od,
however, a first order transition was reported. This claim
based on mean-field, pair mean-field, and density ma
renormalization group method~DMRG! @25# calculations.
An even more recent preliminary numerical study@26# found
non-PC classlike critical exponents and posed the questio
there is a new type of nonequilibrium phase transition occ
ring here. In this paper I report more detailed numerical
sults: simulations and generalized mean-field~GMF! ap-
proximations with coherent anomaly~CAM! extrapolations
that give numerical evidence of a rich phase diagram w
two different kinds of universality classes in the lowd and
high d regions.

For simulations a parallel update version of the AF p
cess was used since the model can effectively be mappe
a massively parallel processor ring@27#. To avoid collisions
by synchronous updates, the lattice is divided in such a w
that annihilation and exchange steps are done on t
sublattices with ratesp(12d) and d, respectively, while
creation is performed on three-sublattices with the r
(12p)(12d). Thus in d51 three-sublattices are define
as shown on Fig. 1 and updated in a circular w
(A,B,C,A, . . . !. This algorithm is faster than the rando
sequential one because we do not have to generate the
dom sites. The critical point has been determined ford
50.05,0.1,0.2,0.5,0.9 by following the decay of the partic
from a uniform, random initial state„r(t)}t2d

…. The local
slopes curve of the density

FIG. 1. Three sublattices.
R3027 ©2000 The American Physical Society
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de f f~ t !5
2 ln@r~ t !/r~ t/m!#

ln~m!
~2!

~where we usually usem58) at the critical point goes to
exponentd by a straight line, while in subcritical or supe
critical cases it veers down~up!, respectively. As Fig. 2
shows atd50.2 andp50.248 02, this quantity scales with
out any relevant corrections~i.e., the straight line is horizon
tal! and in the 1/t→0 limit goes tod50.268(2).

Very similar results have been obtained ford50.05 and
d50.1, showing that the exponentd is close to the corre-
sponding value of the PC class@0.285(10)@11##, but appears
to be significantly smaller. Thisd is in agreement within
error margin with the value@;0.272(18)# one can obtain
from DMGR calculations@23# using scaling lawsd5b/n uu
5b/n' /z.

For stronger diffusion ratesd50.5 andd50.9 one can
observe slower density decays with exponentd50.215(10)
~Fig. 3!. Note that I checked that changing the abscissa
the local slopes graphs from 1/t to ln(t)/t does not eliminate
the differences between small and larged behaviors. Also by
assuming strong correction to scaling I could not get coh
ent estimates forb and d that would be in agreement wit
DP or PC classes. This value ofd is in agreement with tha
of the coupled DP plus annihilation random walk sugges
by @28#. This model was proposed to explain the space-ti
behavior of the AF with the help of a multicompone
model, whereA particles~corresponding to pairs in AF! per-
form BARW processesA→2A, A→O” and occasionally cre
ateB particles~corresponding to lonely particles in AF! who
follow random walk plus annihilation: 2B→A ~ARW!. The
space-time evolution picture of this model looks similar
that of AF ~and very different from that of BARW2! but the
numerical simulations predicted somewhat different ex
nents as those of the AF@23,26,29,30#. By approachingd
51, corrections to scaling are getting stronger and this m
lead to the conclusion of@23#—that ford.0.3 the transition

FIG. 2. Local slopes of the particle density decay in the para
update model atd50.2. Different curves correspond to 0.248 0
0.248 05, 0.248 02, 0.248, 0.247 95~from bottom to top!. The
simulations were performed on a ring of sizeL524 000 up to 4
3105 MCS. Throughout the whole papert is measured in units o
Monte Carlo sweeps~MCS!.
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is of first order. The present study cannot confirm those p
dictions based on extrapolations to DMRG results of sm
system sizes (L,100). The first order transition ford.0.3
appears to be unlikely also because the mean-field appr
mation of the model exhibits a continuous phase transit
~with bMF51) and that corresponds to the strong diffusi
limit without fluctuations.

The differences from PC class and from first order tran
tion can be seen even more clearly by direct measurem
of the order parameterb exponent„r(`)}eb

…. By looking at
the effective exponent defined as

be f f~e i !5
ln r~e i !2 ln r~e i 21!

ln e i2 ln e i 21
, ~3!

on Fig. 4 one can observe two regions again: ford,0.3 the

l FIG. 3. The same as Fig. 2 atd50.5. Different curves corre-
spond top50.2796, 0.279 58, 0.279 55, 0.2795~from bottom to
top!.

FIG. 4. Order parameter exponent results of the AF model
d50.9 ~circles!, d50.5 ~squares!, d50.2 ~diamonds!, d50.1 ~tri-
angles!, d50.05 ~stars!. The simulations were performed on a rin
of L524 000 sites such that averaging was done following
steady state reached for 1000 samples
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be f f tends to 0.58(2) ase5(pc2p)→0, while for d.0.3 it
goes to;0.4(2).

For small diffusion rates the value 0.58 is very differe
from that of the PC class@0.94(10)# @11,22#! and from that
of DP class@0.2765(1)# @6#, but is in agreement with pre
liminary simulation results of@26# and @30#. For strong dif-
fusion it coincides fairly well with the value 0.38(6) that wa
found for the coupled DP1ARW model @28#.

The results for the order parameter exponent have b
verified by generalized mean-field approximations@31,32#
with coherent anomaly extrapolation@33#. This method has
been proven to give precise estimates for the DP@34# and PC
@2# classes. The details of the method are described in@22#
and a forthcoming paper@35# will discuss the results and
show estimates for other exponents as well.

For technical reasons a variant of the AF model was
vestigated where the creation is symmetric:AO”A→AAA.
This does not change the essence since theAAO” /O”AA
→AAA process can be decomposed into aAO”→O”A ex-
change and a symmetric creation. One can easily check
the mean-field approximation (N51) and its result are trivi-
ally the same as that for model 1, namely,

r~`!5~123p!/~12p!. ~4!

Higher order approximations forN52,3, . . . ,7converge to
the simulation results of this variant~Fig. 5! and the phase
diagram qualitatively agrees with that of Ref.@23#. The lead-
ing order singularity at critical point remains mean-fie
type, i.e.,bGMF51. Furthermore, dynamical MC simulatio
of this variant gives the same critical decay behavior as
original AF model. According to CAM, the amplitudes o
these singularitiesa(N) scale in such a way that

a~N!}„pc~N!2pc…
b2bMF ~5!

and the exponent of true singular behavior, can be estima
The CAM extrapolation has been applied for the highest l

FIG. 5. Local slopes of the particle number in seed simulati
in the parallel update model atd50.05, d50.2, d50.5, andd
50.9 ~from bottom to top!. The simulations were performed on
lattice of sizeL524 000 up to 105 MCS.
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els of approximations (N54,5,6,7) and resulted inbCAM

values in agreement with those of simulations~see summa-
rizing Table I!.

Note that the CAM extrapolation does not work ford
.0.5 andd,0.1, because corrections to scaling are gett
strong, and it is very difficult to find the steady state so
tions of the GMF equations forN.7. Time dependent simu
lations from a single active seed for these models have b
proven to be a very efficient method@36# since the slowly
spreading clusters do not exceed the allowed system s
and hence do not feel finite size effects. Very precise e
mates for the cluster ‘‘mass’’ exponentN(t)}th and the
cluster survival probability exponentP(t)}t2d8 have been
obtained in DP and PC classes~see references in@37#!. How-
ever, for example, in the case of systems with infinite
many absorbing states these exponents seem to depen
initial conditions@7–9#. A rigorous explanation is still miss
ing. The simulation results for the cluster mass~Fig. 6! show
strong dependence ofh on d. For d50.05 andd50.2, h is
close to 0.15, while it increases toh50.23(2) for d50.5
and reachesh50.48(1) ford50.9. The survival probability
exponentd8 is roughly zero, expressing the fact that a sing
particle survives with finite probability~see Table I!.

The continuously changing exponenth is in agreement
with the preliminary observations of@26#; however,b and
the d seem to be constant in the region 0.05<d<0.2 and

s

TABLE I. Summary of results. The nonuniversal critical param
eterpc of the parallel model is shown here.

d 0.05 0.1 0.2 0.5 0.9

pc 0.250 78 0.248 89 0.248 02 0.279 55 0.43
bCAM 0.58~6! 0.58~2! 0.42~4!

b 0.57~2! 0.58~1! 0.58~1! 0.40~2! 0.39~2!

d 0.273~2! 0.275~4! 0.268~2! 0.21~1! 0.20~1!

h 0.10~2! 0.14~1! 0.23~2! 0.48~1!

d8 0.004~6! 0.004~6! 0.008~9! 0.01~1!

FIG. 6. GMF approximations of the particle density in the sy
metrized AF model atd50.5 for N51,2, . . . ,7~from right to left
curves!.
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0.5<d<0.9, suggesting two different universality classe
The nonuniversal behavior of the cluster exponent may
be so surprising since it was also observed in thed50 limit
of the AF in the pair contact process@7–9#.

In conclusion, numerical simulations and analytical GM
1CAM calculations suggest two different universali
classes in the AF model along the phase transition line.
small diffusion, single particles cannot escape clusters wh
pair annihilation and creation dominates. For larger dif
sions these single particles will wander among pair creat
annihilation clusters and the coupled BARW1ARW descrip-
tion of @28# will be valid. These unknown universa
behaviors may sound uneasy following two decades w
the DP hypothesis has been found to describe almost e
continuous transition to absorbing state, but they do not c
tradict it at all. In the AF model the absorbing state is n
singlet, there are two~nonsymmetric! absorbing states wher
the system can evolve with equal probabilities. One of th
t,

es
.
ot

or
re
-
-

n
ry

n-
t

is not completely frozen, but a single particle diffuses
it.My results do not support the conclusions of@23# for a PC
class transition without a BARW2 process andZ2 symmetry
nor the first order transition for larged, but the exponents do
not contradict those of@23# within numerical precision. It is
likely that the two exponent ratios determined by@23# are
close to those of PC class accidentally. The cluster expon
h behaves nonuniversally like in the pair contact process,
d50 limit of the AF. Deeper understanding of this mod
that would reveal hidden symmetries responsible for
strange critical behavior of AF would be highly desirable
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@34# G. Ódor, Phys. Rev. E51, 6261~1995!; G. Szabo´ and G. Ódor,
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