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Singular continuous spectra in a pseudointegrable billiard

Jan Wiersig
Max-Planck-Institut fu¨r Physik komplexer Systeme, D-01187 Dresden, Germany

~Received 10 March 2000!

The pseudointegrable barrier billiard invented by Hannay and McCraw@J. Phys. A23, 887 ~1990!#, a
rectangular billiard with line-segment barrier placed on a symmetry axis, is generalized. It is demonstrated that
the Fourier spectrum of a typical function on the phase space exhibits a singular continuous component.

PACS number~s!: 05.45.2a
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Billiards have attracted much attention in the recent
cades as simple dynamical systems in classical and qua
mechanics. The free motion of a particle in a domain with
a hard elastic boundary shows a large variety of beha
depending on the shape of the boundary, ranging from c
plete regularity to various degrees of chaoticity.

Polygonal billiards are neither chaotic~the Kolmogorov-
Sinai entropy is zero! nor integrable in the sense o
Liouville-Arnol’d @1# ~apart from the rectangles, the equila
eral triangles, thep/2, p/4, p/4-triangles, and thep/2, p/3,
p/6-triangles!. The motion inside a typical polygon is con
jectured to be ergodic on the three-dimensional const
energy surfaces in phase space, while the motion insid
rational polygon~all angles are rationally related top! is
restricted to two-dimensional invariant surfaces, like in in
grable systems, but the genus of the surfaces is larger th
Rational polygonal billiards are therefore characterized
pseudointegrable@2#. It is rigorously proven that the flow on
these surfaces is ergodic and not mixing@3#. Ergodicity
means that a particle with a typical initial momentum e
plores the entire invariant surface~which is the billiard table
in the configuration space projection!. Since the mixing
property is excluded, a small cluster of particles with iden
cal initial momenta cannot spread out uniformly in time
the invariant surface. But a nonuniform spreading that allo
occasional reclustering with decreasing frequency, term
weak mixing in mathematical terms~see, e.g.,@4#!, is pos-
sible. In fact, weak mixing is believed to be generic, but t
is only shown for polygons all of whose sides are horizon
or vertical. Numerical evidence for weak mixing has be
reported for the ‘‘square-ring billiard’’@5#; see also related
numerical studies on rational@6# and irrational triangles
@7,8#.

Weak mixing~in the absence of the stronger mixing pro
erty! implies interesting spectral properties@9#. More pre-
cisely, the Fourier transform of a typical function on th
phase space with respect to time has a fractal-like structu
the frequency domain. Such a spectrum is characterize
singular continuous, in contrast to discrete spectra of in
grable systems~nonmixing, quasiperiodic motion! and abso-
lutely continuous spectra of chaotic systems~mixing mo-
tion!. Singular continuous spectra are well known in oth
fields of physics to appear at the border between integrab
and chaos, e.g., strange nonchaotic attractors~see, e.g.,
@10,11#!, the~kicked! Harper model@12# and models for non-
periodic atomic structures~see@13# and references therein!.
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The spectral properties of a phase space function are
lated to its autocorrelation function~AF!. For discrete spectra
this function is~quasi! periodic. In the periodic case the~nor-
malized! AF returns exactly to 1, while in the quasiperiod
case it comes arbitrarily close to 1. An exponentially d
creasing AF~for increasing time! indicates an absolutely
continuous spectrum. An AF corresponding to a singu
continuous spectrum does not usually decay to zero, but
does not return to 1.

A nongeneric subclass of pseudointegrable system
given by almost-integrable billiards@14#. A member of this
class is, roughly speaking, composed of several copies
single completely integrable billiard, e.g., thep/3, 2p/3-
rhombus@15# consists of two identical equilateral triangle
Motion on invariant surfaces of almost-integrable billiards
not weakly mixing@14#. The aim of this Rapid Communica
tion is to establish that the spectra of these systems ne
theless can have a singular continuous component~together
with a discrete component!. We demonstrate this for a
simple model, a generalized version of the ‘‘barrier billiard
@16# by decomposing the dynamics into a continuous an
discrete part: the quasiperiodical motion in the integra
sub-billiard and the transitions between different copies. T
latter type of motion, responsible for the singular continuo
component, is discussed with the help of the AF.

We consider a point particle with unit mass elastica
bouncing inside a polygonal enclosure consisting of a ve
cal line of length 12bP(0,1) symmetrically placed in a
rectangle with widthLP(0,̀ ) and normalized height 1; se
Fig. 1~a!. The special caseb51/2 corresponds to the usua
barrier billiard @16#. The trivial energy dependence of th

FIG. 1. ~a! Barrier billiard, rectangle with a vertical line con
necting the origin of the coordinate system (x,y)5(0,0) with the
point (x,y)5(0,12b). ~b! Symmetry reduced version.
R21 ©2000 The American Physical Society
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system is ignored by setting the energy to 1/2, or equally
magnitude of the momentum (px ,py) to 1. Given an initial
momentum only a finite number of directions is realized d
ing the time evolution, due to the fact that all angles in t
polygon are rational multiples ofp. In other words, the mo-
tion in phase space takes place on two-dimensional invar
surfaces. Using the general formula for the genus of s
surfaces@2# gives 2, i.e., the surfaces have the topology
two-handled spheres and not that of tori~single-handled
spheres!.

For all values ofL andb, our model satisfies the defin
tion of almost-integrability given by Gutkin@14#, i.e., it is
decomposable into several copies of a single integrable
billiard. This sub-billiard is the rectangular billiard, whic
can be obtained by symmetry reduction; see Fig. 1~b!. The
dynamics can be split into two parts. First, the quasiperio
cal dynamics@ ux(t)u,y(t)# on the invariant tori of the sym
metry reduced system. Second, the dynamics of the signx,
s(t)561.

The quasiperiodical component is most elegantly
scribed in action-angle variables. The actionsI x5upxuL/2p
and I y5upyu/p label the invariant tori while the angles~di-
vided by 2p and computed modulo 1! describe the flow on a
given torus,

fx~ t !5
vx

2p
t1fx,0 ~mod 1!, ~1!

fy~ t !5
vy

2p
t1fy,0 ~mod 1!, ~2!

with the frequenciesvx54p2I x /L2 and vy5p2I y . The
flow on the torus is ergodic if and only if the winding num
ber r5vy /vx5I yL

2/(4I x) is irrational. The motion in con-
figuration space is explicitly given by

ux~ t !u5
L

2
f @fx~ t !#, ~3!

y~ t !5 f S fy~ t !1
12b

2
~mod 1! D , ~4!

with the piecewise linear function

f ~u!5H 2u if 0<u,1/2

2~12u! otherwise.

The shift in the argument of the functionf in Eq. ~4! will be
convenient later.

Now we consider the non-quasi-periodical part of the d
namics. Clearly, the value ofs(t) changes when the trajec
tory impinges on the segment$x50 and 12b,y% ~or $fx
50 and 0,fy,b%!. We therefore introduce the Poinca´
sectionfx(nT)50 with T52p/vx and the integern. We
obtain

fy,n115fy,n1r ~mod 1!, ~5!

sn115snF~fy,n!, ~6!

with
e
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F~f!5H 21 if 0,f,b

1 otherwise.

Note that diffractive orbits, i.e., orbits which hit the edge
the barrier, can be neglected since they have measure ze
phase space. The two-dimensional mapping~5!–~6! has the
solution

sn5s0P j 50
n F@fy,01 j r ~mod 1!#. ~7!

This equation together with Eqs.~1!–~4! andn given by the
integer part oft/T solve the billiard problem. But the solu
tion is only formal, because in order to compute Eq.~7! one
has to iterate Eqs.~5! and ~6!. A similar, but more compli-
cated, solution of the rhombus billiard was reported in@15#.
But its formality was not recognized, since the authors
cused only on the equation corresponding to Eq.~5!, while
the equation corresponding to Eq.~6! was hidden in the no-
tation.

Having defined the dynamical system, we now discuss
spectral properties of a typical smooth phase space func
F(x,px ,y,py) @nontypical functionsF(x2,px

2,y,py) obvi-
ously have discrete spectra#. We investigate first the function
F(t)5x(t) @the argumentation forpx(t) is identical#. We
will see thatx(t) has a singular continuous spectrum, whi
implies that a typical function has a mixture of discrete a
singular continuous spectrum. Withx(t)5s(t)ux(t)u it is
clear that the Fourier transform ofx(t),

X~v!5*2`
` x~ t !e2 ivtdt, ~8!

can be written as convolution of the Fourier transforms
ux(t)u ands(t), X̄(v) andS(v)

X~v!5*2`
` X̄~v8!S~v2v8!dv8. ~9!

Sinceux(t)u is periodic with periodT we have

X̄~v8!5 (
m52`

`

Amd~v82mvx!.

Substituting into Eq.~9! gives

X~v!5 (
m52`

`

AmS~v2mvx!. ~10!

Sinces(t) changes in discrete steps it is suitable to co
sider the discrete-time Fourier transform of the seque
@sn#,

S~v!5 (
n52`

`

sne2 ivn

which is related to the continuous-time Fourier transform

S~v!5
1

iv
~12eivT!S~vT!. ~11!

Note that the prefactor goes to the constantT asv→0. We
can now take advantage of the fact that the mapping~5!–~6!
is well studied. It is proven~see@17# and references therein!
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that if r is irrational, thenS~v! is singular continuous for
almost allb @the spectrum is discrete, e.g., ifb5nr ~mod
1!#. Since this holds trivially also for any nonconstant fun
tion of s(t) we conclude that thes-motion is weakly mixing
@9#. The fact that almost all trajectories in our billiard ha
irrational winding numberr, independent of the values of th
parametersL andb, ensures that typical trajectories give ri
to singular spectraS~v!. Together with Eqs.~10! and ~11!
this implies thatX(v) is typically singular continuous. Nev
ertheless, there exist nonconstant functions ofx(t), e.g.,
x2(t), which do not have a singular continuous spectrum,
the x-motion cannot be weakly mixing. This result indicat
that a purely numerical detection of weak mixing by inve
tigating the spectral properties of just a single phase sp
variable may lead to wrong conclusions.

Figure 2 shows an example ofuX(v)u2 close to the fre-
quencyvx @so essentially,uS(v2vx)u2 is shown# for the
caseb51/2 andr equal the reciprocal of the golden mea
rgm5(A521)/2. The integration~8! has been performed
with a fading factor exp(22t/tmax) and truncated attmax
510 000. The enlargement in Fig. 2 reveals some s
similarity of S(v) for this set of parameters. The minor lac
of symmetry is due to the prefactor in Eq.~11!; S~v! is
perfectly self-similar, as shown by Feudelet al. @11# by us-
ing a renormalization group approach~compare the magnifi-
cation in Fig. 2 with Fig. 3 in@11#!. Feudelet al. have also
calculated the generalized dimensions of the spectral m
sure:~i! the Hausdorff dimensionD051, i.e., the spectrum is
continuous.~ii ! The information dimensionD1'0.75, i.e.,
the spectrum is singular.~iii ! The correlation dimensionD2
'0.65, which is the exponent of the power-law decayt2D2

of the integrated AF@18#.
Before discussing the integrated AF, let us first consi

the ~normalized! AF @x(t) has zero mean value#

Rx~t!5
^x~ t1t!x~ t !&

^x2~ t !&
, ~12!

FIG. 2. Power spectrumuX(v)u2 for b51/2 andr5rgm. The
dashed line marks the fundamental frequency ofux(t)u, vx

'3.951 87. The inset shows a magnification.
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where the averagê...& is taken overt. We restrict ourself to
the timest5nT. By using the periodicity ofux(t)u it is an
easy matter to show thatRx(nT) is equal toRs(n), the AF of
the processsn ~where the average is over the discrete timen!.
This means we discuss here the correlations of the transit
between the two copies of the integrable sub-billiard. For
special caseb51/2,Rs(n) as function ofn is studied in@10#
for differentr. It is shown thatRs(n) vanishes for oddn. For
large evenn it is mostly close to zero but has large peaks
positions which roughly grow exponentially. For example,
r5rgm then peaks with amplitude'0.55 are located at al
even Fibonacci numbers surrounded by smaller peaks
self-similar manner.

We have determined the integrated AF

Rs, int~n!5
1

n (
j 50

n

uRs~ j !u2 ~13!

up tonmax510 000. Its asymptotic behavior is found to be
agreement with the expected power-law decay, which allo
us to computeD2 numerically; see, for example, Fig. 3. Fo
fixed r5rgm, D2 as function ofb ~using 1000 randomly
distributedb-values! has mean value 0.458 and shows ve
strong fluctuations, ranging from large decay ratesD2
50.68 to zero decay. These fluctuations are by no me
surprising, since there are dense sets ofb-values @e.g., b
5nr ~mod 1!# for which D2 vanishes. We have also calcu
lated D2 for fixed b51/2 as a function ofr ~using 1000
r-values!. Here, D2 is more or less uniformly distributed
between zero and 0.94 around a mean value of 0.469. Du
the sensitive dependence ofD2 on the winding number, it
seems useful to perform an average of the AF over all
variant surfaces~i.e., over allr! in order to characterize the
correlation properties of the transitions between the two c
ies of the sub-billiard as a whole. But this kind of averagi

FIG. 3. Integrated autocorrelation functionRs, int(n) for the pa-
rameter valuesb51/2 andr5rgm in a ln-ln plot. Forn>500, the
data ~circles! is fitted to the asymptotic power lawn2D2 ~dashed
line with slope2D2'20.65!.
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does not yield a reasonable correlation function since for
integrable system such a function would indicate correlat
decay@19#.

The fact that the integrated AF~13! decays to zero butRs
does not confirms the weak-mixing property of thes-motion.
Because ofRx(nT)5Rs(n) one could naively draw the
wrong conclusion that thex-motion is also weakly mixing.
This confusion can be resolved if one clearly distinguish
between continuous-time and discrete-time approac
Trivially, Rx does not decay for large continuous timest if it
does not decay for large discrete timesn. But we expect that
the integrated~now really an integration not a summatio!
AF of x(t) does not decay, in contrast to the integrated AF
the processsn @the integrated AF of a general functio
F(x,px,y,py) obviously shows zero decay rates, sincey(t)
is periodic#. This agrees with results of the study on
almost-integrable version of the ‘‘square-ring billiard’’@5#. It
is worth emphasizing that the discrete-time approach, wh
is always used in numerical studies where integrations
replaced by summations~for billiards the discrete-time ap
s

l

n
n

s
s.

f

h
re

proach is often used explicitly!, can wrongly indicate weak
mixing, even though this is quite unlikely.

In terms of the billiard motion we have the followin
scenario. The motion is not mixing and even not wea
mixing; that means, a small cluster of particles with the sa
initial momenta will not spread out on the entire billiar
table. But the motion is ‘‘partly weak mixing’’ in the sens
that after some transient time~when the AF is close to zero!
there are two clusters, one in the left and one in the ri
part, each of them consisting of approximately half of t
particles. At ‘‘resonant’’ times~corresponding to the peak
of the AF! one of the two clusters contains more particl
than the other one. But these reclusterings become more
more rare with increasing time.

To summarize, we have demonstrated that the motion
the pseudointegrable barrier billiard exhibits a discrete an
singular continuous spectral component. We expect that
is true for all almost-integrable billiards.
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