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Subdiffusive fluctuations of “pulled” fronts with multiplicative noise
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We study the propagation of a “pulled” front with multiplicative noise that is created by a local perturbation
of an unstable state. Unlike a front propagating into a metastable state, where a separation of time scales for
sufficiently larget creates a diffusive wandering of the front position about its mean, we predict that for
so-called pulled fronts, the fluctuations are subdiffusive with root mean square wandétjngt'*, not t*/2.
The subdiffusive behavior is confirmed by numerical simulations:tEo800, these yield an effective expo-
nent slightly larger than 1/4.

PACS numbd(s): 05.40—a, 47.54+r

Since the late 1930s, when the concept of front propagaaround its mean propagation. This means that the noisy front
tion emerged in the field of population dynamjds2], inter-  can be thought of as a coherent structure whose motion can
est in this type of problems has been growing steadily inbe decomposed into drift plus Brownian motion, very much
chemistry[3], physics[4], and mathematicE5]. In physics, like a particle sedimenting in a fluid. The drift component
the importance of the problem has become more and moreorresponds to an average front, with the average taken over
clear since it plays a role in a large variety of situations,the ensemble of all the realizations of the noise. It propagates
ranging from reaction-diffusion systems to pattern formingaccording to a deterministic equation of motion, whose dy-
systems in gener4b). namical parameters are in the simplest case just renormalized

Front propagation into unstable states is an interesting dydy the noise. Theoretically, the important question then
namical problem by itself. For a front evolving from a local arises whether the effects of the fluctuations of the front can
perturbation there are but two possible propagation mechae understood in terms of a diffusive or subdiffusive wan-
nisms that are determined by the nonlinearities in the equadering of some suitably defined front position.
tion of motion: Either the nonlinearities determine the veloc-  The renormalization of the front velocity has been studied
ity of the front that then is called “pushed”; or the in the pushed and pulled regini&2], while the wandering
nonlinearities simply cause saturation and the velocity is deprocess is understood only in the pushed ¢asg where it
termined by a linearization about the unstable state. Fronts dfas been shown to be diffusive: the root mean square posi-
this type are called “pulled” because they are “pulled tion of the frontA grows with time asy2Dst. Actually, the
along” by the spreading and growth of small perturbationsexpression for the effective front diffusion coefficidhf de-
about the unstable staf&]. Hence, pulled front propagation rived by Armeroet al. [13] was found to break down for
can occur only if the penetrated state is linearly unstable. Thpulled fronts, and it was suggested that the wandering of
pushed and pulled regimes are also known as nonlinear arhlled fronts is subdiffusive.
linear marginal stabilityf8]. For the discussion below, it is In this Rapid Communication we take up the issue of the
important to realize that pushed fronts relax exponentially instochastic wandering of pulled fronts about their mean posi-
time to their long time asymptotes, but that pulled frontstion, and predict that in the presence of multiplicative noise
relax algebraically without characteristic time scdlé]. pulled fronts behave subdiffusively, with~tY* This pre-
Hence, an adiabatic decoupling of some outer dynamics frordiction is based on two different arguments. First of all, we
the internal relaxation of a pulled front is not possib#g, heuristically insert the leading edge asymptotics of the relax-
and stochastic pulled fronts may show anomalous scalingng pulled front into the expression for the diffusion coeffi-
[10]. cientD; of pushed fronts, and immediately fidd~t*4. Our

Generally, noise can affect the phenomenological descripsecond argument for the subdiffusitie- t*# behavior comes
tion of a reaction-diffusion system in various ways. A first from mapping the dynamically important region onto the
possibility is intrinsic noise modelled typically by additive KPZ equation. We finally also present data of extensive nu-
thermal noise in a Langevin type equation. A second possimerical simulations that support our analytical prediction
bility, on which the present paper is focused, is ateékeer-  that the wandering is subdiffusive with exponent close to
nal level, e.g., due to fluctuations of some control parameterl/4.

An example are the fluctuations of the luminosity intensity in  The qualitative difference between pushed and pulled
the photosensitive Belousov-Zhabotinsky reacfibh]. Such  fronts results from the fact that the dynamically important
fluctuations enter the dynamical equation as multiplicativeregion for pushedfronts is the interior front region, whose
noise. extent is finite, while that opulledfronts is the leading edge

The multiplicative noise of the control parameter usuallyahead of the fronf7]. Starting from a local initial perturba-
results in a modification of the mean propagation velocity oftion, the leading edge region grows without bound, and as
the front and in a stochastic wandering of the front positionwe shall see, this causes the subdiffusive behavior. The
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power law relaxation of deterministic pulled fronts is another|n this formula, ¢ is the deterministic field associated with
manifestation of the leading edge dominated dynamics ofhe front moving with the renormalized pushed velocity

pulled fronts[7].

For concreteness, we derive our results by including nois

in the one-dimensional prototype front equation

P

J
i D§+f(¢), f(p)=d(1-¢)(at ). (1)

at

e — .
with respect to the control parameter, agw x—uvgt is the

UR, g($)=ﬁf/§a|g is the derivative of the reaction term

comoving coordinate.

For pushed frontd); given by Eq.(7) is finite and time-
independent, and hence this gives the diffusive behavior
A%(t)=2Dst. This means that on sufficiently long time
scales the random displacement is approximately Markovian,

Herea is a parameter which plays the role of the controlje. the sum of uncorrelated and equally distributed random

parameter. Equatiofll) has a stable staté=1 and a sta-
tionary state¢=0 whose relative stability can be tuned by
changing the value of the parameter The case—3<a
<3 leads to pushed dynamics, while<a<1 produces
pulled frontg[7]. For the casa=1, which we will study, the
so-called Fisher-Kolmogoroff-Petrovsky-PiscountfKPP
equation[1,2] is recovered.

Let us assume now that the paramedas replaced by a
new fluctuating parametera(x,t) with average a, a
—a(x,t)=a+ u(x,t), where u(x,t) is a Gaussian noise
with the moments

2
()
with [dxC(\,,|x|)=1. We interpret the stochastic partial

differential equationgPDE) defined by Eqs(1)—(3) in the
Stratonovich sensfi4]. Notice that if 1k , is much smaller

(n(x,1)),=0,

(OO (X 1)), =26C(N L[ x—X'|) S(t—t"),

displacements on shorter time scales.
As an example of a pulled front with multiplicative noise,

we now study the case=1:

d 9?
2 Dz to+ pd—pnd?=¢°.

ot ®

The noise renormalized mean velocity of the pulled front
can be calculated explicitlf12]:

vE=(x(1)),=2yD[1+eC(0)].

However, it is immediately clear that the fluctuation formula
(7) cannot naively be extended to the pulled regime.

First of all, for a pulled front the expressidid) simply
diverges. The divergence of solvability-type expressions ac-
tually holds more generally for perturbative expansions
about a pulled fronf9]. For a pulled front, the dynamically

(©)

than any other length scale in the system, the noise defingghportant region is the leading edge defined as the region
by the correlator(3) is effectively white in both time and where linearization about the unstable state is a valid ap-

space.
Since according to Eq1) ¢ converges to 1 and is noise-

proximation; the fact that solvability-type integrals like Eq.
(7) diverge there reflects that the dynamically important re-

less behind the front, we can suitably define the positioryion becomes semi-infinite.

X;(t) of a noisy front propagating to the right into the un-
stable statep=0 by

Xi(t)= f:dxqs(x,t). @

The displacemeniix;(t) =X;(t) —x;(0) on average grows
with the noise renormalized mean velociiyé=<>'(f>ﬂ. The

fluctuations about the mean displaceméﬁW(t))M:v_Rt
are measured by

A() = [ AX(1) = (Ax¢(1)) ]2 -

If we relateA(t) to a diffusion coefficienD; by writing

©)

2 — ! ’ ’
A%(t)= | d2D(t"), (6)

then for pushed fronts the following expression for the dif-

fusion coefficientD; can be derived13,15:

| aceeidiane @)
Df = 2 - (7)

€

f i dge"_Ré(d%/dg)z}

Second, a pulled front has no characteristic relaxation
time [7], so there is no reason for the Markovian approxima-
tion underlying diffusive wandering. Rather the leading edge
relaxes asymptotically d5]

vR!2,

* 2
d)% afRef"RgRef §R/4Dt/t3/2, :Q_

(10

for &r=x—vit>1 and t>1.

The presence of theé&g/t%? term in front of the exponen-
tials is actually the fingerprint of the full equation being non-
linear. The expressioflL0) defines a time-dependent Gauss-
ian cutoff £,~ \4Dt, which regularizes the integrals in Eq.
(7). In fact, the evaluation of Eq7) with Eq. (10) yields

D¢(t)~ (t>1). (12)

3e 1
(vR)2V7D i
Notice that for large timeB¢(t) vanishes, marking the non-
diffusive wandering of pulled fronts. Insertion into E@)
yields

A(t)—\/zftdt’D (t") 12 "
o (v%)2\[7D

tl/4, (12)
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so the fluctuations are subdiffusive with exponent 1/4 rather
than 1/2.

Although the above argument does capture the essential
features of fluctuating pulled fronts, it is not entirely system-
atic, as it is based on the extrapolation of the solvability
condition(7) to the pulled regime.

In order to substantiate the scalingt)~t** for a relax- <
ing pulled front with a time-dependent analysis, let us go
back to Eq.(8). The leading edge region can be studied by
means of the leading edge transformation,

(X, t)=(£,)e N,

(13 L]

L L Lol
E=x—v*t, v*=2, \*=1 10 100
t
Equation(8) can then be written as o o . .
FIG. 1. Diffusive and subdiffusive spreading of the front posi-
oy 21// tion. The dotted-dashed curve correponds to the pushed ease (
—= — gt e[(1+ p) e t— pyle 2 —yle 3¢, =—0.3) and the solid one corresponds to the pulled casel).

at 9E? The dashed straight line is the predictidr®?), while the dotted line

(14)  indicates a slope 1/2.

S . " _ _
For £>1, the nonlinearities can be neglected, =0(&.). As the scaling exponents of the KPZ equation are

P F robust with respect to a geometric change of the fluctuating
—=D—+uy, for &1 (15  surface[18], we use the KPZ scaling functions for the root
at d mean square widthV of the interfaceh,
Notice that the noise in this “directed polymer” equation t
still is multiplicative. The Cole-Hopf transformation W(L,t)=tPY E ., B=1/3, z=3/2, (19
P&t =e"EY, (16)

where W= \/(h(x,t)—ﬁ(x,t)2>#, with the bar denoting a

converts Eq(15) into an equation with additive noise: _ : : .
spatial average. The scaling functigs) will depend on the

oh 72h oh\ 2 shape of the roughening surface, but always has the limits
E:D_2+D<a_§ +u, for 1. (17)  Y(s)—s P for s—», Y(0)=const.
29 Inserting our approximatioh~ \t, we get
Equation(17) is the celebrated one-dimensional Kardar Pa- W(L,t)NLzﬁN(\/E)zﬁ:tlm_ (20)

risi Zhang(KP2) interface equatiopl6].

The essential difference between our problem and previThe final step of our argument is to convert this result into a
ous studies of the KPZ equation are the initial and boundaryrediction for the fluctuations of the front position. If we
conditions. After some temporal eVOIUtion, the nonlinearitie&’neasure the position of the front by tracking a certain he|ght

in the original ¢ equation will lead to the fluctuationless ¢, ¢(x,,t)=const=c, and use the relationd3) and (16),
saturation of¢ at the value of unity fo€<—1, which cor- e find

responds to the fluctuationless slope=\* ¢ behind the B
front: It is as if the KPZ equation has to be solved in the B(xe,t)=e "REVRD = congt=c. (22)
positive half-space witlroughly) a fixed boundary. On the
other hand, by translating E¢L0) back intoh, we see that This implies that fluctuations ih are just identical with fluc-
for large ¢ andt, the average interface shapg, should be tuations inx.. Therefore, we get
given by

A(t)~tY4, (22)

ha~IN(a@ér/t¥?) + \* E— N5 ég— £2/14DE. (18)
which reproduces the scaling of our previous re¢if).

Thus, apart from the logarithmic term the average interface is We have also performed numerical simulations of the
essentially tilted but flat up to the time-dependent crossovenoisy front equation(1) with a=—0.3 (pushed anda=1
£.~4Dt [17], and beyond:, it has the shape of a down- [pulled, FKPP equatioi8)] following the lines of[13]. The
ward curved parabola with time dependent curvature. Totnitial condition was taken as a step functigrfx,0)= (X,
gether with the fact that the nonlinear term in E&j7) gives = —x). The numerical integration has been performed using a
an average nonzero growth velocity, this makes the probleratandard explicit Euler algorithm, in both cases the value of
into a nonstandard fluctuating interface problem. Our centrathe noise was set to= 0.5, and the zero value of the spatial
approximation is now to consider the relaxing front in the noise correlato£(0) was chosen as the inverse spatial inte-
essentially straight but fluctuating section between 0 andjration meshC(0)=1/Ax [13]. The result is shown in Fig.
V4Dt as a KPZ interface with time-dependent lendth 1, where the functiorA(t) is plotted in both the pushed and
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the pulled case. others are more difficult to tracé) We already noticed pre-
The specific features of the pulled regime make the probviously that we are actually dealing with a slightly curved
lem quite delicate from the numerical point of view. In order KPZ interface, for which the crossover scaling functions are
to minimize finite size effects, which are particularly worri- not known, and that the way in which the cutoff,
some in this regimg7], we have worked with a large system = (\/t) enters the KPZ analysis requires further stugiy.
size (L=3000) and gridsizax=1 (the change in* andD  The corrections to our asymptotic estimates for the integrals
due to the finite gridsize effect was taken into account foln Eq. (7) are all of order 1{t, with possible logarithmic
lowing the prescription of7]). This made sure that even at correctiong 7). This indicates that the corrections to the scal-
time t=600, the leading edge of the front never reached thgyg A /4 are of ordert =4, possibly with logarithmic cor-
boundary of the system. _ rections.(iii) If initially ¢ falls off as exp(-\%x), then the
We have also checked our program and system size &X%qqociated KPZ interface remains straight towarese. For
tensively both for deterministic and noisy fronts, taking IO this case the KPZ scaling predicts~tY3. Presumably a
account grid and time step effects according b crossover between exponent 1/3 and 1/4 could be present
Our final result, based on averaging over 10000 front,nen starting with an initial condition slightly faster decay-

:j?f?ﬂzf\l/téorllase'r::w?gpre:jr:clt:é%' t1>; 'tozlreegrl]yalc%gg:m; tgfnzﬁging than expt-Agx). The identification of such a crossover
o P y naly 9 ‘and the modification of the global exponent due to these
Quantitatively, when we associate a single effective expo-

nent with the late time slope in the log-log plot of Fig. 1, we dee?}v?:elpemal conditions is an issue that will be addressed

get an effective exponent of about 0.29 rather than 1/4. Over We finally stress that our results apply to a much larger

then;ur\r/wv?] |r:t|errvalrv;/ﬁ ?]avr? stu?:]e?, t’ghe ?Cé?z}:b\/a?“\ﬁ?oh Iis class of equations than nonlinear diffusion equatidnsThe
somewnat farger than an asymplofic prediciibs), CNIS methods of generalization are analogous to thode &f; a

indicated with a dashed line. This may be due to the fact thaéI - ;

. . ) osely related result is the general argument put forward in
Eq. (12) only gives the behavior for such long times that the[lO] ti)wlat noisy pulled frontg in more gthan onrz)a dimension
time integral is dominated by its largebehavior. The fact should not obey KPZ scaling

that A is only of the order of 4 at our latest times suggests
that this asymptotic regime is only reached at very late times. We thank J. Casademunt and L. Signdor useful discus-
Indeed, assuming that finite size effects are negligible, weions. A.R. thanks the Instituut-Lorentz for kind hospitality.
attribute the fact that the effective exponent is slightly largetHe was supported by the European Commission Project No.
than 1/4 to the presence of slow crossovers, which surely altRBFMRX-CT96-0085 and U.E. by the Dutch Science
present in the system. Some of these can be estimated, whif@undation NWO.
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