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We quantify the relation between trading activity — measured by the number of transddiigreind the
price changeG,, for a given stock, over a time intervat, t+At]. To this end, we analyze a database
documenting every transaction for 1000 U.S. stocks for the two-year period 1994-1995. We find that price
movements are equivalent to a complex variant of classic diffusion, where the diffusion constant fluctuates
drastically in time. We relate the analog for stock price fluctuations of the diffusion constant—known in
economics as the volatility—to two microscopic quantitiésthe number of transaction$,; in At, which is
the analog of the number of collisions afid the variancewit of the price changes for all transactionsAib,
which is the analog of the local mean square displacement between collisions. Our results are consistent with
the interpretation that the power-law tails B{G,;) are due toP(W,,), and the long-range correlations in
|Gyl are due taNy;.

PACS numbd(s): 05.40.Fb, 05.45.Tp, 89.96n

Consider the diffusior{1] of an ink particle in water. has long-range power-law time-correlatiofid,) P(Wit) is
Starting out from a point, the ink particle undergoes a rannot a Gaussian, but has a power-law téil) the correlation
dom walk due to collisions with the water molecules. Thefunction (W, (t)W,(t+ 7)) is short ranged, andv) the

distance covered by the particle after a tiheis variable e=X,/(WxNy,;) is Gaussian distributed and
short-range correlated. Under these conditions, the statistical
Nat properties ofX,; will depend on the exponents characteriz-
XAt:Zzl OXi, (18 ing these power laws.

Just as the displacemeXy, of a diffusing ink particle is

where dx; are the distances that the particle moves in be-the sum ofN,, individual displacementsx;, so also the

tween collisions, andN,; denotes the number of collisions S;O(;]k erlce chang@m IS thﬁ sum of :he pA”CG changeé;
during the intervalAt. The distributionP(X,,) is Gaussian of the Ny transactions in the intervat,t+At],
with a variance(X3,)=N,; W4,=DAt, where the local
mean square displacemanﬁtz((&(i)z) is the variance of Nat
the individual stepsdx; in the interval[t, t+At], andD is GAtzzl op; - (1b)
the diffusion constant.

For the classic diffusion problem considered abdijehe
probability distributionP(N,;) is a “narrow” Gaussian, i.e., Figure Xa) showsN,, for classic diffusion and for one stock
has a standard deviation much smaller than the nibap), (Exxon Corporation The number of trades for Exxon dis-
and At is such that/N,,) is sufficiently large,(ii) the time  plays several events the size of tens of standard deviations
between collisions of an ink particle are not strongly corre-and hence is inconsistent with a Gaussian prof2ks
lated, soN,, at any future timé+ 7 depends at most weakly (i) We first analyze the distribution dfl,; [Fig. 1b)].
on N,; at time t—i.e., the correlation function Figure Xc) shows that the cumulative distribution of,;
(Na(t)Nx(t+ 7)) has a short-range exponential dec@iy) displays a power-law behavidP{N,,>x}~x"#. For the
the distributionP(W3,) is also a narrow Gaussiatiy) the 1000 stocks analyze8], we obtain a mean valug=3.40
correlation function(W,(t)W,(t+ 7)) has a short-range *0.05. Note thai3>2 is outside the Ley stable domain
exponential decay, an@) the variablee=X,,/(WyVNy)  0<B<2.
is uncorrelated and Gaussian distributed. These conditions (ii) We next determine the correlations My;. We find
imply that X, is Gaussian distributed and short-range correthat the correlation functiofiN,(t)N,(t+ 7)) is not expo-
lated. nentially decaying as in the case of classic diffusion, but

An ink particle diffusing under more general conditions— rather displays a power-law decdfig. 1(d)]. This result
such as in a bubbling hot spring, where the characteristics gfuantifies the qualitative fact that if the trading activity,()
bubbling depend on a wide range of time and length scales-is large at any time, it is likely to remain so for a consider-
would result in a quite different distribution o€,,. In the  able time thereafter.
following, we will present empirical evidence that the move- (i) We then compute the variancd/=((8p;)?) of
ment of stock prices is equivalent to a complex variant ofthe individual changesp; due to theN,, transactions in
classic diffusion, specified by the following condition)  the interval[t, t+At], Fig. 2a). We find that the distribu-
P(N,,) is not a Gaussian, but has a power-law téi), N,;  tion P(W,,) displays a power-law decag{W,>x}~x""
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FIG. 1. (a) The lower panel showhl,, for Exxon Corporation withAt=15 min. The upper panel shows a sequence of uncorrelated
Gaussian random numbers with the same n{®&an) ~ 28 and standard deviatior=(16), which depicts the number of collisiohs, for the
classic diffusion problem. Note that in contrast to diffusibin, for Exxon shows frequent large events of the magnitude of tens of standard
deviations, which would be “forbidden” for Gaussian statisti@®. Histogram of the average time interval between trgdis for the 1000
stocks studied. In order to ensure that the sampling time int&vivébr each stock contains a sufficient number of transactions, we partition
the stocks into six groupd—VI) based o ét). Each group contains approximately 150 stocks. For a specific group, we choose a sampling
time At at least 10 times larger than the average value{&f) for that group. We choose the sampling time intervsl
=15, 39, 65, 78, 130, and 390 min, respectively, for groups I148/ILog-log plot of the cumulative distribution &, for the stocks in each
of the six groups in(b). Since each stock has a different average valuéNof;), we use a normalized number of transactiong
=N, /{N,). Each symbol shows the cumulative distributi®fn,>x} of the normalized number of transactiamg, for all stocks in each
group. An analysis of the exponents obtained by fits to the cumulative distribiRidwg, > x} of each of the 1000 stocks yields an average
value 8=3.40+0.05.(d) In order to accurately quantify power-law time correlationdNiry, we use the method of detrended fluctuations
[9]. We plot the detrended fluctuatiofg 7)—defined as the root-mean-square deviation of the integrated signal around a linear fit in a
window of lengthr—as a function of the time scale for each of the six groups. Absence of long-range correlations would ifpty
~ 795 whereas ()~ ¥ with 0.5< v<1 shows a power-law decay of the correlation function with expomgrt2—2v. For each group,
we plotF(7) averaged over all stocks in that group. In order to detect genuine long-range correlations, the U-shaped intraday paftern for
has been removed by dividing ealdlj, by the intraday patterfB]. We obtain the mean value=0.85+0.01 from the exponents obtained
by power-law fits toF(7) for each of the 1000 stocks.

[Fig. 2(b)]. For the 1000 stocks analyzed, we obtain a meamust be a Gaussian-distributed random variable with zero
value of the exponeny=2.9+0.1. mean and unit variancg4]. Indeed, for classic diffusion,
(iv) Next, we quantify correlations iW,;. We find that  X,,/(W,/N,) is Gaussian-distributed and uncorrelated
the correlation function{W,(t) W(t+ 7)) shows only [Fig. 3@]. We confirm the validity of this hypothesis by
weak correlationgFig. 2(c)]. This means thaW,; at any  analyzing(i) the distributionP(€), which we find to be con-
future timet+ 7 depends at most weakly A/, at timet. sistent with Gaussian behavifd¥ig. 3(b)], and(ii) the corre-
(v) Finally, we consider a statistical property that is “lo- lation function{e(t) e(t+ 7)), for which we find only short-
cal” in time. Supposedp; are chosernly from the interval  range correlationgFig. 3(c)].
[t, t+At], and let us hypothesize thidtesesp; are mutually Thus far, we have seen that the data for stock price move-
independent, with a common distributioR(dp;|te[t,t ments support the following resultéi) the distribution of
+At]) having a finite varianc&V3, . Under this hypothesis, N,, decays as a power laij) N, has long-range correla-
the central limit theorem, applied to the sum &; in Eq.  tions,(iii) the distribution oW, decays as a power laiy)

(1b), implies that the ratio W, displays only weak correlations, ar(g) the variable
=G, /(W,/N,,) is Gaussian-distributed and uncorre-

G lated, i.e., the price chandgg,; at any time(for a given value
e=———— (2 of N, and W,,) is consistent with a Gaussian-distributed

W, VNa random variable[2,5] with an “instantaneous” variance
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FIG. 2. (a8 Standard deviationW,, computed from price
changessp; due to every transaction in the intenjal t+At] for  poration forAt=15 min (lower panel contrasted with a sequence
Exxon Corporation forAt=15 min (lower panel in contrast to  of uncorrelated Gaussian random numbers with the same mean and
uncorrelated Gaussian random numbers with the same mean valygriance, which depictX /(W VNy,) for classic diffusion(up-
(W,)~0.08 and variancdupper panel Intervals having fewer per panel (b) Positive tail of the cumulative distribution af for
than ten transactions are not used for computig . The time  the six groups. We normalizeby its standard deviation in order to
series ofW,, for Exxon shows a number of large events of the sizecompare different stocks. Each symbol shows the cumulative dis-
of tens of standard deviations. Note that the large valué$,efin  triputions of the normalizec for all stocks in each of the six
Fig. 1(a) do not correspond to large values \ty, showing that  groups. The negative tajhot shown displays similar behavior. For
Nar and Wy, are only weakly correlatedwe find (NatWar)  the 1000 stocks studied, we obtain the average value of kurtosis
=0.16 for the 1000 stocks studiedb) Log-log plot of the cumu- 3 46+0.03 and skewness 0.0+®.002.(c) Log-log plot of the de-
lative distribution of Wy, for each of the six groups defined in trended fluctuatiorF(7) averaged for all stocks belonging to each
Fig. 1(b). Since the average vald®,) changes from one stock to of the six groups. We obtain the mean valye 0.48+0.01 from

another, we normaliz&,, by (W,). Each symbol shows the cu- the detrended fluctuation exponents obtained by power-law fits to
mulative distribution of the normalizew,, for all stocks in each £ (7) for each stock.

group. We analyze the power-law exponemt®btained by fits to

the cumulative distributions ofV,, of each of the 1000 stocks N,, Wit'

separately, and find an average vajue2.9+0.1.(c) Log-log plot Next, we explore the implications of our empirical find-
of the detrended fluctuatidr( ) for the six groups as a function of ings. Namely, we show how the statistical properfies9]
the time lagr. We calculate the detrended fluctuation exponents byof price change§ ,, can be understood in terms of the prop-
fitting F(7) for ea_lch_§tock separately and find an average Valueerties of N, andW,,. We will argue that the pronounced
’ia%'f(f)i ?\'101’ Tsr:gmflcantly snzjallermtthan_ (I)dur rl]’esubtl—O.c)SZO tails of the distribution of price changg8,7] are largely due
+0.017orN,,.. The same procedure Ty, yields the value 0. to W, and the long-range correlations of the volatilig;9]

+0.01 for its detrended fluctuation exponent, consistent with the I v due to the | |ati N B
value of v=0.85+=0.01 forN,, . are largely due to the long-range correlationsNR;. By

FIG. 3. (8 Time series ofe=G,;/(W,VN,;) for Exxon Cor-
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contrast, in classic diffusioN ,; andW,; do not change the W,; displays only weak correlation§igs. 1 and 2 There-
Gaussian behavior of,; because they have only uncorre- fore, the long-range correlations M,, should arise from
lated Gaussian fluctuationg,4]. those found inN,, . Indeed, we find that the correlations in
Consider first the distribution of price chang&,,, Va:decay as a power law with an exponent similar to that of
which decays as a power laR{G,;>x}~x"¢ with an  Na¢. Hence, while the power-law tails iB(G,,) are due to
exponenta~3 [7]. Above, we reported that the distribu- the power-law tails iP(W,,), the long-range correlations of
tion P{Ny>x}~x"# with B~3.4 [Fig. 1(c)]. Therefore, Va¢ are due to those dfl;. _
P{\/N_M>X}~X—2,B with 28~6.8. Equation(2) then im- In summary, we have found that stock price movements

plies thatN,,, alone cannot explain the value~3. Instead, '€ analogous to a complex variant of classic diffusion,
w~3 must atrise from the distribution &%..  which indeed where the analog of the diffusion constant fluctuates drasti-
-~ At

d ith imately th ~3 cally in time. Furthermore, we have quantified and empiri-
Fe_cayis| Thapprr?mma ely | € sgllmepeépon@{% @~ cally demonstrated the relation between stock price changes
groI?n. ti(e)%owelﬁslat/viaﬁoc\),;f(r\_/\?w) tails oP(Gyy) originate 5 trading activity. The implications of our results for the

- At)-

- . number of transaction,,; and the local standard deviation
Next, consider the long-range correlations found for the\y . are of potential interest. The fluctuationshn, reflect
volatility V., [8,9], which is the analog of the diffusion con- he trading activity for a given stock and its power-law dis-
stantD. Just as in classic dl_foSlon, where the dlffu5|on_ CoN-tribution and long-range correlations may be related to “ava-

stantD is related to the variance &, through the relation lanches,” where trades beget new tradi#g]. The fluctua-
DAt=(X3,) =N Wj,, so the volatility is defined as the tions inW,, reflect several factordi) the level of liquidity
“local” standard deviation ofG,, through the relation/3,  of the market,(ii) the risk aversion of the market partici-
=(G3,)=N,;W3,. Above, we reported that the number of pants, andiii) the uncertainty about the fundamental value
transactionsN,; displays long-range correlations, whereasof the asset.
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