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Towards a quantification of disorder in materials: Distinguishing equilibrium
and glassy sphere packings
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~Received 1 March 2000!

This paper examines the prospects for quantifying disorder in simple molecular or colloidal systems. As a
central element in this task, scalar measures for describing both translational and bond-orientational order are
introduced. These measures are subsequently used to characterize the structures that result from a series of
molecular-dynamics simulations of the hard-sphere system. The simulation results can be illustrated by a
two-parameterordering phase diagram, which indicates the relative placement of the equilibrium phases in
order-parameter space. Moreover, the diagram serves as a useful tool for understanding the effect of history on
disorder in nonequilibrium structures. Our investigation provides fresh insights into the types of ordering that
can occur in equilibrium and glassy systems, including quantitative evidence that, at least in the case of hard
spheres, contradicts the notion that glasses are simply solids with the ‘‘frozen in’’ structure of an equilibrium
liquid. Furthermore, examination of the order exhibited by the glassy structures suggests, to our knowledge, a
new perspective on the old problem of random close packing.

PACS number~s!: 61.20.Ne, 61.43.2j, 81.05.Kf
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I. INTRODUCTION

A well-developed theoretical and experimental fram
work is available for studying the structure of regular cry
talline solids@1#. In contrast, much less is understood abo
quantifying the structure of amorphous materials, despite
fact that nature exhibits disorder on a variety of differe
length scales. Examples range from liquids, gases, and a
phous solids to porous rocks, dispersions, soil, and biolog
materials such as tissue. In such systems, it is natural to
the following question: To what extent can we quantify t
degree of order~or disorder! present in the sample? In othe
words, is it possible to develop sensitive numerical m
sures, so-calledorder parameters, which can detect the pres
ence of order in a system? In addition to their potential
ability as scientific tools, methods for quantifying disord
promise to play a role in emerging technological develo
ments. Some of the most important examples can be foun
recent medical applications, where it is known that the co
plex microstructures found in biological materials such
bone, tissue, microblood vessels, and vehicles for drug
livery, are vital for understanding processes ranging fr
tumor growth@2# to the permeation of drugs into the skin@3#.

Central to the idea of describing disorder is understand
the relative placement of different materials in some relev
order-parameter space. It is clear, on the one hand, th
truly random system, by virtue of its definition, exhibits n
positional, orientational, or conformational correlations; i.
its structure is that of an ideal gas. On the other hand
regular crystalline array is a manifestation of perfect ord
Our experience with real world materials, which are subj
to thermal agitation and structural defects, indicates t
these two extremes are only abstract limiting concepts.

*Electronic address: torquato@matter.princeton.edu
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tween the ideal gas and the perfect crystal, lie imperf
gases, liquids~both stable and metastable!, glasses, defective
crystals, and structures that evolve from nonequilibrium p
cesses, such as irreversible adsorption onto a surface.
pending on the point of view, all such systems exhibit
certain degree of order~or disorder!, and the differences be
tween them can be quite subtle. For instance, the cla
problem of distinguishing between the structures of de
glasses and polycrystalline materials remains a signific
challenge to materials scientists and engineers@4,5#.

The characterization of disordered materials is a parti
larly difficult task because any reasonably compact desc
tion of their structure is necessarily statistical in nature. Su
detailed statistical information can be written down exac
for completely random or uncorrelated systems~ideal gases!
@6# in any spatial dimensionD. However in real materials
interactions with other particles, container boundaries, or
ternal fields such as gravity can cause significant deviati
from randomness, which ultimately manifest themselves
the form of spatial correlations.

The simplest nontrivial model that exhibits strong corr
lations is the one-dimensional (D51) hard-rod fluid, also
known as the Tonks gas@7,8#. The rudimentary form of its
interatomic potential~pure hard-core repulsion! and its topo-
logical simplicity relative to models in two and three spat
dimensions (D52,3) have allowed for a very complete de
scription of its structure. For instance, pair and higher-or
correlation functions@9,10#, neighbor distributions@11–15#,
density fluctuations@15#, void statistics@16,17#, and various
aspects of its normal-mode coordinates@18# can be expressed
analytically for the equilibrium~and in some cases for non
equilibrium! ensembles. Unfortunately, a comparable wea
of statistical information about the structure of most real a
model materials is not availablea priori. Rather, order pa-
rameters must be determined based on structural stati
either measured in an experiment~for instance, via scatter
993 ©2000 The American Physical Society
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ing, tomography, or microscopy! or calculated directly from
a molecular simulation.

For pragmatic purposes, it is desirable if the order para
eters to be calculated reduce the available statistical infor
tion to scalar measures of order in the material. Simple in
ces of this sort~e.g., the Rockwell hardness scale@19#! have
a long history of providing very practical means for comp
ing material properties. Recently, we introduced a set of s
lar order parameters to quantify disorder in random packi
of spheres and discussed the utility of these measures
general many-body systems, including liquids and so
@20#. In the present paper, we explore the behavior of s
measures to quantify different aspects of ordering in sim
molecular or colloidal systems. These ordering metrics
cilitate the introduction of a new concept, the two-parame
ordering phase diagram, which illustrates the relative place
ment of a material’s equilibrium phases in order-parame
space. Perhaps more importantly, we notice that
ordering-phase diagram can also serve as a means for
ping the degree of order in nonequilibrium~or history-
dependent! structures as a function of their processing co
ditions.

We demonstrate the utility of these new concepts
studying in detail the structure of the three-dimensional ha
sphere system via a series of molecular-dynamics sim
tions. The hard-sphere system is an ideal starting point
quantifying disorder in materials because it represents
simplest model material that exhibits both a first-order fre
ing transition and a glass transition. Moreover, it is kno
~see, e.g., Ref.@21#! that the structures exhibited by man
‘‘real’’ metallic glasses~such as Ni65B35, Ni62Nb38, and
Pd52Ni32P16! can be adequately represented by dense ran
packings of hard spheres.

In order to quantify the degree of ordering that is exh
ited by the hard-sphere system, we analyze structures f
the equilibrium fluid, the equilibrium crystal, and a series
glasses produced by varying compression schedules. We
that the results of these calculations provide us with a re
ence ordering-phase diagram, and herein we discuss the
sibility of extending these calculations to investigate furth
the connection between intermolecular interactions and
dering. Finally, we note that our detailed investigation
glassy packings supports a reassessment of the tradit
notion of the random close-packed state.

This paper is organized as follows. In Sec. II we introdu
two simple order parameters for substances that are know
freeze into a face-centered-cubic crystal. In Sec. III we
these order parameters to analyze ensembles of equilib
and nonequilibrium structures in the hard-sphere system,
we illustrate these results via a set of ordering phase
grams. Furthermore, we demonstrate how the ordering p
diagram can be used as a tool for understanding the effe
history on disorder in nonequilibrium structures. In Sec.
we introduce two ‘‘general’’ order parameters that do n
require a specific crystalline structure as an input. Th
measures reproduce qualitatively the features of the orig
ordering phase diagram and suggest the possibility of a
versal description for simple systems. Finally, in Sec. V
present some concluding remarks.
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II. ORDER PARAMETERS

Perhaps one of the most intuitive means for describ
order in a material is to compare the structure of that mate
to some relevant crystalline lattice at the same density.
the order parameters considered in Sec. II, we focus on
tems that are known to freeze into the face-centered-cu
~fcc! crystal. As is well-known, the fcc structure is the stab
crystalline phase for a number of metals, rare gases,
model systems comprising particles that exhibit steep re
sive forces~e.g., the Lennard-Jones and hard-sphere flui!.
The ideas presented in this section are generalized in Sec
where two new measures are introduced that do not requ
specific reference crystal structure as an input.

For a collection of spherically symmetric particles, the
are two relatively basic scalar measures of order:transla-
tional order and bond-orientational order~Fig. 1!. The
former measure contains information about the average r
tive spacing of the particles; i.e., it detects the extent
which certain positions in space are preferentially occupi
The latter measure, bond-orientational order@22#, contains
information about the spatial orientation of vectors conne
ing the centers of neighboring particles. When the orien
tions of these imaginary bonds persist over macroscopic
tances in the sample~as they do in a perfect crystal!, then the
material is said to be bond-orientationally ordered. T
should not be confused withmolecular orientational order,
which describes the persistence of preferential orientation
anisotropicparticles in a material.

Steinhardtet al. @23# have introduced a set of bond
orientational order parameters that are particularly sensi
to the overall degree of crystallinity in the system. For the
measures, one is obliged to ascribe to each particlei a set of
nearest neighbors. Here, we have defined the set of neigh
to particle i to be all particlesj that lie within a radial dis-
tancer i j of the central particle such that 0<r i j <r min , where
r min is the first minimum in the radial distribution functio
g(r ) @24#. Historically, the vectorsr i j connecting neares
neighbors, oriented along unit vectorsr̂ i j , are called
‘‘bonds.’’ The spatial orientations of these bonds with r

FIG. 1. Two types of ordering that occur in simple systems.~a!
Bond-orientational order. This measure contains information ab
the orientation of the vectors connecting neighboring particles
the sample~left!. If these orientations persist throughout the stru
ture, as they do in a perfect crystal~right!, then the system is con
sidered to be bond orientationally ordered.~b! Translational order.
This measure contains information about the relative spacing
particles in the system of interest~left! relative to some relevan
crystalline lattice at the same density~right!.
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PRE 62 995TOWARDS A QUANTIFICATION OF DISORDER IN . . .
spect to an arbitrary reference axis are uniquely determ
by the polar and azimuthal anglesu i j andf i j . To construct
invariants, one begins by assigning the spherical harmo
Ylm :

Qlm~ r̂ i j !5Ylm~u i j ,f i j ! ~2.1!

to each bond oriented in a directionr̂ i j . These values are
subsequently averaged over all bonds in the sample to ob
the global orientational order parametersQlm:

Qlm5^Qlm~ r̂ i j !&. ~2.2!

The quantityQlm still depends on the choice of the referen
frame. However, one can form the combinationQl :

Ql5S 4p

2l 11 (
m52 l

m5 l

uQlmu2D 1/2

, ~2.3!

which is a rotationally invariant measure. In our studies,
will be interested inQ6, which has the ideal property that
should be 1/ANb for a completely uncorrelated sample~ideal
gas!, whereNb is the total number of bonds in the system
Moreover, Q6 is significantly larger when crystallites ar
present in the system, and it attains its maximum value
space-filling structures in the perfect fcc crystal. For the p
poses of this paper, we normalizeQ6 by its value in the
perfect fcc crystalQ6

fcc50.57452 to obtain

Q5
Q6

Q6
fcc

. ~2.4!

Note that our normalized bond-orientational order param
Q, in the infinite volume limit, scales between 0~complete
disorder! and 1 ~perfect fcc ordering!; thus, it effectively
serves as a ‘‘meter’’ for crystallization in the sample. Mor
over, Q is quite large for other common space-filling stru
tures (Q50.6154, 0.8438, and 0.8887 for simple cub
hexagonally-close-packed, and body-centered-cubic st
tures, respectively!.

In contrast to the bond-orientational order paramet
mentioned above, scalar measures of translational order
not been well studied. We have recently introduced a tra
lational order parameterT that measures the degree of spat
ordering in the system of interest, relative to the perfect
lattice at the same density@20#. Specifically,

T5U (
i 51

NC

~ni2ni
ideal!

(
i 51

NC

~ni
fcc2ni

ideal!
U , ~2.5!

where ni ~for the system of interest! indicates the averag
occupation number for the spherical shell of widthad lo-
cated at a distance from a reference sphere that equals thi th
nearest-neighbor separation for the open fcc lattice at
density,a is the first nearest-neighbor distance for that
lattice, andNC is the total number of neighbor shells consi
ered ~see Fig. 1!. Similarly, ni

ideal and ni
fcc are the corre-

sponding neighbor shell occupation numbers for an ideal
d
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~spatially uncorrelated spheres! and the open fcc crystal lat
tice, respectively. In our study, we chose to consider the fi
seven neighbor shells (NC57), utilizing a shell-width pa-
rameter ofd50.196. Our tests indicate that the considerat
of more neighbor shells does not result in qualitatively d
ferent behavior forT. It is worth noting that, like the bond
orientational order parameterQ, the translational order pa
rameter T scales between 0~complete disorder! and 1
~perfect fcc spatial ordering!.

Both order parameters, i.e.,T andQ, should be generally
applicable to simple atomic or colloidal fluids@25# that are
known to freeze into the fcc crystal. In Sec. III, we utiliz
these measures to investigate ordering in the hard-sphere
tem.

III. ORDERING IN THE HARD-SPHERE SYSTEM

A. Simulation details

In order to generate a representative set of structure
the hard-sphere system, we have carried out a serie
molecular-dynamics simulations of 500 identical ha
spheres in the canonical ensemble, using a cubic box w
periodic boundary conditions. In these simulations, we h
analyzed configurations from the equilibrium fluid, the eq
librium fcc crystal, and a set of history-dependent glas
structures produced by the well-known method of Lubach
sky and Stillinger@26–28#.

Glassy structures created from the Lubachevsky-Stillin
protocol are termed history dependent because their pro
ties depend explicitly on the initial conditions of the flu
and the rate of densification. Specifically, the procedure
initialized with a set of sphere positions and velocities th
are extracted from a ‘‘snapshot’’ of the equilibrium fluid
low density. Then, during the course of an otherwise st
dard constant-volume molecular-dynamics simulation,
sphere diameters(t) is increased linearly in timet. The
process terminates in ajammed statein which s(t) can no
longer increase in time without sphere overlap, the collis
rate diverges, and no further densification can be achie
without first decompressing and relaxing the system.
identified the jammed state as having occurred when
sphere diameters stabilized despite continuing collisi
@26#. We note in passing that the collision dynamics of th
compression protocol differ from conventional elastic sph
dynamics because the colliding spheres must be given
extra impetus, along the line connecting their centers, to
sure that their surfaces are moving apart after the collis
The details of the alternative dynamics are relatively easy
implement and are outlined in the original reference@26#.

The dimensionless compression rateG is given by

G5S ds~ t !

dt DAm

ku
, ~3.1!

wherem is the mass of a sphere,k is Boltzmann’s constant
and u is the temperature. Note that the compression ratG
controls the processing historyfor the hard-sphere glasse
formed by this protocol, and its role is analogous to that
the cooling schedule in experimental glasses. In fact, Spe
@29# has recognized that the dimensionless compression
G is related to a laboratory~isobaric! cooling rate (]u/]t)P :
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S ]u

]t D
P

523GuS d ln@P/rcpku#

d ln r DA ku

ms2
, ~3.2!

whereP is the pressure,r5N/V is the number density,rcp

5A2/s3 is the number density for the close-packed fcc cr
tal, N is the number of spheres, andV is the system volume
Using Speedy’s estimate@29# from molecular simulations
d ln@P/rcpku#/d ln r'4.7 at r51.1s23, a temperature ofu
5273 K, and both the stoichometrically averaged massm
519.95 g/mole and the effective hard-sphere radiuss
52.025 Å @21# for Ni65B35 yields an estimated quench ra
of (]u/]t)P'26G31015 K/s. In this paper, we focus on
dimensionless compression rates that span the range24

,G,1022, corresponding roughly to cooling rates in
range (1012 K/s,(]u/]t)P,1014 K/s), values which are
typical for molecular simulations@30#. We note that while
many standard techniques for metallic glass production~e.g.,
melt spinning! generate more modest cooling rates~of the

FIG. 2. Glassy structures generated using the Lubachev
Stillinger protocol. Structures are shown with packing fractions~a!
f50.646,~b! f50.667, and~c! f50.692 generated from dimen
sionless compression ratesG50.01, 0.001, and 0.0005, respe
tively.
-

order 105–106 K/s @31#!, very thin surface layers can b
quenched at ultrarapid rates (1014 K/s) by pulsed laser
quenching@32#.

The amount of computation time required for executi
the Lubachevsky-Stillinger compressions can be significa
reduced if the runs are initiated from equilibrium fluid co
figurations at a finite packing fractionf ~in this case we
chosef50.30). Here,f is defined as the fraction of th
total volume V occupied by the N spheres, i.e.,f
5ps3N/6V. We have found that the glassy structur
formed from this initial condition are virtually indistinguish
able from glasses compressed at the same rateG from the
ideal gas, i.e.,s(t50)50.

B. Hard-sphere glasses

Three-dimensional representations of typical glassy str
tures generated by a variety of compression rates are sh
in Fig. 2. The first structure@Fig. 2~a!# is a glassy packing
that was generated using a dimensionless compression
of G50.01. It has a packing fraction off50.646, which
roughly corresponds to what has been traditionally term
the random close-packed state~see, e.g.,@33#!, and appears
to be quite amorphous. Denser jammed structures can
formed in the hard-sphere system@see Figs. 2~b! and 2~c!# by
reducing the compression rate and thereby allowing
spheres to find more compact configurations. This increas
density, however, is achieved at the expense of increa
order in the sample.

The dependence of the limiting packing fractionf on the
reciprocal compression rateG21 is illustrated in Fig. 3.
Shown are the average packing fractions obtained from
compressions at each of 9 different compression rates.
clear that slow compressions result in packings that are b
very dense and@as can be deduced from Fig. 2~c!# conspicu-
ously ordered. In fact using extremely slow ratesG
,1024), we have produced fcc crystals by the Lubachevs
Stillinger protocol that were within 1% of the close-pack
limit of fCP5p/(3A2)'0.74~not shown in Fig. 3!. In con-
trast, rapid compressions create lower density, more di
dered packings. A linear fit to the data in Fig. 3 extrapola
to a packing fraction off'0.64 in the limit of infinite com-
pression rate.

y-

FIG. 3. Final packing fractionf in the glassy structures as
function of reciprocal compression rateG21. The black circles rep-
resent an average of 27 glasses produced at each rate. The d
line is a linear fit to the data.
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In the context of equilibrium~or metastable! hard-sphere
systems, one generally considers two natural limiting hi
density states: the fcc close-packed structure (f5A2p/6
'0.74) and the random close-packed state (f'0.64). How-
ever, Fig. 3 clearly demonstrates that these limiting states
the hard-sphere system represent a very small subset
virtual continuumof jammed structures that span the hig
density range 0.64,f,0.74. Moreover, we see that the fin
packing fraction and, subsequently, the degree of orderin
the sphere packings created by the Lubachevsky-Stillin
protocol can be statistically controlled by the compress
rateG.

It should be noted that the jammed hard-sphere struct
with the lowest density for spatial dimensionsD.1 have yet
to be identified. A number of interesting examples of lo
density jammed structures forD52 ~hard disks! have been
noted by Lubachevskyet al. @27#. For D53 ~hard spheres!,
the close-packed cubic lattice~contained by rigid bound-
aries! with a packing fraction off5p/6'0.52, is an obvi-
ous example, but it is most likely not the lowest-dens
jammed structure. To investigate this interesting open is
we are currently developing simulation techniques for g
erating jammed hard-sphere packings in the low-den
range (f,0.64).

C. Ordering phase diagrams

An interesting question to pose about a given materia
the following: How do its various equilibrium and glass
structures rank in terms of the degree of order they exhi
In other words, for a system with a given intermolecu
potential, our goal is to construct a diagram that illustra
the relative placement in order parameter space of the e
librium and nonequilibrium structures. Figure 4 illustrat
two such ordering phase diagrams for the hard-sphere
tem. In particular, the dependence of the translational
bond-orientational order parameters,T and Q, on packing
fraction f ~as measured in our molecular dynamics simu
tions! is plotted for the equilibrium liquid, the equilibrium
fcc crystal, and the series of history-dependent glasses f
Fig. 3.

As should be expected, the translational order parametT
in the equilibrium fluid vanishes at low density. However,T
increases monotonically as the system is compressed to
the freezing transition (f f'0.494), indicating that the in
crease in density imparts a significant amount of short-ra
order to the fluid. A discontinuous jump in the order para
eter is observed upon freezing to the equilibrium crystal,
is consistent with a first-order phase transition. In the crys
T is less than unity at the melting point (fm'0.545) because
of thermal motion, but the crystal becomes increasingly
dered as it is compressed, approachingT51 for the close-
packed fcc structure atfCP'0.74.

Having established the relative placement of the equi
rium phases on the ordering phase diagram, one can beg
consider plotting the positions of the nonequilibrium stru
tures on the diagramas a function of their processing con
ditions. Figure 4~a! illustrates the effect of compression ra
G on both the translational orderingT and the packing frac-
tion f of the glassy structures generated from t
Lubachevsky-Stillinger protocol. There are two salient fe
-
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tures of the glassy structures in this plot. First, the amoun
translational order in the glasses can be statistically c
trolled by the compression rate. Second, there is no un
biguous division between amorphous and polycrystall
packings; i.e., ordering in jammed structures is a matter
degree.

It is interesting to note that the random close-packed s
has historically been considered to be thedensest amorphou
packingthat a collection of spheres can attain. However, o
simulation results indicate that this definition cannot be ma
mathematically precise in light of the fact that one can
ways create slightly denser packings at the expense of s
increases in order. In another paper@20#, we demonstrated
how the ordering phase diagram suggests replacing the w
accepted notion of random close-packing with a new c
cept, termed themaximally random jammed state, which can
be made precise and provides fresh insights into the natur
disorder in glassy systems.

Figure 4~b! is the ordering phase diagram for the bon
orientational order parameterQ in the hard-sphere system
@34#. Notice that the density dependence ofQ is qualitatively
similar to that of the translational order parameterT.

FIG. 4. Ordering phase diagrams for the hard-sphere system~a!
Translational order parameterT vs packing fractionf. Shown are
the equilibrium fluid ~dot dashed!, the equilibrium fcc crystal
~dashed!, and the set of history-dependent glasses~circles! from
Fig. 3. The degree of ordering in the coexistence region can
determined by a simple lever rule~not shown!. Note that both the
degree of order and the final packing fraction of the glassy str
tures can be statistically controlled by the compression rateG. The
freezing and melting transitions are indicated by the black trian
and black square, respectively.~b! Bond-orientational order param
eter Q vs packing fractionf. Symbols are identical to those pre
sented in~a!.
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998 PRE 62T. M. TRUSKETT, S. TORQUATO, AND P. G. DEBENEDETTI
Namely, we see minimal ordering in the equilibrium fluid,
discontinuous jump in the order parameter upon freez
and a crystal whose degree of order systematically incre
with packing fractionf. Moreover, the behavior ofQ affirms
the conclusion that glassy packings can span from ‘‘liqu
like’’ to ‘‘crystal-like’’ configurations, with the precise de
gree of order in the jammed structures being statistically c
trolled by the compression rateG.

We can gain some further insight into the nature of ord
ing in the hard-sphere system by studying the correla
between translational and bond-orientational order in vari
structures. Practically speaking, this can be accomplishe
constructing atwo-parameter order map(T vs Q) which
illustrates the relative placement in order parameter spac
the equilibrium phases and the nonequilibrium glassy str
tures ~see Fig. 5!. One striking feature of the order ma
shown in Fig. 5 is the strong positive correlation that exi
betweenT and Q for the equilibrium fluid and crystalline
phases. In addition, we see that the fluid and the fcc cry
are separated by a large gap in order parameter space
serves as a ‘‘no man’s land’’ for the pure equilibrium phas
Interestingly, packings that exhibit coordinate pairs (T,Q) in
the no man’s land can be generated if we resort to none
librium methods of preparation such as the Lubachevs
Stillinger compression protocol.

The notion that there is a large region of order parame
space (0.15,T,0.40 and 0.1,Q,0.8) populated by the
glassy structures but not visited with any statistical sign
cance by the pure equilibrium phases, is very intriguing.
other words, the degree of order exhibited by the sph
centers in the glassy packings is noticeably greater than
of the equilibrium fluid at the freezing transition and, simu
taneously, less than that exhibited by the equilibrium
crystal at the same packing fractionf. This indicates that
certain nonequilibrium packings can be distinguished fr
the equilibrium system based onstructural information
alone, e.g.,T andQ. Moreover, the results seems to contr

FIG. 5. Two-parameter ordering map for the hard-sphere s
tem. Shown are the coordinates in order parameter space (T,Q) for
the equilibrium fluid ~dot dashed!, the equilibrium fcc crystal
~dashed!, and the set of history-dependent glasses~circles! from
Fig. 3. Along each of these sets, packing fractionf increases from
left to right. Unlike the equilibrium state points, the positions of t
glassy structures in order parameter space are determined b
processing conditions~in this case, the compression rateG). As in
Fig. 4, the freezing and melting transitions are indicated by
black triangle and black square, respectively.
g,
es

-

-

-
n
s

by

of
c-

s

al
hat
.

i-
-

r

-
n
re
at

c

-

dict ~at least for the hard-sphere system! the commonly held
notion that glasses are simply solids with the ‘‘frozen in
structure of an equilibrium liquid@35#. It is important to
realize that, since temperature plays a trivial role in ha
body systems, hard-sphere glasses must be formed by c
pression andnecessarily have a higher packing fractionf
than the corresponding equilibrium fluid. Nevertheless, it is
reasonable to expect that a similar degree of ordering wo
arise in glasses formed by the rapid cooling of a de
simple liquid~e.g., the Lennard-Jones fluid!, where the struc-
ture is dominated by repulsive forces. Of course, the ex
to which these results can be extended to systems with
tractive interactions is an interesting open question wh
merits further investigation.

In this paper, we note that the nonequilibrium glas
structures aremore orderedthan those found in the equilib
rium fluid. In fact this result was anticipated in an earli
paper@36#, where it was shown that the familiar split-secon
peak seen in hard-sphere glasses develops from a we
shoulder in the equilibrium fluid and is associated with
substantial increase in orientational ordering. We note
passing that by biasing the system, one can construct an
semble of nonequilibrium hard disk packings (D52) that
are significantlymore disorderedthan the corresponding
equilibrium fluid structures at the same packing fraction@37#.

Although we have concentrated on a highly idealiz
model system in this paper, the two-parameter order m
suggests some challenging scientific questions about real
terials and indicates several specific areas that deserve
ther investigation. First of all, it is clear that there exist lar
sets of coordinate pairs (T,Q) in order parameter space, i.e
certain types of ordering, which for some systems are co
pletely ~or at least statistically! inaccessible. Can we unde
stand the relationship between these inaccessible regions
the relevant interactions in the system? Moreover, can
use the order map as a general guide for classifying the
lationship between the morphology of more complicat
glassy systems and their processing history? What if a m
rial’s crystal structure is unknown? We are currently inve
tigating the first two questions in our research, while t
third question is the subject of Sec. IV in this paper.

IV. CRYSTAL-INDEPENDENT MEASURES

Up to this point, we have relied on the notion that orde
ing in a system should be measured relative to some spe
crystal structure. This approach, while useful for the sim
systems we have considered, is less than satisfactory for
terials with either multiple crystalline phases or for which t
crystal structure is unknown. In these more complicated s
tems, one must generally find measures that have the ab
to detect the presence of growing spatial correlations in
system withouta priori knowledge about the structure of th
crystalline phase. In this section, we present two very sim
examples of prospective crystal-independent measures
compare them to the translational and orientational met
introduced in Sec. II.

The first quantity that we consider is a translational ord
parameterT* , which provides a measure of the local-dens
modulations in the system
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T* 5

E
r1/3s

jC
uh~j!udj

jC2r1/3s
. ~4.1!

Density-density correlations are detected with this meas
by integrating over the absolute value of the total correlat
function h(j)5g(j)21, whereg(j) is the radial distribu-
tion function,j5rr1/3 is the radial coordinater scaled by the
cube root of the number densityr5N/V, andjC is a numer-
cial cutoff which is limited by the size of the simulation bo
~for our simulations, we chosejC53.5). Here, we have
taken the liberty of using the rescaled radial coordinatej so
that the integral appearing in Eq.~4.1! sums over an equiva
lent number of coordination shells at each density.

Note that for systems comprising molecules with attr
tive interactions, the total correlation functionh(r ) becomes
long-ranged in the vicinity of the liquid-vapor critical poin
This may result in an increase inT* , defined by Eq.~4.1!,
when in fact no significant molecular ordering will have o
cured. Of course, since we are concerned with the h
sphere system in this paper, the behavior ofT* in the vicin-
ity of a critical point is of no immediate concern
Nevertheless, understanding the behavior ofT* near both the
freezing transition and the critical point is a crucial step
wards determining its general viability as an order parame
and it is an issue we are currently investigating.

Another interesting statistical quantity that one can m
sure in a simulation is the two-body excess entropys(2)

given by ~see Refs.@38–40#!

s(2)52
kr

2 E dr$g~r !ln g~r !2@g~r !21#%. ~4.2!

This measure is essentially the multiparticle correlation fu
tion expansion of the excess entropy~relative to an ideal gas
at the same density! truncated at the two-body terms. Th
expression was first derived by Nettleton and Green@38# in
the grand-canonical ensemble, and Baranyai and Evans@40#
later demonstrated that the quantity is indeed ‘‘ensem
invariant.’’ When truncated at the two-body terms, the ser
has been shown to be a reasonable approximation for the
excess entropy in several model liquids@40,41#. It has also
been directly measured in simulations of nonequilibriu
steady shear flows@42#.

Sinces(2)50 for completely disordered systems~i.e., the
ideal gas! and becomes large and negative for ordered st
tures (s(2)→2` for perfect crystalline arrangements!, it
may seem to provide a practical measure of disorder in
system. In the context of the present paper, we are intere
in order parameters, and thus we focus on the dimension
positive-definite@43# quantity 2s(2)/k. It should be noted
that although the integral appearing in Eq.~4.2! must be
truncated when measured in a simulation box of finite size
is known that the quantity measured will be a lower bou
@40# on 2s(2) that is indeed very tight in the liquid phase.

Figure 6 illustrates the ordering phase diagrams for
hard-sphere system prepared using the two order param
introduced in this section,T* and2s(2)/k. Notice that these
measures provide a description of the system that is qua
tively similar to that seen in Fig. 4. Specifically, we see th
re
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both measures indicate a low degree of ordering in the e
librium fluid, a discontinuous jump in the order parame
upon freezing into the crystal, and a equilibrium crys
whose degree of order systematically increases with pac
fraction f. Once again, the order paramater plots indic
that the degree of order and the packing fractionf in the
glassy structures can be statistically controlled by the co
pression rateG.

One important caveat concernings(2) is its inability to
distinguish between certain basic varieties of sphere pa
ings. As can be seen in Eq.~4.2!, the presence of delta func
tions in the radial distribution functiong(r ), will result in a
divergence in the two-body entropy (s(2)→2`). This diver-
gence, which is a well-known feature of the entropy
highly compressed, classical rigid particle systems@44#, lim-
its the utility of s(2) as an order parameter in many cases. F
instance, the two-body entropy will not be able to distingu
between alternative perfect crystal structures and a num
of hard-sphere packings in the ideal ‘‘jamming’’ limit@20#.

As a final remark, we note that the order parameters,
troduced in this paper, by no means exhaust the possibil
even for simple systems. For instance, we have focused
on the ‘‘global’’ versions of the translational and bon
orientational order parametersT andQ. Clearly one can ex-

FIG. 6. Ordering phase diagrams for the hard-sphere sys
using the crystal-independent measures introduced in the text~a!
Alternative translational order parameterT* versus packing fraction
f. Shown are the equilibrium fluid~dot dashed!, the equilibrium fcc
crystal ~dashed!, and a set of glasses~circles! whose structure de-
pends on the compression rateG. The freezing and melting transi
tions are indicated by the black triangle and black square, res
tively. ~b! The magnitude of the excess~two body! statistical
entropy2s(2)/k versus packing fractionf. Symbols are identical to
those presented in~a!.
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amine ‘‘local’’ versions of these quantitiest andq and their
associated spatial correlations. For instance, we can defi
local versiont of the global translational order parameterT
given by Eq.~2.5! for each atom in the system

TL5U (
i 51

NC

~ni2ni
ideal!

(
i 51

NC

~ni
fcc2ni

ideal!
U . ~4.3!

Using this local definition, a correlation functionGt(r )
can be constructed

Gt~r !5
^@TL~0!2T̄L#@TL~r !2T̄L#&

^@TL~0!2T̄L#@TL~0!2T̄L#&
, ~4.4!

where the angular brackets indicate an average over all
ticles separated by a scalar distancer and T̄L signifies an
average over all atoms in the system. By tracking the spa
decay of the correlation between local translational order
@as is done forg(r ) in Eq. ~4.1!#, a new measure of transla
tional ordering is obtained. Of course, a similar correlat
function can be defined for the local bond-orientational or
parameterq @23#:

Gq~r !5
1

13 (
m526

6

^q6m* ~r !q6m~0!&^q00* ~r !q00~0!&21,

~4.5!

where * denotes complex conjugation, and the angu
brackets indicate an average over all bonds separated
scalar distancer. Here, theqlm are the spherical harmonic
computed according to the orientation of each individ
bond with respect to an arbitrary reference axis. Once ag
the spatial decay ofGq(r ) will provide a measure of the
persistance of bond-orientational order in the system.

In either case, since there is no single and complete sc
measure of order in a material, the order parameters
chooses are unavoidably subjective. Nevertheless, it is s
ing to see that the set of measures presented here gi
seemingly unified picture for ordering in the purely repulsi
hard-sphere system. Understanding the sensitivity of this
ture to changes in intermolecular interactions, therefore,
resents the next major challenge for quantifying disorde
condensed-phase systems.

V. CONCLUDING REMARKS

In this paper, we have explored a set of simple or
parameters that allow one to quantify the degree of order~or
disorder! in simple molecular or colloidal systems. The
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sensitive measures have facilitated the introduction of a n
concept, the two-parameter ordering map, which illustra
the relative placement in order parameter space of a ma
al’s equilibrium phases. In addition, the ordering phase d
gram allows one to map out the degree of order in histo
dependent structures, e.g., glasses, as a function of
processing conditions.

We have demonstrated that there is a large region of
two-parameter (T2Q) order parameter space that serves
a no man’s land for the pure equilibrium phases. In oth
words, there are certain degrees of ordering that are no
alized by the hard-sphere system under equilibrium con
tions. However, we demonstrate that glassy structures
exhibit this ‘‘intermediate’’ type of order can be produced b
nonequilibrium methods such as the compression protoco
Lubachevsky and Stillinger. This contradicts the comm
notion that hard-sphere glasses exhibit the frozen in struc
of the equilibrium liquid. Furthermore, this paper indicat
that certain nonequilibrium glassy structures can be dis
guished from the equilibrium liquid based on structural
formation alone.

A detailed analysis of jammed structures, produced by
protocol of Lubachevsky and Stillinger, indicates that the
is no unambiguous division between amorphous and p
crystalline glasses. In fact, the degree of ordering in th
systems~spanning from ‘‘liquidlike’’ to ‘‘crystal-like’’ ! can
be statistically controlled by the compression rate. That is
say, slightly denser packings can be created at the expen
arbitrarily small increases in order. Therefore, as we h
demonstrated elsewhere in more detail@20#, the traditional
notion of the random close-packed state should be re
sessed.

Finally, we have demonstrated that there is a distinct
dering phase diagram that exists for the purely repuls
hard-sphere system, whose qualitative form is reproduced
all of the order parameters investigated in this paper. Pred
ing how the form of this diagram depends on the details
the interactions in a given system remains a fundame
challenge to understanding ordering in condensed-phase
tems.
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