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Undulated blistering during thin film delamination
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We study the delamination of a compressed thin film from a solid substrate with continuum elasticity theory.
Our model enables one to describe the advance of an undulated blister. It is shown that an elastic tension
between the inner fold and the boundary of a blister is at the origin of the undulations. In addition, the essential
experimental observations and recent simulations are reproduced very(iwélbove a strain threshold,
straight blister growth is unstable and starts to unduldtelt is found that the period of the undulations scales
with €* ~%2 wheree* is the isotropic compressive strain of the filtiii) Similar periodic corrections to this
power law scaling are recovered and are found to be associated with a growth instability.

PACS numbds): 68.55—a, 46.32+Xx, 47.54+r

Compressed thin films and coating can delaminate antb solve the nonlinear Fpl and von Kaman equationg8].
buckle away from the substrate on which they are deposite@ur model also recovers the experimental phenomenology
to form blisters[1]. The compressive straie*, responsible [2] as well as the simulations results obtained by Crosby and
for this kind of damaging phenomenon, can have differenBradley[5]: (i) Straight shaped blisters are unstable when the
origins [2]. It is generally due to the difference in thermal isotropic compressive straig* is bigger than a threshold
expansion between the layer and the substrate. In that casg; . (i) It is found that the period of the oscillations scales
the strain can reach the typical valee~0.01 with an asso- with €* ~Y2 (i) Similar periodic corrections to this power
ciated stresg* ~ 1 GP4[3]. In many cases, the delaminated law scaling are recovered and are found to be associated with
part of the film adopts a sinusoidal shape behind a propaga& growth instability.
ing tip. For 40 years, “telephone-cord” blisters have been We briefly recall the results of Ortiz and Giof&,7],
met in many different kinds of coated structurdsr a re-  which play a role of reference in this work. They show that
view, see[2]). It has been experimentally established thatwhile neglecting the in-plane displacement field, the height
undulated blisters propagate in films under isotropic stresef the delaminated filmZ(r) obeys the Eikonal equation
[4]. Very recently this was confirmed numerically by Crosby known in geometrical optic§9], |VZ|=[2(1+ v)e*]¥2
and Bradley[5], who performed simulations on a lattice where v is the Poisson’s ratio and=(x,y) represents the
model with microscopic debonding. in-plane position. The delaminated film buckles away from

For large size blisterén comparison to the film thickness the substrate with a constant sldpe[2(1+ v)e* ]¥2 Con-

h), the delaminated region, bounded by a wavy boundarysidering thate* ~0.01 andr~0.3, the slope is rather small,

exhibits folding patterng6]. An argument which is often k~0.16. /(r) is calculated via the Nadai's sand heap con-

used 7], but never really proven, is that during delamination, struction[10] which minimizes the bending energie., the

the boundary undulations accommodate folding thus creatingumber of folds:

an ordered structure like a telephone-cord blister. In this

Rapid Communication, we show that the physical origin of Z(r)y=kd(r), (1)

this accommodation is the elastic tensigreglected so far

and considered here as a perturbatibetween the fold and whered(r) is the smallest distance from the pomtwithin

the boundary of a blister. We use a model of continuumthe delaminated region, to the given boundary. The results fit

elasticity that gives a simple interpretation of the undula-the observations remarkably wéR,7].

tions: they help the tensile strain to relax. This is also coher- Consider the blister drawn in Fig. 1. The boundary is

ent with the heuristic explanation given by RE5]. A very  formed by a straight part of lengthwith a semicircular end

recent paper of Audoly8] argues that, through a stability of radiusp. By using Eq.(1), the delaminated region is en-

analysis of a semi-infinite straight blister, an in-plane dis-tirely described by (r): a straight fold is obtained along the

placement field has to be taken into account. However, sharp axis. The in-plane displacement fieldr) is totally ne-

folding of the film is absent in Audoly’s considerations. Fur- glected. With the latter assumption, this construction has the

thermore, an important aspect of our simpler model is itsemarkable property of relaxing the blister elastic energy

capability to describe the advance of an undulated blisterlensity(energy per surface ufiby reducing it to a constant

which is otherwise very difficult technically, by attempting W,=%Ehe*? [7], E being the Young’s modulus. The com-
pressed laminated film has an energy density;
=Ehe*?/(1—v). Thus, the energy released by delamination

*Permanent address: Laboratoire de Physique et de IMatien is
des Milieux Condense(CNRS, Universite Joseph Fourier, BP
166, 38042 Grenoble Cedex 9, France. Egelam=SOWy— Wi+ Ge) +(/ g+ 2/ )Ty, (2)
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2) Eh
laminated film =
boundar\jf nB Oap (1—1/2)
fold._ r T P wheree,z=33,{d3{ — €* 8,5 is the membrane strain. Note
v / A that here o,z only depends on the displacement alongzhe
L)x delaminated film  tip axis {(r). o, should also depend on the in-plane displace-
mentu,(r); the latter dependence is neglected so far, con-
sistent with Ref[7]. Thanks to this approximatior®(r) is
the force per surface unit created by the only out-of-plane
displacement/(r) constructed with Eq(1). P(r) =0 every-
where exept on the fold and on the boundary, where the
Eikonal equation is not satisfied. In order to have a differen-
tiable field £(r), it is assumed?2] that nearF or B, {
=1k9?+c for p<h, wherey is the local normal coordinate
to B or F, cis a constant insurind(») continuity. As a
consequence, the forces are mainly located within a distance
h along B and F.
The (x,y) plane is meshed on a 15150 square lattice
with a typical mesh sizé/ =h. We start with a seed blister
=% #1 f (Fig. 1) with p=1.1p, and L=56/. Below, we useF(r)
Fg Substrate ' Fp =P(r)(8/)?, which is the force applied to the surfacé/()?
of a mesh. Inside the blister boundary, the heighx; ,y;) of
the mesh X;,y;) is obtained via Eq(1). This value is in-
jected in the discrete forms of Eg&l) and (5) to calculate
the applied forceF(X;,y;). Along the fold a double set of
forcesFg is obtained on each side of the fold. Each up-force
Fg is counterbalanced by a down-forég at the boundary,
Fr= —Fg [Fig. 1(c)], resulting in a mechanical equilibrium.
The up-forced;, located on a semicircle of raditisaround
the tip of the fold, compensate the set of down-forégs
located at the circular end of radigsof the boundary, hence
|f+/Fg|=|fr/Fg|~p/h. As we consider thin layer p{h
>1), we assume that the main force applied on the fold is
the one located at its tipy=>f; [12].
En? 132 As mentioned above, in-plane displacement figjdhas
:m[5(1+v)6 7= 3 peen neglected so far. Now,, is free to relax under the
action of F(r), resulting in a tensile strain between the fold

. . N and the boundary. Consider the lidgoining the tipT and a
The growth is considered here as a purely dissipative pheﬁoint B located at the boundarjFigs. Xa) and Xb)], the

nomena. Thus, a straight growth along thexis is allowed distance betweeB and T is r. In our model{(r) creates
whendEgeam/dL<0, i.e., whernp>p., for our seed blister F(r) via Eq.(4), hencel cannot in turn be affected Hy. As
we get pe=27,/(Wi=Wp=Gc). Note thatpc>0 for Go g frozen, onlyu,, can be affected by the in-plane compo-
<W=W,. nentF (F projected onta\). The displacement field created

By only considering.the_above enereiam, the blister .in a very thin layer by an in-plane fordg at a distance is
does not undulate during its growth because of the cost Rnown [13]

line energy. An additional energy of in-plane tensile strain

[(1_ V) Eaﬂ+ Ve'y'yéaﬁL (5)

FIG. 1. Seed blistera) above view,b) side view, andc) front
view. The bold line represents the fold obtained by EL. The
slopek of the delaminated film and the ratidp are exaggerated for
clarity.

whereSis the surface of the blister, ant; and/ ¢ represent
the length of the boundary and of the fold respectivélyis
the fracture release energy due to delaminafiin A pure
mode | delaminatioriopening is considered, and mode mix-
ity is discarded 3,5,7]. 7, and 27, are the respective bound-
ary and fold line energy. Fgs/h>1, we havd2,7]

To

origin, Eens, must be added tBy¢ 4min order for the blister (1+ )2 [ v—3 r(r-Fy)
to grow with undulationgwhich help in-plain tensile strain =S En ——FIn(r/h)+ —ZH . (6)
to relaX. This elastic tension is due to the vertical forces 27E 1+v r

(parallel to thez axis) P(r) located on the foldF and on the o o
boundaryB, which tense the delaminated film. These forces! € WO opposite in-plane forcésy and Fr applied inB

can be calculated by using the Euler equilibrium equation ndT tense the blister film, and the associated tensile energy
for thin plates[11] 13] between the tip and a portiofy” of the boundary is

g __ 1 T B B T
DA% —=hdg(0,50,8)=P(r). (4) Eensd” = =3[ Frp- (Up+up) +Fgp- (ug+ug)]. (V)
The subscript olu refers to the point whera is estimated,
The other equilibrium equatiofzo, ;=0 is always fulfiled — and the superscript denotes which force createse,6/
thanks to Eq(1). « and g represent the in-plane coordinates can be divided into two components: a self-enefgy6/
(Xy), d,=dlda. D is the bending stiffness,D  =—3(Fy-ur+Fg-up) as if the two forces were alone, and
=Eh%/[12(1- v?)]. The membrane stress is given [#] an interaction energy;i,6/ = — %(FTH~u$+ FB“~ug). Eselt
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X (um) FIG. 3. Energy variation during the growth. Dotted lif§,s;

dashed lineEgyejam: solid line, E, . Arrows indicate changes of
FIG. 2. A blister is represented at three different stages of itdirection. The strain ig* =0.0085.

growth, the strain is* =0.0085. On the gray scale, the sharp fold
(the highest values af) is represented with white color. The lami- (Fig. 2) with a regular wavelength. It comes out from our
nated part of the film is black colored. The selected directions okjmulations thate; ~0.006 for the chosen parameteis:
growth are selected by the square meshing. =10"J/n?; v=0.3; G,=0.1J/nf [15] andh=1 um. Fig-

ure 3 shows how energy variation is affected during the blis-
is a constant which shift§;e,s, resulting in an additional  ter growth. At each change of direction a cusp is obtained.
line tension. In order to avoid divergence} and ug are s the length between two consecutive cusps. Each cusp cor-
arbitrarily estimated at=h. Actually, this cutoff is not very responds to a sudden increase and decrease of the variations
important, it has been found that the typical wavelength ofof E g, and E;ns respectively: tension is partially relaxed
the undulations is not affected whitg. <7y. By integrat- by direction changes. If the variation &, is bigger than
ing along the boundary, we obtain the tensile energy betweethe variation ofE g am (i.€., if €¥>€}), it leads to a lower-

the fold-tip and the whole boundary, ing of the total energyE,,, contributing to the creation of
undulations.
Etens:f 5/gtens:f 8/ (Epi+ Esels)- (8) A is' plotted in Fig. 4 in fur:ction ok* —.e;‘ for e*>e; .
’B /B A scaling power law with a5 exponent is recovere(Fig.

. 4. This result is compatible with Reff2] and[5]. In addi-
Thus, the total elastic enerdy,, released by blistering is tjon, obvious periodic corrections to the power law are ob-
Eei=Edelamt Etens, Where the new terrq,srepresents the  served consistently with Reff5]. A careful inspection of the
driving force of the telephone-cord tailoring. _ tip of the fold shows that at each direction change its propa-
Let us now sketch our numerical procedure. The tip of theyation becomes unstable: the tip hesitates between two direc-

fold, located in the meshx(,y,) at stept, visits the four  tjons leading to a narrow zigzagging-(L mesh thick of the
meshes X,+ 6/,y;+ 6/) at stept+1, leading to at most

four different possible longer fold§,. Note that any fold 4
overlap is forbidden, henae<4. For each possible fold, we
reconstruct the blister around it by inverting Et) [14]. We
calculate the energ{](t+1) associated with thath pos-
sible fold. The selected fold is the one for whidH](t
+1) is minimum. We continue the same procedure at step
t+2 and so on. If for a given stepEV(t+1)>E{)(t) the
blister growth is stopped. At each stgpthe discrete force
field F(x;,y;) is calculated as mentioned above and the me-
chanical equilibrium state is reached. Experimentally, this
equilibrium is achieved through elastic relaxation, on a time
scale associated with that of the sound speed (ng, much
smaller than the time associated with the blister propagation
[~hour(s)] [2]. It allows us to consider that the blister is, at 2
each step of its growth, in a mechanical equilibrium. Then, | -7 -6 5 -4
each force is projected as schematically illustrated in Fig. 1. m(e*—sg)
Eci(t) =Egeian(t) + Eiendt) is straightforwardly calculated
via Eq. (2) for Egejam and Eqs(6)—(8) for Eieps- FIG. 4. Strain dependence nf(solid line) andX (dashed ling

It is found that above a strain threshodd , a straight  The straight line indicates — 3 slope.e* ~0.006.\ andX are in
shape is no longer stable and the blister begins to undulatem, and they are averaged on ten periods of blister undulations.

In(), In(A)

0
n




RAPID COMMUNICATIONS

R1504 PHILIPPE PEYLA PRE 62

fold. The zigzag is not visible on Fig. 2, because it is aver—results are coherent with experimental and numerical pub-
aged by the blister reconstructipt4]; that is why it has also lished works. Our model gives a deeper insight into periodic
no effect on energy curvésig. 3). This instability occurs on  corrections: in the delamination case it appears that they are
a lengthA of the order of a few meshes. It has been checkedassociated with a growth instability. However, a more spe-
by refining the meshing, thak is not due to a numerical cific study should be carried out to give a general explana-
instability. It is found thatA depends ore* —e; . In Fig. 4,  tion for all fracture problem$5,16], where these periodic
it is clear that\ =\ — A obeys a power law with a1 ex-  corrections occur. We also believe that the calculations pre-
ponent without oscillation. It means that oscillations are duesented here could be extended to bifurcation growth and
to the termA, i.e., to the growth instability. However, the therefore to blisters with several folds.
origin of this instability remains an open question; it could
be related to the one observed in Ré. The author would like to thank McGill University for its

In this paper we have demonstrated that the tensile straiwelcome, especially Martin Grant for his invaluable help. |
between the tip of the fold and the boundary of a blister iswould also thank him and Chaougi Misbah for their careful
the driving force of the undulated delamination growth. Thereading of the manuscript and their criticisms.
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