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Towards a quantification of disorder in materials: Distinguishing equilibrium
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This paper examines the prospects for quantifying disorder in simple molecular or colloidal systems. As a
central element in this task, scalar measures for describing both translational and bond-orientational order are
introduced. These measures are subsequently used to characterize the structures that result from a series of
molecular-dynamics simulations of the hard-sphere system. The simulation results can be illustrated by a
two-parameterdering phase diagramwhich indicates the relative placement of the equilibrium phases in
order-parameter space. Moreover, the diagram serves as a useful tool for understanding the effect of history on
disorder in nonequilibrium structures. Our investigation provides fresh insights into the types of ordering that
can occur in equilibrium and glassy systems, including quantitative evidence that, at least in the case of hard
spheres, contradicts the notion that glasses are simply solids with the “frozen in” structure of an equilibrium
liquid. Furthermore, examination of the order exhibited by the glassy structures suggests, to our knowledge, a
new perspective on the old problem of random close packing.

PACS numbeps): 61.20.Ne, 61.43:j, 81.05.Kf

[. INTRODUCTION tween the ideal gas and the perfect crystal, lie imperfect
gases, liquidgboth stable and metastahlglasses, defective
A well-developed theoretical and experimental frame-crystals, and structures that evolve from nonequilibrium pro-
work is available for studying the structure of regular crys-cesses, such as irreversible adsorption onto a surface. De-
talline solids[1]. In contrast, much less is understood aboutpending on the point of view, all such systems exhibit a
guantifying the structure of amorphous materials, despite theertain degree of orddpr disorde), and the differences be-
fact that nature exhibits disorder on a variety of differenttween them can be quite subtle. For instance, the classic
length scales. Examples range from liquids, gases, and amauroblem of distinguishing between the structures of dense
phous solids to porous rocks, dispersions, soil, and biologicajlasses and polycrystalline materials remains a significant
materials such as tissue. In such systems, it is natural to askallenge to materials scientists and enging4rs|.
the following question: To what extent can we quantify the The characterization of disordered materials is a particu-
degree of ordefor disordey present in the sample? In other larly difficult task because any reasonably compact descrip-
words, is it possible to develop sensitive numerical meation of their structure is necessarily statistical in nature. Such
sures, so-calledrder parameterswhich can detect the pres- detailed statistical information can be written down exactly
ence of order in a system? In addition to their potential vi-for completely random or uncorrelated systefideal gases
ability as scientific tools, methods for quantifying disorder[6] in any spatial dimensio. However in real materials,
promise to play a role in emerging technological develop-interactions with other particles, container boundaries, or ex-
ments. Some of the most important examples can be found iternal fields such as gravity can cause significant deviations
recent medical applications, where it is known that the comfrom randomness, which ultimately manifest themselves in
plex microstructures found in biological materials such ashe form of spatial correlations.
bone, tissue, microblood vessels, and vehicles for drug de- The simplest nontrivial model that exhibits strong corre-
livery, are vital for understanding processes ranging fromations is the one-dimensionaDE 1) hard-rod fluid, also
tumor growth[2] to the permeation of drugs into the skBl. known as the Tonks gd9,8]. The rudimentary form of its
Central to the idea of describing disorder is understandingnteratomic potentialpure hard-core repulsi¢mnd its topo-
the relative placement of different materials in some relevanlogical simplicity relative to models in two and three spatial
order-parameter space. It is clear, on the one hand, thatdimensions D=2,3) have allowed for a very complete de-
truly random system, by virtue of its definition, exhibits no scription of its structure. For instance, pair and higher-order
positional, orientational, or conformational correlations; i.e.,correlation functiong9,10], neighbor distribution§11-15,
its structure is that of an ideal gas. On the other hand, @ensity fluctuation$15|, void statisticd 16,17], and various
regular crystalline array is a manifestation of perfect orderaspects of its normal-mode coordinaf&8] can be expressed
Our experience with real world materials, which are subjectanalytically for the equilibrium(and in some cases for non-
to thermal agitation and structural defects, indicates thagquilibrium) ensembles. Unfortunately, a comparable wealth
these two extremes are only abstract limiting concepts. Besf statistical information about the structure of most real and
model materials is not availabke priori. Rather, order pa-
rameters must be determined based on structural statistics
*Electronic address: torquato@matter.princeton.edu either measured in an experimgiidr instance, via scatter-
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ing, tomography, or microscopyr calculated directly from
a molecular simulation.

For pragmatic purposes, it is desirable if the order param-
eters to be calculated reduce the available statistical informa-
tion to scalar measures of order in the material. Simple indi-
ces of this sorte.g., the Rockwell hardness sc@l®]) have
a long history of providing very practical means for compar-
ing material properties. Recently, we introduced a set of sca-
lar order parameters to quantify disorder in random packings
of spheres and discussed the utility of these measures for
general many-body systems, including liquids and solids
[20]. In the present paper, we explore the behavior of such
measures to quantify different aspects of ordering in simple F!G- 1. Two types of ordering that occur in simple syste(as.

molecular or colloidal systems. These ordering metrics fa_Bond-orlentatlonal order. This measure contains information about

cilitate the introduction of a new concept, the t\No-parametthe orientation of the vectors connecting neighboring particles in

deri h di hich illustrates th lati | the sampldleft). If these orientations persist throughout the struc-
ordering phase diagramvhich rflustrates the reialive place- ture, as they do in a perfect crystaight), then the system is con-

ment of a material’s equilibrium phases in order-parameteigered to be bond orientationally orderéd) Translational order.
space. Perhaps more importantly, we notice that thenis measure contains information about the relative spacing of
ordering-phase diagram can also serve as a means for maguarticles in the system of interedeft) relative to some relevant
ping the degree of order in nonequilibriufor history-  crystalline lattice at the same densityght).

dependentstructures as a function of their processing con-
ditions.

We demonstrate the utility of these new concepts by N -

. : ; . Perhaps one of the most intuitive means for describing
studying in detail j[he struc_ture of the three-dlmens!onal .hardbrder in a material is to compare the structure of that material
sphere system via a series of molecular-dynamics simulgy some relevant crystalline lattice at the same density. For
tions. The hard-sphere system is an ideal starting point fofhe order parameters considered in Sec. I, we focus on sys-
quantifying disorder in materials because it represents theems that are known to freeze into the face-centered-cubic

simplest model material that exhibits both a first-order freez{fcc) crystal. As is well-known, the fcc structure is the stable
ing transition and a glass transition. Moreover, it is knowncrystalline phase for a number of metals, rare gases, and
(see, e.g., Refl21]) that the structures exhibited by many model systems comprising particles that exhibit steep repul-

“real” metallic glasses(such as NjsBss, Nig,Nbsg, and sive forces(e.g., the Lennard-Jones and hard-sphere fluids
Pd;,Nig,P;¢) can be adequately represented by dense randorhhe ideas presented in this segtion are generalized in Seq. v,
packings of hard spheres. wherg two new measures are introduced that do not require a

In order to quantify the degree of ordering that is exhib-SPecific reference crystal structure as an input.
ited by the hard-sphere system, we analyze structures from FOr a collection of spherically symmetric particles, there
the equilibrium fluid, the equilibrium crystal, and a series of &€ two relatively basic scalar measures of ordemsla-

glasses produced by varying compression schedules. We ﬁd@nal order and bonq-orlentatlonal orde(Fig. 1). The
that the results of these calculations provide us with a refer0’Mer measure contains '”fo_r”.‘a“of‘ about the average rela-
ence ordering-phase diagram, and herein we discuss the p(;tgv_g spacing of the particles; i.e., it detects the extent to
e ) . . ; Which certain positions in space are preferentially occupied.
sibility of extending these calculations to investigate further.l.h i : X
e latter measure, bond-orientational or@22], contains

the_conn(_acnon between mtermolecular_ lnte_ract|o_ns gnd Ofihformation about the spatial orientation of vectors connect-
dering. Finally, we note that our detailed investigation of

X .. 'ing the centers of neighboring particles. When the orienta-

glassy packings supports a reassessment of the traditiongbng of these imaginary bonds persist over macroscopic dis-

notion of the random close-packed state. . tances in the sampl@s they do in a perfect crysiathen the
This paper is organized as follows. In Sec. Il we introducematerial is said to be bond-orientationally ordered. This

two simple order parameters for substances that are known &hould not be confused witmolecular orientational order
freeze into a face-centered-cubic crystal. In Sec. Il we usgyhich describes the persistence of preferential orientations of
these order parameters to analyze ensembles of equilibriugnisotropicparticles in a material.

and nonequilibrium structures in the hard-sphere system, and Steinhardtet al. [23] have introduced a set of bond-
we illustrate these results via a set of ordering phase diaerientational order parameters that are particularly sensitive
grams. Furthermore, we demonstrate how the ordering phase the overall degree of crystallinity in the system. For these
diagram can be used as a tool for understanding the effect sheasures, one is obliged to ascribe to each paitialset of
history on disorder in nonequilibrium structures. In Sec. IVnearest neighbors. Here, we have defined the set of neighbors
we introduce two “general” order parameters that do notto particlei to be all particleg that lie within a radial dis-
require a specific crystalline structure as an input. Thes&ncer;; of the central particle such thatdrjj<r ,, where
measures reproduce qualitatively the features of the origindlmin is the first minimum in the radial distribution function
ordering phase diagram and suggest the possibility of a ung(r) [24]. Historically, the vectors;; connecting nearest
versal description for simple systems. Finally, in Sec. V weneighbors, oriented along unit vectorfs,j , are called
present some concluding remarks. “bonds.” The spatial orientations of these bonds with re-

Il. ORDER PARAMETERS
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spect to an arbitrary reference axis are uniquely determinegpatially uncorrelated sphejesnd the open fcc crystal lat-
by the polar and azimuthal anglég and ¢;; . To construct tice, respectively. In our study, we chose to consider the first
invariants, one begins by assigning the spherical harmonicseven neighbor shellsNe=7), utilizing a shell-width pa-
Yim: rameter of5=0.196. Our tests indicate that the consideration
R of more neighbor shells does not result in qualitatively dif-
Qim(rij) =Yim(8;j , dij) (2.1)  ferent behavior fofT. It is worth noting that, like the bond-
R orientational order paramet€), the translational order pa-

to each bond oriented in a directiofy . These values are rameter T scales between Qcomplete disorder and 1
subsequently averaged over all bonds in the sample to obtaiperfect fcc spatial ordering

the global orientational order paramete@,,,: Both order parameters, i.el,and Q, should be generally
_ R applicable to simple atomic or colloidal fluid&5] that are
Qim=(Qim(rij))- (2.2 known to freeze into the fcc crystal. In Sec. I, we utilize

_ these measures to investigate ordering in the hard-sphere sys-
The quantityQ,,, still depends on the choice of the referencetem.

frame. However, one can form the combinatiQn:
m=| Ill. ORDERING IN THE HARD-SPHERE SYSTEM

1/2
s _
oI+1 E |le|2) ) (2.3 A. Simulation details

m=—1|

Q=

L . . . ) In order to generate a representative set of structures in
which is a rotationally invariant measure. In our studies, Wepe hard-sphere system, we have carried out a series of

will be interested irQg, which has the ideal property that it molecular-dynamics simulations of 500 identical hard
should be 1Ny, for a completely uncorrelated samgildeal  spheres in the canonical ensemble, using a cubic box with
gas, whereNy, is the total number of bonds in the system. periodic boundary conditions. In these simulations, we have
Moreover, Qg is significantly larger when crystallites are analyzed configurations from the equilibrium fluid, the equi-
present in the system, and it attains its maximum value fofiprium fcc crystal, and a set of history-dependent glassy

space-filling structures in the perfect fcc crystal. For the purstructures produced by the well-known method of Lubachev-
poses of this paper, we normalifgs by its value in the sky and Stillinge{26-28§.

fcc_

perfect fcc crystaQg™=0.57452 to obtain Glassy structures created from the Lubachevsky-Stillinger
protocol are termed history dependent because their proper-

Qs ties depend explicitly on the initial conditions of the fluid
Q= T (2.4 and the rate of densification. Specifically, the procedure is

6 initialized with a set of sphere positions and velocities that

Note that our normalized bond-orientational order paramete@re extracted from a “snapshot” of the equilibrium fluid at
Q, in the infinite volume limit, scales between(6omplete low density. Then, during the course of an otherwise stan-
disordej and 1 (perfect fcc ordering thus, it effectively —dard constant-volume molecular-dynamics simulation, the
serves as a “meter” for crystallization in the sample. More-sphere diameter(t) is increased linearly in time. The
over, Q is quite large for other common space-filling struc- process terminates injammed staten which o(t) can no
tures Q=0.6154, 0.8438, and 0.8887 for simple cubic,longer increase in time without sphere overlap, the collision
hexagonally-close-packed, and body-centered-cubic strugate diverges, and no further densification can be achieved
tures, respectively without first decompressing and relaxing the system. We
In contrast to the bond-orientational order parametersdentified the jammed state as having occurred when the
mentioned above, scalar measures of translational order hag@here diameters stabilized despite continuing collisions
not been well studied. We have recently introduced a trand-26]. We note in passing that the collision dynamics of this
lational order parametdf that measures the degree of spatialcompression protocol differ from conventional elastic sphere
ordering in the system of interest, relative to the perfect fcdlynamics because the colliding spheres must be given an
lattice at the same densif20]. Specifically, extra impetus, along the line connecting their centers, to en-
sure that their surfaces are moving apart after the collision.

Ne deal The details of the alternative dynamics are relatively easy to
izl (ni—n; l) implement and are outlined in the original referefi26].
T=| |, (2.5 The dimensionless compression ratés given by

N¢ .
2, (nf=n do(t)| [m
F:( dt ) Ko’ @1

wheren; (for the system of interestindicates the average

occupation number for the spherical shell of widthh lo-  wherem s the mass of a spherk,is Boltzmann’s constant,
cated at a distance from a reference sphere that equél#hthe and ¢ is the temperature. Note that the compression Fate
nearest-neighbor separation for the open fcc lattice at thajontrols the processing historfipr the hard-sphere glasses
density,a is the first nearest-neighbor distance for that fccformed by this protocol, and its role is analogous to that of
lattice, andN¢ is the total number of neighbor shells consid- the cooling schedule in experimental glasses. In fact, Speedy
ered (see Fig. L Similarly, ni®® and n!® are the corre- [29] has recognized that the dimensionless compression rate

sponding neighbor shell occupation numbers for an ideal gak is related to a laborator§isobarig cooling rate ¢6/dt)p:
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FIG. 3. Final packing fractionp in the glassy structures as a
function of reciprocal compression rdfe . The black circles rep-
resent an average of 27 glasses produced at each rate. The dashed
line is a linear fit to the data.

order 16-1C° K/s [31]), very thin surface layers can be
quenched at ultrarapid rates ¢40K/s) by pulsed laser
qguenching 32].

The amount of computation time required for executing
the Lubachevsky-Stillinger compressions can be significantly
reduced if the runs are initiated from equilibrium fluid con-
figurations at a finite packing fractiogp (in this case we
chose $»=0.30). Here,¢ is defined as the fraction of the
total volume V occupied by theN spheres, i.e., ¢
=70°N/6V. We have found that the glassy structures
formed from this initial condition are virtually indistinguish-
able from glasses compressed at the sameltatiem the
ideal gas, i.e.g(t=0)=0.

8 .
. .
o WA .Y

A~ B. Hard-sphere glasses

FIG. 2. Glassy structures generated using the Lubachevskyt- Three-dlmter(;SIt;)nal represenftaﬂons of typlcaltglassy stt:uc—
Stillinger protocol. Structures are shown with packing fractitas tures generated by a variety o compression rates are snown
¢=0.646,(b) $=0.667, andc) ¢=0.692 generated from dimen- in Fig. 2. The first strupturéFlg_. 2(a)]_ Is a glassy pack_lng
sionless compression ratds=0.01, 0.001, and 0.0005, respec- that was generated using a dlmen_5|onless compression rate
tively. of I'=0.01. It has a packing fraction ap=0.646, which
roughly corresponds to what has been traditionally termed
the random close-packed stateee, e.g.[33]), and appears
90 dIn[P/pgpkd] ko to be quite amorphous. Denser jammed structures can be
(E) =-3r ( dinp ) 7 (3.2 formed in the hard-sphere systésee Figs. ) and Zc)] by
7 reducing the compression rate and thereby allowing the
spheres to find more compact configurations. This increase in
) ) ) density, however, is achieved at the expense of increased
whereP is the pressuregg=N/V is the number density, order in the sample.
=1/2/5? is the number density for the close-packed fcc crys-  The dependence of the limiting packing fractigron the
tal, N is the number of spheres, aNds the system volume. reciprocal compression ratE ! is illustrated in Fig. 3.
Using Speedy’s estimatg29] from molecular simulations Shown are the average packing fractions obtained from 27
d In[P/pcko)dIn p~4.7 atp=1.10"3, a temperature o  compressions at each of 9 different compression rates. It is
=273 K, and both the stoichometrically averaged mass clear that slow compressions result in packings that are both
=19.95 g/mole and the effective hard-sphere radius very dense anflas can be deduced from Fig.c2] conspicu-
=2.025 A[21] for NiggBgs yields an estimated quench rate ously ordered. In fact using extremely slow rateb (
of (96/3t)p~—6I' X 10" K/s. In this paper, we focus on <10 %), we have produced fcc crystals by the Lubachevsky-
dimensionless compression rates that span the rang& 10Stillinger protocol that were within 1% of the close-packed
<I'<10°2, corresponding roughly to cooling rates in a limit of ¢cp=/(3y2)~0.74(not shown in Fig. & In con-
range (16% K/s<(d6/dt)p<10"* K/s), values which are trast, rapid compressions create lower density, more disor-
typical for molecular simulation§30]. We note that while dered packings. A linear fit to the data in Fig. 3 extrapolates
many standard technigues for metallic glass produdgog., to a packing fraction oth~0.64 in the limit of infinite com-
melt spinning generate more modest cooling rai@$ the  pression rate.

P
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In the context of equilibriun{or metastablehard-sphere 1.0 y - - —
systems, one generally considers two natural limiting high- (a) crystal ,/
density states: the fcc close-packed structuge=(/2/6 0.8 - /
~0.74) and the random close-packed state=(0.64). How- /
ever, Fig. 3 clearly demonstrates that these limiting states for 06 | /'
the hard-sphere system represent a very small subset in a - /
virtual continuumof jammed structures that span the high- 04 o 4
density range 0.64 ¢ <<0.74. Moreover, we see that the final X
packing fraction and, subsequently, the degree of ordering in 02 | r
the sphere packings created by the Lubachevsky-Stillinger fluid _.4A lasses
protocol can be statistically controlled by the compression 0.0 - g )
ratel. 0.2 0.3 0.4 0.5 0.6 0.7

It should be noted that the jammed hard-sphere structures
with the lowest density for spatial dimensioRs>1 have yet 10 P
to be identified. A number of interesting examples of low- (b) crystal ./
density jammed structures f@=2 (hard disk$ have been 08 1
noted by Lubachevskegt al. [27]. For D=3 (hard spheres
the close-packed cubic latticeeontained by rigid bound- 0.6 |
arieg with a packing fraction ofp= 7/6~0.52, is an obvi- (]
ous example, but it is most likely not the lowest-density 04t
jammed structure. To investigate this interesting open issue, glasses
we are currently developing simulation techniques for gen- 02| I
erating jammed hard-sphere packings in the low-density fluid
range (<0.64). o L_zrmrmr=emmeA ‘ .

7.2 0.3 0.4 0.5 0.6 0.7
C. Ordering phase diagrams ¢

An interesting question to pose about a given material is FIG. 4. Ordering phase diagrams for the hard-sphere sy&m.
the following: How do its various equilibrium and glassy Translational order paramet@rvs packing fractiong. Shown are
structures rank in terms of the degree of order they exhibit?the equilibrium fluid (dot dashef the equilibrium fcc crystal
In other words, for a system with a given intermolecular(dasheg, and the set of history-dependent glasgeiscles from
potential, our goal is to construct a diagram that illustratestig. 3. The degree of ordering in the coexistence region can be
the relative placement in order parameter space of the equiletermined by a simple lever rul@ot shown. Note that both the
librium and nonequilibrium structures. Figure 4 illustratesdegree of order and the final packing fraction of the glassy struc-
two such ordering phase diagrams for the hard-sphere Syg.lres_can be statl_stlcally cc_)ptrolled b_y the compressmn]]’aféh_e
tem. In particular, the dependence of the translational anfjeezing and melting trans_ltlons are |nd|9ated'by the black triangle
bond-orientational order paramete,and Q, on packing and black square, respgctlve{jo) Bond-orleptatlopal order param-
fraction & (as measured in our molecular dynamics simula-St€" @ VS packing fractions. Symbols are identical to those pre-
tiong) is plotted for the equilibrium liquid, the equilibrium sented in@.
fce crystal, and the series of history-dependent glasses frofiures of the glassy structures in this plot. First, the amount of
Fig. 3. translational order in the glasses can be statistically con-

As should be expected, the translational order parareter trolled by the compression rate. Second, there is no unam-
in the equilibrium fluid vanishes at low density. Howeveér, biguous division between amorphous and polycrystalline
increases monotonically as the system is compressed towagckings; i.e., ordering in jammed structures is a matter of
the freezing transition ¢;~0.494), indicating that the in- degree.
crease in density imparts a significant amount of short-range It is interesting to note that the random close-packed state
order to the fluid. A discontinuous jump in the order param-has historically been considered to be temsest amorphous
eter is observed upon freezing to the equilibrium crystal, apackingthat a collection of spheres can attain. However, our
is consistent with a first-order phase transition. In the crystalgimulation results indicate that this definition cannot be made
Tis less than unity at the melting poinp{,~0.545) because mathematically precise in light of the fact that one can al-
of thermal motion, but the crystal becomes increasingly orways create slightly denser packings at the expense of small
dered as it is compressed, approachingl for the close- increases in order. In another pap&0], we demonstrated
packed fcc structure abcp~0.74. how the ordering phase diagram suggests replacing the well-

Having established the relative placement of the equilib-accepted notion of random close-packing with a new con-
rium phases on the ordering phase diagram, one can begin ¢ept, termed thenaximally random jammed statehich can
consider plotting the positions of the nonequilibrium struc-be made precise and provides fresh insights into the nature of
tures on the diagraras a function of their processing con- disorder in glassy systems.
ditions Figure 4a) illustrates the effect of compression rate  Figure 4b) is the ordering phase diagram for the bond-
I' on both the translational orderirigand the packing frac- orientational order paramet€ in the hard-sphere system
tion ¢ of the glassy structures generated from the[34]. Notice that the density dependencelis qualitatively
Lubachevsky-Stillinger protocol. There are two salient fea-similar to that of the translational order paramefér
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1.0

dict (at least for the hard-sphere sysbetme commonly held

/
':' notion that glasses are simply solids with the “frozen in”
08 crystal [ structure of an equilibrium liquid35]. It is important to
/ realize that, since temperature plays a trivial role in hard-
06 | glasses l/ : body systems, hard-sphere glasses must be formed by com-
- / pression andhecessarily have a higher packing fractigh
04t / * u : than the corresponding equilibrium fluidNevertheless, it is
y reasonable to expect that a similar degree of ordering would
02} oo ¥ : arise in glasses formed by the rapid cooling of a dense
A fluid simple liquid(e.g., the Lennard-Jones flyjdvhere the struc-
0.0 LL . . . . ture is dominated by repulsive forces. Of course, the extent
00 02 04 Q 06 08 10 to which these results can be extended to systems with at-

tractive interactions is an interesting open question which
FIG. 5. Two-parameter ordering map for the hard-sphere sysmerits further investigation.
tem. Shown are the coordinates in order parameter sgacg) (for In this paper, we note that the nonequilibrium glassy
the equilibrium fluid (dot dashey the equilibrium fcc crystal  stryctures arenore orderedthan those found in the equilib-
(dashedl and the set of history-dependent glasgeiscles from —jm fluid. In fact this result was anticipated in an earlier
Fig. 3. Along each of these sets, packing fracyincreases from paper36], where it was shown that the familiar split-second

left to right. Unlike the equilibrium state points, the positions of the K in hard-sph | d | f K
glassy structures in order parameter space are determined by tﬁ)ﬁa see_n In har sp gre 9 a;ses eye ops .rom a Wea er
shoulder in the equilibrium fluid and is associated with a

processing conditionéin this case, the compression rdtg. As in o : ) ; > ‘
Fig. 4, the freezing and melting transitions are indicated by theSUbS'tantlal increase n orientational ordering. We note in
black triangle and black square, respectively. passing that by biasing the system, one can construct an en-

semble of nonequilibrium hard disk packing® €2) that

Namely, we see minimal ordering in the equilibrium fluid, a @€ Significantlymore disorderedthan the corresponding
discontinuous jump in the order parameter upon freezinggqU|I|br|umfIU|d structures at the same packing fracfidn].
and a crystal whose degree of order systematically increases Although we have concentrated on a highly idealized
with packing fractiong. Moreover, the behavior @ affirms ~ model system in this paper, the two-parameter order map
the conclusion that glassy packings can span from “liquid-suggests some challenging scientific questions about real ma-
like” to “crystal-like” configurations, with the precise de- terials and indicates several specific areas that deserve fur-
gree of order in the jammed structures being statistically conther investigation. First of all, it is clear that there exist large
trolled by the compression raie sets of coordinate pairdI(Q) in order parameter space, i.e.,
We can gain some further insight into the nature of ordercertain types of ordering, which for some systems are com-
ing in the hard-sphere system by studying the correlatiorpletely (or at least statisticallyinaccessible. Can we under-
between translational and bond-orientational order in varioustand the relationship between these inaccessible regions and
structures. Practically speaking, this can be accomplished byie relevant interactions in the system? Moreover, can we
constructing atwo-parameter order magT vs Q) which  yse the order map as a general guide for classifying the re-
illustrates the relative placement in order parameter space ¢itionship between the morphology of more complicated
the equilibrium phases and the nonequilibrium glassy strucg|assy systems and their processing history? What if a mate-
tures (see Fig. 3 One striking feature of the order map rigs crystal structure is unknown? We are currently inves-
shown in Fig. 5 is the strong positive correlation that existsjgating the first two questions in our research, while the
betweenT and Q for the equilibrium fluid and crystalline yjrg question is the subject of Sec. IV in this paper.
phases. In addition, we see that the fluid and the fcc crystal
are separated by a large gap in order para'me'ger space that IV. CRYSTAL-INDEPENDENT MEASURES
serves as a “no man’s land” for the pure equilibrium phases.
Interestingly, packings that exhibit coordinate paifsQ@) in Up to this point, we have relied on the notion that order-
the no man’s land can be generated if we resort to nonequing in a system should be measured relative to some specific
librium methods of preparation such as the Lubachevskyerystal structure. This approach, while useful for the simple
Stillinger compression protocol. systems we have considered, is less than satisfactory for ma-
The notion that there is a large region of order parameteterials with either multiple crystalline phases or for which the
space (0.15T<0.40 and 0.£Q<0.8) populated by the crystal structure is unknown. In these more complicated sys-
glassy structures but not visited with any statistical signifi-tems, one must generally find measures that have the ability
cance by the pure equilibrium phases, is very intriguing. Into detect the presence of growing spatial correlations in the
other words, the degree of order exhibited by the sphersystem withoug priori knowledge about the structure of the
centers in the glassy packings is noticeably greater than thatystalline phase. In this section, we present two very simple
of the equilibrium fluid at the freezing transition and, simul- examples of prospective crystal-independent measures and
taneously, less than that exhibited by the equilibrium fcccompare them to the translational and orientational metrics
crystal at the same packing fractiefh This indicates that introduced in Sec. Il.
certain nonequilibrium packings can be distinguished from The first quantity that we consider is a translational order
the equilibrium system based ostructural information parametef™, which provides a measure of the local-density
along e.g., T andQ. Moreover, the results seems to contra-modulations in the system
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Density-density correlations are detected with this measure

by integrating over the absolute value of the total correlation
function h(£)=g(¢&) — 1, whereg(€) is the radial distribu-
tion function,&é=r p'”is the radial coordinatescaled by the
cube root of the number densipy=N/V, and&; is a numer-
cial cutoff which is limited by the size of the simulation box
(for our simulations, we chos€-=3.5). Here, we have
taken the liberty of using the rescaled radial coordiras®
that the integral appearing in E@L.1) sums over an equiva-
lent number of coordination shells at each density.

Note that for systems comprising molecules with attrac-
tive interactions, the total correlation functitur) becomes
long-ranged in the vicinity of the liquid-vapor critical point.
This may result in an increase i, defined by Eq(4.1),
when in fact no significant molecular ordering will have oc-

cured. Of course, since we are concerned with the hard-

sphere system in this paper, the behaviof dfin the vicin-

ity of a critical point is of no immediate concern.
Nevertheless, understanding the behavioFbihear both the
freezing transition and the critical point is a crucial step to-

wards determining its general viability as an order parameter,

and it is an issue we are currently investigating.

Another interesting statistical quantity that one can mea
sure in a simulation is the two-body excess entrg)
given by (see Refs[38-40Q)

k
s@=—2 [ arfgningn-lgn-11. @2

TOWARDS A QUANTIFICATION OF DISORDER IN.. ..

999

1.0 ™7
/
0s | () crystal |
II
!
06 | / 1
. /
= o r
04| ]
lasses
. A 9
02 | fluid _~
. g
00 be=""_ . .
0.0 0.2 0.4 06 0.8
25 T
1
/
2| (b) ;
crystal |
i
15t ! f Z r 1
P !
& !
P} B glasses|
5 -
fluid __.-
0 lameme—2, il . .
0.0 0.2 04 0.6 0.8

FIG. 6. Ordering phase diagrams for the hard-sphere system
using the crystal-independent measures introduced in the (&@xt.
Alternative translational order parameiet versus packing fraction
¢. Shown are the equilibrium flui@lot dashey the equilibrium fcc
crystal (dashegl and a set of glassdsircles whose structure de-
pends on the compression rdie The freezing and melting transi-
tions are indicated by the black triangle and black square, respec-
tively. (b) The magnitude of the excesswo body statistical

This measure is essentially the multiparticle correlation funcentropy—st?)/k versus packing fractios. Symbols are identical to

tion expansion of the excess entrofpglative to an ideal gas
at the same densittruncated at the two-body terms. This
expression was first derived by Nettleton and Grgz8] in
the grand-canonical ensemble, and Baranyai and EpMdis

those presented i@).

both measures indicate a low degree of ordering in the equi-
librium fluid, a discontinuous jump in the order parameter

later demonstrated that the quantity is indeed “ensembleupon freezing into the crystal, and a equilibrium crystal
invariant.” When truncated at the two-body terms, the seriesvhose degree of order systematically increases with packing
has been shown to be a reasonable approximation for the fulitaction ¢. Once again, the order paramater plots indicate

excess entropy in several model liquigt,41. It has also

that the degree of order and the packing fractinn the

been directly measured in simulations of nonequilibriumglassy structures can be statistically controlled by the com-

steady shear flowgt2].
Sinces® =0 for completely disordered systerfi®., the

pression ratd’.
One important caveat concernirg) is its inability to

ideal ga$ and becomes large and negative for ordered strucdistinguish between certain basic varieties of sphere pack-

tures 6> — —o for perfect crystalline arrangemeptst

ings. As can be seen in E(.2), the presence of delta func-

may seem to provide a practical measure of disorder in théons in the radial distribution functiog(r), will result in a
system. In the context of the present paper, we are interestativergence in the two-body entropgf)— — ). This diver-
in order parameters, and thus we focus on the dimensionlesgence, which is a well-known feature of the entropy in

positive-definite[43] quantity —s®)/k. It should be noted
that although the integral appearing in Eg.2) must be
truncated when measured in a simulation box of finite size,

highly compressed, classical rigid particle systg¢rd, lim-
its the utility of s'®) as an order parameter in many cases. For
itnstance, the two-body entropy will not be able to distinguish

is known that the quantity measured will be a lower boundbetween alternative perfect crystal structures and a number

[40] on —s(@ that is indeed very tight in the liquid phase.

of hard-sphere packings in the ideal “jamming” linj20].

Figure 6 illustrates the ordering phase diagrams for the As a final remark, we note that the order parameters, in-
hard-sphere system prepared using the two order parametarsduced in this paper, by no means exhaust the possibilities
introduced in this sectio* and —s(®)/k. Notice that these even for simple systems. For instance, we have focused only

measures provide a description of the system that is quali

taan the “global” versions of the translational and bond-

tively similar to that seen in Fig. 4. Specifically, we see thatorientational order parametefsand Q. Clearly one can ex-
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amine “local” versions of these quantitigsandqg and their ~ sensitive measures have facilitated the introduction of a new
associated spatial correlations. For instance, we can definecancept, the two-parameter ordering map, which illustrates
local versiont of the global translational order paramelfer the relative placement in order parameter space of a materi-

given by Eq.(2.5 for each atom in the system al’'s equilibrium phases. In addition, the ordering phase dia-
N gram allows one to map out the degree of order in history-
EC ideal dependent structures, e.g., glasses, as a function of their
“~ (M=) processing conditions.
Ll I (4.3 We have demonstrated that there is a large region of the
2 (nfec— pidealy two-parameter T—Q) order parameter space that serves as
= ' a no man’s land for the pure equilibrium phases. In other

words, there are certain degrees of ordering that are not re-
Using this local definition, a correlation functid@,(r)  alized by the hard-sphere system under equilibrium condi-
can be constructed tions. However, we demonstrate that glassy structures that
_ _ exhibit this “intermediate” type of order can be produced by
([TLO) =TT =T nonequilibrium methods such as the compression protocol of
([TLUO)=TTLO)-T])’

Lubachevsky and Stillinger. This contradicts the common

notion that hard-sphere glasses exhibit the frozen in structure
where the angular brackets indicate an average over all paof the equilibrium liquid. Furthermore, this paper indicates
ticles separated by a scalar distancand T, signifies an that certain nonequilibrium glassy structures can be distin-
average over all atoms in the system. By tracking the spatigjuished from the equilibrium liquid based on structural in-
decay of the correlation between local translational orderindormation alone.
[as is done fog(r) in Eq. (4.1)], a new measure of transla- A detailed analysis of jammed structures, produced by the
tional ordering is obtained. Of course, a similar correlationProtocol of Lubachevsky and Stillinger, indicates that there

function can be defined for the local bond-orientational ordefS N0 unambiguous division between amorphous and poly-
parametex [23]: crystalline glasses. In fact, the degree of ordering in those

systemg(spanning from “liquidlike” to “crystal-like”) can
1 be statistically controlled by the compression rate. That is to
Gq(1) =13 > (&N Uerm(0)){Ggo(N Uoo(0)) %, say, slightly denser packings can be created at the expense of
m=-6 4 arbitrarily small increases in order. Therefore, as we have
(4.5 demonstrated elsewhere in more def@d], the traditional

where * denotes Comp|ex Conjugation, and the angu|af]0ti0n of the random Close-paCked state should be reas-

brackets indicate an average over all bonds separated bySgssed. . o

scalar distance. Here, theq,,, are the spherical harmonics  Finally, we have demonstrated that there is a distinct or-

computed according to the orientation of each individualdering phase diagram that exists for the purely repulsive

bond with respect to an arbitrary reference axis. Once agaimard-sphere system, whose qualitative form is reproduced by

the spatial decay o4(r) will provide a measure of the _aII of the order parame;ers_lnvesngated in this paper. Pr_edlct-

persistance of bond-orientational order in the system. ing how the form of this diagram depends on the details of
In either case, since there is no single and complete scaldie interactions in a given system remains a fundamental

measure of order in a material, the order parameters orfehallenge to understanding ordering in condensed-phase sys-

chooses are unavoidably subjective. Nevertheless, it is stri€MS.

ing to see that the set of measures presented here give a
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