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Singular continuous spectra in a pseudointegrable billiard
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The pseudointegrable barrier billiard invented by Hannay and McCQdawPhys. A23, 887 (1990], a
rectangular billiard with line-segment barrier placed on a symmetry axis, is generalized. It is demonstrated that
the Fourier spectrum of a typical function on the phase space exhibits a singular continuous component.

PACS numbd(s): 05.45-a

Billiards have attracted much attention in the recent de- The spectral properties of a phase space function are re-
cades as simple dynamical systems in classical and quantulated to its autocorrelation functiqgiF). For discrete spectra
mechanics. The free motion of a particle in a domain withinthis function is(quasj periodic. In the periodic case tliror-

a hard elastic boundary shows a large variety of behaviomalized AF returns exactly to 1, while in the quasiperiodic
depending on the shape of the boundary, ranging from comzase it comes arbitrarily close to 1. An exponentially de-
plete regularity to various degrees of chaoticity. creasing AF(for increasing timg indicates an absolutely

Polygonal billiards are neither chaotithe Kolmogorov-  continuous spectrum. An AF corresponding to a singular
Sinai entropy is zerno nor integrable in the sense of continuous spectrum does not usually decay to zero, but also
Liouville-Arnol'd [1] (apart from the rectangles, the equilat- does not return to 1.
eral triangles, ther/2, w/4, w/4-triangles, and ther/2, /3, A nongeneric subclass of pseudointegrable systems is
w/6-triangles. The motion inside a typical polygon is con- given by almost-integrable billiards.4]. A member of this
jectured to be er_godlc on the three-_dlmen5|onz_al C(_)ns_tan@ass is, roughly speaking, composed of several copies of a
energy surfaces in phase space, yvh|le the motion |n3|de &ngle completely integrable billiard, e.g., the/3, 2m/3-
rational polygon(all angles are rationally related ) is  ompys[15] consists of two identical equilateral triangles.
restricted to two-dimensional invariant surface§, like in inte-y;tion on invariant surfaces of almost-integrable billiards is
grable systems, but the genus of the surfaces is Iarger than ot weakly mixing[14]. The aim of this Rapid Communica-
Yion is to establish that the spectra of these systems never-
theless can have a singular continuous compoftegether
with a discrete component We demonstrate this for a
simple model, a generalized version of the “barrier billiard”
[16] by decomposing the dynamics into a continuous and a
discrete part: the quasiperiodical motion in the integrable
sub-billiard and the transitions between different copies. The
latter type of motion, responsible for the singular continuous

omponent, is discussed with the help of the AF.

We consider a point particle with unit mass elastically

pseudointegrablg2]. It is rigorously proven that the flow on
these surfaces is ergodic and not mixif§]. Ergodicity
means that a particle with a typical initial momentum ex-
plores the entire invariant surfa¢ehich is the billiard table

in the configuration space projectionSince the mixing
property is excluded, a small cluster of particles with identi-
cal initial momenta cannot spread out uniformly in time on
the invariant surface. But a nonuniform spreading that allow:
occasional reclustering with decreasing frequency, terme

weak mixing in mathematical termsee, e.g.[4]), is pos- b L I~ .
. T . : . bouncing inside a polygonal enclosure consisting of a verti-
sible. In fact, weak mixing is believed to be generic, but thlsCal line of length = Be (0,1) symmetrically placed in a

is only shown for polygons all of whose sides are horlzontalrectangle with widtH_  (0,<) and normalized height 1; see

or vertical. Numerical evidence for weak mixing has beenFig_ 1(a). The special casg=1/2 corresponds to the usual

reported for thg ‘square-ring b|II|ard’[5]; see also'related barrier billiard [16]. The trivial energy dependence of the
numerical studies on rationdb] and irrational triangles

[7,8].

Weak mixing(in the absence of the stronger mixing prop- (a) by
erty) implies interesting spectral properti€8]. More pre-
cisely, the Fourier transform of a typical function on the
phase space with respect to time has a fractal-like structure in T |

the frequency domain. Such a spectrum is characterized as
singular continuous, in contrast to discrete spectra of inte- s
grable systemgnonmixing, quasiperiodic motigrand abso-

lutely continuous spectra of chaotic systefmsixing mo- J
tion). Singular continuous spectra are well known in other N
fields of physics to appear at the border between integrability
and chaos, e.g., strange nonchaotic attractsee, e.g., FIG. 1. (a) Barrier billiard, rectangle with a vertical line con-
[10,11)), the (kicked) Harper mode[12] and models for non- necting the origin of the coordinate systemy)=(0,0) with the
periodic atomic structuresee[13] and references thergin  point (x,y)=(0,1— 8). (b) Symmetry reduced version.
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system is ignored by setting the energy to 1/2, or equally the -1 if 0<¢<p
magnitude of the momentunpg,p,) to 1. Given an initial d(p)= 1 otherwise

momentum only a finite number of directions is realized dur-

ing the time evolution, due to the fact that all angles in thegte that diffractive orbits, i.e., orbits which hit the edge of
polygon are rational multiples of. In other words, the mo-  q parrier, can be neglected since they have measure zero in

tion in phase space takes place on two-dimensional invarianjy,se space. The two-dimensional mapp#)g-(6) has the
surfaces. Using the general formula for the genus of sucg) tion

surfaceq 2] gives 2, i.e., the surfaces have the topology of
glgﬁ-ehrzgdled spheres and not that of tdsingle-handled SnZSoH?:o‘DWy,oﬂP (mod 1)]. (7

For all values ofL and B, our model satisfies the defini- This equation together with Eq&l)—(4) andn given by the
tion of almost-integrability given by Gutkifil4], i.e., it is  integer part oft/T solve the billiard problem. But the solu-
decomposable into several copies of a single integrable sultion is only formal, because in order to compute Ef).one
billiard. This sub-billiard is the rectangular billiard, which has to iterate Eqg5) and (6). A similar, but more compli-
can be obtained by symmetry reduction; see Figp).1The  cated, solution of the rhombus billiard was reported1iB].
dynamics can be split into two parts. First, the quasiperiodiBut its formality was not recognized, since the authors fo-
cal dynamicq |x(t)],y(t)] on the invariant tori of the sym- cused only on the equation corresponding to &, while
metry reduced system. Second, the dynamics of the sign of the equation corresponding to E&) was hidden in the no-
s(t)==*1. tation.

The quasiperiodical component is most elegantly de- Having defined the dynamical system, we now discuss the
scribed in action-angle variables. The actidps |p,|L/2m  spectral properties of a typical smooth phase space function

andl,=|p,|/m label the invariant tori while the anglédi-  F(x,py.y,p,) [nontypical functionSF(Xz,pi,y,py) obvi-
vided by 27 and computed modulo) Hescribe the flow on a ously have discrete spectraVe investigate first the function
given torus, F(t)=x(t) [the argumentation fop,(t) is identical. We
will see thatx(t) has a singular continuous spectrum, which
_ Wx implies that a typical function has a mixture of discrete and
t)y=—t+ d D, 1 . . ) L
AV 2m ¢xo (mod 1) @ singular continuous spectrum. Witk(t) =s(t)|x(t)| it is

clear that the Fourier transform &ft),
w .
$y(t)= 5 t+ ¢y, (mod 1), ) X(w)=J".x(t)e"“dt, ®

with the frequenciesw, =42 /L2 and wy= wzly. The c¢an be written as convolution of the Fourier transforms of

flow on the torus is ergodic if and only if the winding num- |X(t)| ands(t), X(w) andS()
berp=wy/w,= IyL2/(4IX) is irrational. The motion in con-

figuration spaceis explicitly given by X(0)=[".X(w)S(w—w)d’. 9
L Since|x(t)| is periodic with periodT we have
Ix(t)|= Ef[d;x(t)], 3 .
- X(o)= 2, Ando —Mmay).
_ m o
y(t)=f(¢y(t)+7 (mod 1) |, (4)
Substituting into Eq(9) gives

with the piecewise linear function o

oy if O=u<1/2 X(w)zm;_x ApS(0—Mw,). (10)

f(u)=[2 1-u) therwise
(1-u 0 ' Sinces(t) changes in discrete steps it is suitable to con-

The shift in the argument of the functidrin Eq. (4) will be sider the discrete-time Fourier transform of the sequence

convenient later. Snl,

Now we consider the non-quasi-periodical part of the dy- w
namics. Clearly, the value &f(t) changes when the trajec- S (w)= E s,efen
tory impinges on the segmefit=0 and 1- B<y} (or {¢, n=—w

=0 and 0<¢,<p}). We therefore introduce the Poincare . . . .
section ¢,(nT)=0 with T=2m/w, and the integen. We  Which is related to the continuous-time Fourier transform via

obtain 1
_ _ aloT
Bymii=dyntp (mod 1), (5) S()=7, (1-e“)(eT). (D

Snt1=Sn®P(by ), (6) Note that the prefactor goes to the constards w—0. We
can now take advantage of the fact that the mapging(6)
with is well studied. It is proverisee[17] and references thergin
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FIG. 2. Power spectrurfX(w)|? for =1/2 andp=pgy. The FIG. 3. Integrated autocorrelation functiéty ;,(n) for the pa-
dashed line marks the fundamental frequency [®ft)|, wx  rameter valueg=1/2 andp=pyp in a In-In plot. Forn=500, the
~3.95187. The inset shows a magnification. data (circles is fitted to the asymptotic power law P2 (dashed

line with slope—D,~ —0.65.

that if p is irrational, thenX(w) is singular continuous for
almost all 8 [the spectrum is discrete, e.g.,8f=np (Mod  where the average..) is taken ovett. We restrict ourself to
1)]. Since this holds trivially also for any nonconstant func-the timesr=nT. By using the periodicity ofx(t)| it is an
tion of s(t) we conclude that the-motion is weakly mixing  easy matter to show th& (nT) is equal toRy(n), the AF of
[9]. The fact that almost all trajectories in our billiard have the process, (where the average is over the discrete timne
irrational winding numbep, independent of the values of the This means we discuss here the correlations of the transitions
parameters and, ensures that typical trajectories give rise petween the two copies of the integrable sub-billiard. For the
to singular spectra&(w). Together with Eqs(10) and(11)  gpecial cas@= 1/2, Ry(n) as function ofn is studied in[10]
this implies thaiX(w) is typically singular continuous. Nev- for differentp. It is shown thaRy(n) vanishes for odah. For
ertheless, there exist nonconstant functionsx@), e.g., |arge evem it is mostly close to zero but has large peaks at
x?(t), which do not have a singular continuous spectrum, sgyositions which roughly grow exponentially. For example, if
the x-motion cannot .be weakly. mixing. This rgsult |nd|.catesp:pgm then peaks with amplitude-0.55 are located at all
that a purely numerical detection of weak mixing by inves-eyen’ Fibonacci numbers surrounded by smaller peaks in a
tigating the spectral properties of just a single phase spac§sif-similar manner.
variable may lead to wrong conclusions. We have determined the integrated AF

Figure 2 shows an example pK(w)|? close to the fre-
quency o, [so essentially|S(w—w,)|? is shown for the .
casepB=1/2 andp equal the reciprocal of the golden mean, 1 12
png(\/g— 1)/2. The integration(8) has been performed RSJ“‘(n)_ﬁJZO IR (13
with a fading factor exp{2t/t,,) and truncated at,,.,
=10000. The enlargement in Fig. 2 reveals some self-
similarity of S(w) for this set of parameters. The minor lack UP t0Nma=10000. Its asymptotic behavior is found to be in
of symmetry is due to the prefactor in E¢ll); S(w) is  agreement with the expected power-law decay, which allows
perfectly self-similar, as shown by Feudslal.[11] by us-  Us to computeD, numerically; see, for example, Fig. 3. For
ing a renormalization group approa@ompare the magnifi- fixed p=pgy, D, as function of 8 (using 1000 randomly
cation in Fig. 2 with Fig. 3 if11]). Feudelet al. have also distributed3-values has mean value 0.458 and shows very
calculated the generalized dimensions of the spectral me&trong fluctuations, ranging from large decay rates
sure:(i) the Hausdorff dimensioP,=1, i.e., the spectrumis =0.68 to zero decay. These fluctuations are by no means
continuous.(ii) The information dimensioD;~0.75, i.e., surprising, since there are dense setsBefalues[e.qg., 8

the spectrum is singulafiii) The correlation dimensio®, ~ =np (mod 1] for which D, vanishes. We have also calcu-

~0.65, which is the exponent of the power-law de¢afz  lated D, for fixed §=1/2 as a function ofp (using 1000

of the integrated AF18]. p-values. Here, D, is more or less uniformly distributed
Before discussing the integrated AF, let us first considebetween zero and 0.94 around a mean value of 0.469. Due to

the (normalized AF [x(t) has zero mean vallie the sensitive dependence bBf, on the winding number, it

seems useful to perform an average of the AF over all in-

variant surfacesi.e., over allp) in order to characterize the
R.(7)= (X(t+7)x(1)) (12  corelation properties of the transitions between the two cop-
X O3y ies of the sub-billiard as a whole. But this kind of averaging
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does not yield a reasonable correlation function since for aproach is often used expliciflycan wrongly indicate weak
integrable system such a function would indicate correlationmixing, even though this is quite unlikely.
decay[19]. In terms of the billiard motion we have the following
The fact that the integrated A®3) decays to zero buR; ~ Scenario. The motion is not mixing and even not weakly
does not confirms the weak-mixing property of thmotion. ~ Mixing; that means, a small cluster of particles with the same
Because ofR,(nT)=Ry(n) one could naively draw the initial momenta will not spread out on the entire billiard
wrong conclusion that the-motion is also weakly mixing. table. But the motion is “partly weak mixing” in the sense
This confusion can be resolved if one clearly distinguishedhat after some transient tinfeshen the AF is close to zeyo

between continuous-time and discrete-time approached1€re aré two clusters, one in the left and one in the right
Trivially, R, does not decay for large continuous timeséit part, each of them consisting of approximately half of the

does not decay for large discrete timedBut we expect that particles. At “resonant” times(corresponding to the peaks

the integratednow really an integration not a summatjon of the AR one of the two clusters contains more particles
. . han the other one. But these reclusterings become more and
AF of x(t) does not decay, in contrast to the integrated AF o o Lo
) . “'more rare with increasing time.
the processs, [the integrated AF of a general function

F(x ) obviously shows zero decay rates, sinde) To summarize, we have demonstrated that the motion in
~(X,Px.Y,Py) OD y : y ’ the pseudointegrable barrier billiard exhibits a discrete and a
is periodid. This agrees with results of the study on an

almost-integrable version of the “square-ring billiar{s]. It singular continuous spectral component. We expect that this

is worth emphasizing that the discrete-time approach, whicl? true for all aimost-integrable billiards.

is always used in numerical studies where integrations are | would like to thank R. Artuso for useful comments and
replaced by summationdor billiards the discrete-time ap- M. Sieber and J. Nekel for discussions.
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