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Kramers problem for a polymer in a double well

K. L. Sebastian and Alok K. R. Paul
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

~Received 1 February 2000!

We consider a long chain molecule, initially confined to the metastable side of a biased double well
potential. It can escape from this side to the other by the motion of itsN segments across the barrier. We
assume that the length of the molecule is much larger than the widthw of the barrier. The widthw is taken to
be sufficiently large that a continuum description is applicable to even the portion over the barrier. We use the
Rouse model and analyze the mechanism of crossing the barrier. There can be two dominant mechanisms: end
crossing and hairpin crossing. We find the free energy of activation for the hairpin crossing to be two times that
for end crossing. The pre-exponential factor for hairpin crossing is proportional toN, while it is independent of
N for end crossing. In both cases, the activation energy has a square root dependence on the temperatureT,
leading to a non-Arrhenius form for the rate. We also show that there is a special time dependent solution of
the model, which corresponds to a kink in the chain, confined to the region of the barrier. The movement of the
polymer from one side to the other is equivalent to the motion of the kink on the chain in the reverse direction.
If there is no free energy difference between the two sides of the barrier, then the kink moves by diffusion and
the time of crossingtcross;N2/T3/2. If there is a free energy difference, then the kink moves with a nonzero
velocity from the lower free energy side to the other, leading totcross;N/AT. We also discuss the applicability
of the mechanism to the recent experiments of Kasianowicz@Proc. Natl. Acad. Sci. USA93, 13 770~1996!#,
where DNA molecules were driven through a nanopore by the application of an electric field. The prediction
that tcross;N is in agreement with these experiments. Our results are in agreement with the recent experimental
observations of Han, Turner, and Craighead@Phys. Rev. Lett.83, 1688 ~1999!#. We also consider the trans-
location of hydrophilic polypeptides across hydrophobic pores, a process that is quite common in biological
systems. Biological systems accomplish this by having a hydrophobic signal sequence at the end that goes in
first. We find that for such a molecule, the transition state resembles a hook, and this is in agreement with
presently accepted view in cell biology.

PACS number~s!: 83.10.Nn
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I. INTRODUCTION

The escape of a particle over a one dimensional bar
has been studied in a large number of papers. The prob
often referred to as the Kramers problem@1,2#, has been the
subject of detailed reviews@3,4#. Kramers found solutions in
the limit of weak friction and also in the limit of moderate
strong damping@1,2#. The intermediate regime has been
active area of investigation@3#. The reason for this extensiv
activity is that this forms a model for a chemical reacti
occuring in a condensed medium. Kramers problem for f
degrees of freedom has also been the topic of study@3,4#.
The quantum problem of escape or tunneling through a
rier too is of considerable interest. In the case where
system has an infinite number of degrees of freedom, this
been referred to as the decay of metastable vacuum, a p
lem that has attracted quite a bit of attention in field theo
cosmology and mesoscopic quantum phenomena@5,6#. In
this paper, we consider a similar situation involving on
classical physics. The trapped object hasN(→`) degrees of
freedom, and is a polymer~a string!. Though there are no
quantum effects, the problem is similar, and some exp
ments are already available, that the results of the theory
easily verified. Further, the mathematics is considerably s
pler than in the other cases, being equivalent to that of qu
tum mechanical tunneling of a single particle in a bista
potential.

The way that theN degrees of freedom are connected~a
PRE 621063-651X/2000/62~1!/927~13!/$15.00
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string! leads to interesting new aspects to the problem t
are not present in the case where there are only finite num
of degrees of freedom. Also, the problem is of great inter
in biology as many biological processes involve the trans
cation of a chain molecule from one side of a membrane
the other, through a pore in the membrane. The transloca
of proteins from the cytosol into the endoplasmic reticulu
or into mitochondria or chloroplasts are processes of g
interest and importance. Often, the proteins are hydroph
and the pore in the membrane forms a hydrophobic reg
through which they have to pass@7–10#, resulting in an in-
crease in the free energy for the portion of the chain ins
the pore. In infection by bacteriophages, conjugative DN
transfer etc, long chain DNA molecules snake through po
in membranes@11,12#. In all these cases, the chain molecu
seems to get across the membrane rather easily, contra
the expectation that one gets from the theoretical anal
available in the literature on the subject~see below!. In a
very interesting experiment Kasianowiczet al. @13# forced a
150 nucleotide long, single stranded DNA to move throug
pore in a membrane and studied the time that it takes
molecule to cross the pore, as a function of the length of
molecule. In this experiment, the pH was such that the po
nucleotide had a negative charge and the pore itself
charged@13#. The molecule was forced to move through t
pore by the application of a potential difference between
two sides of the membrane. Bezerukovet al. @16# have stud-
ied the partitioning of polymer molecules into a nanosc
927 ©2000 The American Physical Society
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928 PRE 62K. L. SEBASTIAN AND ALOK K. R. PAUL
pore. Chipot and Pohoille@15# have carried out a molecula
dynamics simulation of a polypeptide, translocating throu
the interface between hexane and water. They found tha
polypeptide~undecamer of poly-L-leucine!, initially placed
in a random coil conformation on the aqueous side of
interface rapidly translocates to the interfacial region a
then folds. In another interesting experiment, Hanet al. @14#
observed the forced movement of long, double stran
DNA molecules through microfabricated channels wh
have regions that present an entropic barrier for the entr
the molecules.

All these problems involve the passage of a long ch
molecule, through a region in space, where the free ene
per segment is higher, thus effectively presenting a bar
for the motion of the molecule. This problem forms the ge
eralization that we refer to as the Kramers problem fo
chain molecule. On the theoretical side, a variety of stud
exist on this kind of problem. Muthukumar and Baumgartn
@17# studied the movement of self-avoiding polymer mo
ecules between periodic cubic cavities seperated by bo
necks. The passage through the bottleneck presents a
tropic barrier to the motion, and they show that it leads to
exponetial slowing down of diffusion with the number
segmentsN in the chain. Baumgartner and Skolnick@18#
studied the movement of polymers through a membr
driven by an external bias and membrane asymmetry. P
and Sung@8,19#, have studied the translocation through
pore. They analyze the passage through a pore on a
membrane, with only the effects of entropy included. T
resultant entropic barrier is rather broad, its width being p
portional toN. Consequently, they consider the translocat
process as being equivalent to the motion of the cente
mass of the molecule. Using the result of the Rouse mo
that the diffusion coefficient of the center of mass is prop
tional to 1/N, they effectively reduce the problem to the ba
rier crossing of single particle having a diffusion coefficie
proportional to 1/N. As the translocation involves motion o
N segments across the pore, the time taken to cross (tcross)
scales asN3. They also show that in cases where there
adsorption on the trans side, translocation is favored and
tcrossscales asN2. In a very recent paper, Park and Sung@22#
have given a detailed investigation of the dynamics o
polymer surmounting a potential barrier. They use multi
mensional barrier crossing theory to study the motion o
chain molecule over a barrier, in the limit where the width
the barrier is much larger than the lateral dimension of
molecule. In an interesting recent paper, Lubensky and N
son @23# study a case where they assume the interaction
the segments of the polymer with the pore to be strong. T
argue that effectively, the dynamics of the portion of t
chain inside the pore is the one that is important and t
they show, can give rise totcross proportional toN. Again,
they assume diffusive dynamics. In a recent paper, we h
suggested@24# a kink mechanism for the motion of the cha
across a barrier and it is our aim to give details of t
mechanism in this paper.

We consider a polymer undergoing activated cross
over a barrier. This can form a model for a polymer goi
through a pore too, as the pore can cause an increase i
free energy of the segments inside it, as they would inte
with the walls of the pore. The widthw of the barrier is
h
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assumed to be much larger than the Kuhn lengthl of the
polymer, but small in comparison with the total lengthNl of
the polymer. That is,l !w!Nl . For example, in the experi
ments of Kasianowiczet al. @13,25#, the length of the pore is
about 100 Å, while the Kuhn length for a single strand
DNA is perhaps around 15 Å@23#. Therefore, one is justi-
fied in using a continuum approach to the dynamics of
long chain.~It is possible to retain the discrete approach, a
develop the ideas based on them, but this is more invol
mathematically.! Our approach is the following: We describ
the motion of the polymer using the Rouse model. The fo
that the barrier exerts on the chain appears as an additio
nonlinear term in the model. We refer to this as the nonlin
Rouse model. The nonlinear term causes a distortion of
portion of the chain inside the barrier, which we refer to
the kink. Movement of the chain across the barrier is equi
lent to the motion of the kink in the reverse direction. T
kink is actually a special solution of the nonlinear Rou
model, arising because of the nonlinearity. In the presenc
a free energy difference between the two sides, the k
moves with a definite velocity and hence the polymer wo
cross the barrier withtcross proportional toN. Traditionally,
the nonlinear models that one studies~for example, thef4 or
the sine-Gordon model@26,28–30#! have potentials that are
translationally invariant, and hence the kink can migra
freely in space. In comparison, in our problem, the no
linear term is fixed in position space and hence the kink
is fixed in space. However, the chain molecule~modelled as
a string@20#! can move in space and hence the kink migrat
not in space, but on the chain. As far as we know, suc
suggestion has never been made in the past and we be
that this is a very useful idea in understanding barrier cro
ing by long polymer molecules.

In general, the polymer can escape by essentially
mechanisms. The first, which we refer to as end cross
involves the passage of one end of the polymer over
barrier, by thermal activation. This leads to the formation
the kink, which is then driven by the free energy differen
between the two sides of the barrier. The second is by
escape of any portion of the polymer over the barrier, in
form of a hairpin. The hairpin is a kink-antikink pair. For
flexible polymer, the hairpin crossing has twice the activ
tion energy for end escape and hence one expects it to be
probable. However, as it can take place anywhere on
chain, the frequency factor for it is proportional toN. Hence,
for a sufficiently long chain, hairpin crossing can become
dominant mechanism for the escape. Hairpin crossing le
to the formation of a kink-antikink pair. The pair move
apart on the chain, driven by the free energy gain and he
the time of crossing is still proportional toN, though one
expects that it is roughly half the time of crossing in the e
crossing case. In addition to these, in principle, it is possi
for more than one hairpin to be formed. The formation o
hairpin would require bending the chain. The polymer ch
is flexible only over a length larger than the Kuhn leng
This means that the curved portion of the hairpin would ha
a radius of curvature of the order of a few Kuhn length
Hence, in passage through a narrow pore, only the e
crossing mechanism can operate. However, if the width
the pore is a few times larger than the Kuhn length, hair
crossing too can occur.



ne
ta
te
o

e
le
io
fu
e
n
th
n

th
th

a
t

ex
a
f
e

h
e
fr
.

rie
b

in
x
a
i

,
rg

y

b
t

ho

ld
ergy
the
, the
pest

cis
of

rgy
a

tant

in-
ion
ne,

he
this
t is
nt

he

ir-
end

d a
tion
r

his

PRE 62 929KRAMERS PROBLEM FOR A POLYMER IN A DOUBLE WELL
In all our mathematical development, we use the o
dimensional version of the Rouse model. This is no limi
tion, if one is concerned with translocation across the in
face between two immiscible liquids or the experiments
Han et al. @14#, which involve motion in a channel, whos
width is large in comparison with the size of the molecu
On the other hand, if one is interested in translocat
through a pore, strictly speaking, one has to consider the
three-dimensional nature of the problem, which at pres
seems rather involved. However, we believe that the o
dimensional model captures the essential physics of
problem. Our analysis should also be useful in situatio
where the whole of the polymer is in a pore, so that
dynamics may be taken to be one dimensional, with
chain trying to cross a region of high free energy.

II. THE MODEL

A. The free energy landscape

The considerations in this subsection are quite general
do not depend on the model that one uses to describe
polymer dynamics. We assume only that the polymer is fl
ible over a length scale comparable to the width of the b
rier. We start by considering the free energy landscape
the crossing of the barrier. The barrier and the polym
stretched across it are shown in the Fig. 1. The polymer
initially all its units on the cis side, where its free energy p
segment is taken to be zero. So the initial state has a
energy zero in the free energy hypersurface shown in Fig
In crossing over to the trans side, it has to go over a bar
as in the Fig. 1. The transition state for the crossing can
easily found, from physical considerations, by remember
that the transition state is a saddle point—i.e., it is a ma
mum on the free energy surface in one direction, while in
the other directions it is a minimum. The transition state
shown in the Fig. 3~see also Fig. 4!. In the transition state
the configuration of the polymer is such that the free ene
of the chain is a minimum, subject to the two constraints:~a!
the end of the polymer on the trans side is located exactl
the point at which its free energy per segment is zero~b! the
other end is on the cis side. This is the transition state,
cause if one moves the end at the trans side either in
forward or in the backward direction~and the rest of the
chain adjusted so that the free energy of the chain as a w

FIG. 1. The potential energy per segment of the chain, plotte
a function of position.
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is a minimum!, then the total free energy of the chain wou
decrease. Thus the transition state shown in the free en
hypersurface in the Fig. 2 has the configuration shown in
Fig. 3. Once the system has crossed the transition state
chain is stretched across the barrier. The path of stee
descent then corresponds to moving segments from the
side to the trans side, without changing the configuration
the polymer in the barrier region. As there is a free ene
differenceDV between the two sides, this would lead to
lowering of the free energy byDV per segment, and this
leads to a path on the free energy surface with a cons
slope, and of widthW proportional toN ~see the Fig. 2!.
Such a landscape implies that the barrier crossing would
volve two steps. The first step is going through the transit
state by overcoming the activation barrier. Once this is do
there is a rather wide region of width proportional to t
length of the chain. Traversing this is the second step. As
region has a constant slope, the motion is driven and i
similar to that of a Brownian particle subject to a consta
force. Such a particle would take a timetcross, proportional
to N to cross this region.

Till now, we considered the case of end crossing. T
scenario for hairpin crossing~see Fig. 5! is similar. However,
the activation energy is higher for hairpin crossing. In ha
pin crossing, the transition state is equivalent to the one

s
FIG. 2. The total free energy shown as a function of the reac

coordinate. TheEact is independent of the length of the chain. Afte
the barrier is crossed, there is a region of widthW, with W propor-
tional to N, which is to be crossed. The time required to cross t
regions istcross.

FIG. 3. The transition state.
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930 PRE 62K. L. SEBASTIAN AND ALOK K. R. PAUL
crossing, repeated two times. Hence the activation energy
the process is two times larger~see Sec. II D!. Once a hairpin
crossing occurs, a kink-antikink pair is formed and the ki
and the antikink separate on the chain, due to the driv
force of the free energy gain. Then further crossing occurs
the movement of these two on the chain, and this too lead
a time of crossing proportional toN. In the following we
make all these considerations quantitative, using the Ro
model to describe the dynamics of the chain.

B. The Dynamics

We consider the continuum limit of the Rouse mod
discussed in detail by Doi and Edwards@20#. The chain is
approximated as a string, with segments~beads! labeled by
their positionn along the chain.n is taken to be a continuou
variable, having values ranging from 0 toN. The position of
the nth segment in space is denoted byR(n,t), where t is
time. In the Rouse model, the segment undergoes o
damped Brownian motion and its time development is
scribed by the equation

z
]R~n,t !

]t
5m

]2R~n,t !

]n2
2V8@R~n,t !#1 f ~n,t !. ~1!

In the above,z is a friction coefficient for thenth segment.
The termm@]2R(n,t)/]n2# comes from the fact that stretch
ing the chain can lower its entropy and hence increase
free energy. Consequently, the parameterm is temperature
dependent and is equal to 3kBT/ l 2. @See Doi and Edwards
@20#, Eq. ~4.5!. They use the symbolk for the quantity that
we call m.# As the ends of the string are free, the bounda
conditions to be satisfied are $]R(n,t)/]n%n50
5$]R(n,t)/]n%n5N50. V(R) is the free energy of a seg
ment of chain, located at the positionR. V(R) represents a
biased double well and has the barrier located nearR50.
f (n,t) are random forces acting on thenth segment and hav
the correlation function ^ f (n,t) f (n1 ,t1)&52zkBTd(n
2n1)d(t2t1) @see Ref.@20#, Eq. ~4.12!#. The deterministic
part of the Eq.~1!, which will play a key role in our analysis
is obtained by neglecting the random noise term in~1!. It is

z
]R~n,t !

]t
5m

]2R~n,t !

]n2
2V8@R~n,t !#. ~2!

This may also be written as

z
]R~n,t !

]t
52

dE@R~n,t !#

dR~n,t !
, ~3!

whereE@R(n,t)# is the free energy functional for the cha
given by

E@R~n,t !#5E
0

N

dnFm

2 S ]R~n,t !

]n D 2

1V@R~n,t !#G . ~4!

C. The form of the barrier

The chain is assumed to be subject to a biased double
potential, of the form shown in Fig. 1. The two minima are
2a0 anda1, with a0,a1. There is barrier nearR50 with its
or
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to
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maximum located atR50. All these conditions can be sa
isfied if one takesV8(R)52kR(R1a0)(R2a1). Here,k is a
constant and will determine the height of the barrier. In
grating this and takingV(2a0)50, we get

V~R!5
k

6
~R1a0!2~3R222Ra024Ra11a0

212a0a1!.

~5!

The barrier height for the forward crossing isVf5V(0)
2V(2a0)51/6ka0

3(a012a1) and for the reverse process,
is Vb5V(0)2V(a1)51/6ka1

3(2a01a1). On crossing the
barrier, a unit of the polymer lowers its free energy byDV
5V(a1)2V(2a0)5 1

6 k(a02a1)(a01a1)3. As we assume
a0,a1 , DV is negative. The form of the potential i
shown in Fig. 1.

D. The activation free energy for end and hairpin crossings

In this section, we consider the first step and calculate
activation free energy for both end and hairpin crossing. A
tivation free energy can be obtained from the free ene
functional of Eq.~2!. This free energy functional implies tha
at equilibrium, the probability distribution functional i

exp„2(1/kBT)*dn$ 1
2 m(dR/dn)21V@R(n)#%…. The configu-

rations of the polymer which makes free energy a minim
are found fromdE@R(n)#/dR(n)50, which leads to the
equation

m
d2R

dn2
5V8~R!. ~6!

Notice that this is just a Newton’s equation for a ficticio
particle of massm moving in a potential2V(R) ~see Fig. 6!.
This equation has four solutions that are of relevance for
barrier crossing problem for the polymer. The first two a
~1! R(n)52a0, ~2! R(n)5a1 which are the minima in the
free energy hypersurface. The first solution is the initial sta
where the polymer is trapped in the vicinity of2a0. This
represents the metastable initial state. The second is the
stable minimum and is the final state. In addition to the
two solutions, there are two more solutions which are
interest to us. These aren dependent and correspond to e
and hairpin crossings.

1. End crossing

As we are interested in the case where the polymer is v
long, we can imaginen to vary from 2` to 0 and find a
saddle point in the free energy surface by searching fo
solution of the Eq.~6! satisfying the following conditions:
~a! R(2`)52a0, ~b! the other end of the polymer has to b
at a point withR.Rmax @whereRmax is the point whereV(R)
has its maximum value#. The Newton’s Eq.~6! implies that
Ec5 1

2 m(dR/dn)22V@R(n)# is conserved along the path
For the extremum path that corresponds to the end cross
Ec50. The ficticious particle starts atR(2`)52a0 with
the velocity zero~this follows from the boundary conditon
of the Rouse model! and ends up atRf at the ‘‘time’’ n50,
again with velocity zero. HereRf(.Rmax), is the point such
that V(Rf)50. The total free energy of the polymer corr
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PRE 62 931KRAMERS PROBLEM FOR A POLYMER IN A DOUBLE WELL
sponding to this configuration is activation free energy
end crossing. AsEc50, we have1

2 m(dR/dn)25V@R(n)#
and we find the activation free energy to be given by

Ea,end5E
2a0

Rf A2mV~R!dR. ~7!

The end crossing is illustrated in Fig. 4. For the sake
clarity, in Figs. 4 and 5, we have drawn the barrier as
surface by adding one more dimension. For the o
dimensional Rouse model, this extra dimension is not th
However, for polymer motion through channels, discusse
the Sec. IV D, this extra dimension is present.~It is of great
interest to note that the formulas of this section are qu

FIG. 4. End crossing.

FIG. 5. Hairpin crossing.
r

f
a
-

e.
in

e

analogous to those that result from a semiclassical treatm
of quantum tunneling and thatEa,end is just the tunneling
exponent.!

2. Hairpin crossing

If one imaginesn to vary in the range (2`,`) a second
saddle point may be found by takingR(2`)52a0 and
R(`)52a0, so that the Newtonian particle starts at2a0,
makes a round trip in the inverted potential2V(R) and gets
back to the starting point. This obviously has an activat
energy

Ea,hp52E
2a0

Rf A2mV~R!dR52Ea,end. ~8!

Thus the activation energy is exactly two times that for e
crossing@21#. The hairpin crossing is shown in Fig. 5.

3. The temperature dependence

As the parameterm is proportional to the temperatur
(53kBT/ l 2), we arrive at the general conclusion that bo
the activation energiesEa,end and Ea,hp are proportional to
AT. For our model potential of Eq.~5! we find Rf5a0(g

2Ag22g) whereg5@112(a1 /a0)# 1
3 and

Ea,end5
Amka0

3

6
$~3g211!A113g23g~g221!

3 ln@Ag~g21!/~11g2A113g!#%. ~9!

The Boltzmann factore2Eact /kBT for both end crossing and

hairpin crossing over the barrier thus has the forme2const/AT.
Further, we find that both are independent ofN for largeN.

III. THE RATE OF CROSSING

A. Hairpin crossing

We now calculate the rate of crossing in the two cas
We first consider the hairpin crossing, as this has conn
tions with material available in the literature@6#. The meth-
ods that we use are quite well known in the soliton literatu
@26# and hence we give just enough details to make the

FIG. 6. The barrier and its inverted form. The barrier heights
the forward and backward directions are shown. The dotted
represents the path that determines the activation energy.
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932 PRE 62K. L. SEBASTIAN AND ALOK K. R. PAUL
proach clear. The Rouse model in the Eq.~1! leads to the
functional Fokker-Planck equation

]P

]t
5

1

zE0

N

dn
d

dR~n! FkBT
dP

dR~n!
1

dE@R~n!#

dR~n!
PG ~10!

for the probability distribution functionalP. This equation
implies that the flux associated with the coordinateR(n) is
@26#

j @R~n!#52
1

z FkBT
dP

dR~n!
1

dE@R~n!#

dR~n!
PG . ~11!

We now consider the initial, metastable state. As the r
of escape is small, we can assume the probability distribu
to be the equilibrium one, which is

P5
1

Z0
exp$2E@R~n!#/kBT%. ~12!

To determineZ0 we use the condition*D@R(n)#P51,
where*D@R(n)# stands for functional integration. It is con
venient to introduce the normal co-ordinates for small am
tude motion around the metastable minimum and do
functional integration using them. For this, we expa
E@R(n)# around the metastable minimum, by puttingR(n)
52a01dR(n), and expanding as a functional Taylor seri
in dR(n) and keeping terms up to second order indR(n).
Then

E@R~n!#5
1

2
mE

0

N

dndR~n!S 2
]2

]n2
1v0

2D dR~n!.

~13!

We have definedv0 by puttingmv0
25@]2V(R)/]R2#R52a0

.

The normal~Rouse! modes are just the eigenfunctionsck(n)
of the operatorĤms5(2]2/]n21v0

2), having the eigen-
value «k and satisfying the Rouse boundary conditio
]ck(n)/]n50 at the two ends of the string. We assum
ck(n) to be normalized. The superscript ‘‘ms’’ inĤms stands
for metastable. Now we can expanddR(n) as dR(n)
5(kckck(n) so that the expression for energy~13! becomes

E@R~n!#5
1

2
m(

k
«kck

2 . ~14!

We now do the functional integration using the variablesck .
Then the normalization condition*D@R(n)#P51 becomes
(1/Z0))k*dck exp@21

2mb«kck
2#51. Evaluation of the Gauss

ian integrals in this expression givesZ05)k(2p/mb«k)
1/2.

Now we consider the vicinity of a saddle point, where t
probability distribution deviates from the equilibrium on
We first consider the saddle point which corresponds to h
pin crossing. The potential of Eq.~5! is rather difficult to
handle as we have not been able to obtain analytic solut
to the Newton’s equation~6!. In determining the crossing o
the barrier, the key role is played by the quantitiesv0 and
the height of the barrier for crossing in the forward directi
Vf . The quantities that we calculate in this section have
dependence of the behavior of the potential near the st
te
n

i-
e

r-

ns

o
le

minimum. So, instead of using the quartic potential of E
~5!, we use the simpler cubic potential of Eq.~15!. This has
no stable minimum~corresponding to the final state!, but that
does not matter, because the quantities that we calculat
not depend on its existence. Thus we use the potential

Vc~R!5V0S R1a0

R0
D 2S 12

R1a0

R0
D , ~15!

where we adjustV0 and R0 to reproduce the values forv0
and the barrier heightVf @27#. Solving Eq.~6! for this po-
tential, in the limit of an infinitely long chain and taking it t
extend fromn52` to 1`, the saddle point that corre
sponds to hairpin crossing is easily found to be given by
equation

Rhp~n!52a01R0H sechSAV0

2m
nD J 2

. ~16!

In fact one has a continuous family of solutions of the fo
Rhp(n2n0), wheren0P(2`,`) is arbitrary and determine
center of the kink-antikink pair. Now expanding the ener
E@R(n)# about this saddle, by writingR(n)5Rhp(n2n0)
1dR(n) we get

E@R~n!#5Ea,hp1
1

2
mE dndR~n!F2

]2

]n2

1v0
2$123 sech2@v0~n2n0!/2#%GdR~n!.

~17!

For the potential of Eq.~15! Ea,hp5(8R0/15)A2mV0. The
normal modes for fluctuations around the saddle are de
mined by the eigenfunctions of the operatorĤ‡52]2/]n2

1v0
2$123 sech2@v0(n2n0)/2#% (‡ is used to denote the

saddle point!. The eigenfunctions are~a! the discrete states
c0

‡ , c1
‡ , and c2

‡ having the eigenvalues«0
‡525v0

2/4, «1
‡

50, and«2
‡53v0

2/4 and~b! the continuum of eigenstatesck
‡

with eigenvalues of the form«k
‡5v0

21k2 ~more details are
given in the Appendix!. The existence of the eigenvalue«1

‡

50 comes from the freedom of the kink-antikink pair
have its center anywhere on the chain.~In the polymer prob-
lem, this just means that the hairpin can be formed anywh
along the chain.! In the following, (k would stand for sum-
mation over all the eigenstates, including both the discr
and continuum states while a symbol such as(k5” 1 means
that the bound statec1

‡ is to be excluded from the sum. Now
writing dR(n)5(k5” 1ck

‡ck
‡ , we get

E@R~n!#5Ea,hp1
1

2
m(

k5” 1
«k

‡~ck
‡!2.

We write the probability density near the saddle as@26#

P5
u~c0

‡ ,c1
‡ , . . . !

Z0
expH 2

E@R~n!#

kBT J , ~18!
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whereu(c0
‡ ,c1

‡ , . . . ), is afunction that must approach unit
in the vicinity of the metastable minimum. Near the sadd
one can calculate the fluxj k

‡ in the direction ofck
‡ using the

analog of Eq.~11!:

j k
‡52

1

z F kBT
]P

]ck
‡

1
]E@R~n!#

]ck
‡

PG .

Using Eqs.~17! and ~18! we get

j k
‡52

kBT

Z0z

]u~c0
‡ ,c1

‡ , . . . !

]ck
‡

3expH 2
1

kBT S Ea,hp1
1

2
m(

k5” 1
«k

‡~ck
‡!2D J . ~19!

In a steady state, there is flux only in the unstable direct
That is, only j 0

‡ is nonzero. This means thatu can depend
only on c0

‡ , which implies thatj 0
‡ must have the form

j 0
‡5A expH 2

1

kBT S 1

2
m(

k.1
«k

‡~ck
‡!2D J , ~20!

whereA is a constant, to be determined. Using the Eq.~20!
in ~19! we get ]u(c0

‡)/]c0
‡52Aexp$2(m/2kBT)u«0

‡u(c0
‡)2%.

The fact thatu(c0
‡) must approach unity asc0

‡→2`, enables
one to get A5(mu«0

‡u/2pkBT)1/2. Hence u(c0
‡)

5(mu«0
‡u/2pkBT)1/2*c

0
‡

`
dzexp$2(1/2kBT)mu«0

‡uz2%. Now

the net flux crossing the barrier is found by integratingj 0
‡

over all directions other thanc0
‡ . The integrals over allck

‡ ,
exceptc1

‡ is straight forward. As«1
‡50, *dc1

‡ needs spe-
cial handling. The integral, as is well known, is perform
by converting it to an integral over the kink-antikin
position, n0. That is, *dc1

‡5a*dn0, where a2

5*2`
` dn@]Rhp(n)/]n#25Ea,hp /m. Hence the rate become

khp5
kBT

Z0z S mu«0
‡u

2pkBTD 1/2

)
k.1

S 2pkBT

mu«k
‡u D 1/2S Ea,hp

m D 1/2

N

3exp~2Ea,hp /kBT!. ~21!

The notation)k.1 is used to indicate product over all eige
values ofĤ‡, except the first two. On using the expressi
for Z0,

khp5
kBT

z S m

2pkBTD 3/2

I hpS u«0
‡uEa,hp

u«2
‡um D 1/2

N

3exp~2Ea,hp /kBT!, ~22!

where I hp5()k«k /)k.2«k
‡)1/2. This infinite product is

evaluated in the Appendix and is found to beI hp5 15
2 v0

3.
This leads to

khp5
5Nmv0

3

4pz S 15Ea,hp

2pkBT D 1/2

exp~2Ea,hp /kBT!. ~23!
,

.

B. End crossing

In this case, the analysis is similar to the above. The
eratorĤ‡ is the same as earlier. However, there is an int
esting difference. In the hairpin case, the boundary con
tions onck

‡ (dck
‡/dn50, at the two ends! were atn56`,

while in this case, they are atn50 and atn5` ~i.e., the
boundary value problem is now on the half-line!. Due to this,
one has to rule out the oddck

‡ that exists in the hairpin cas
as they do not satisfy the Rouse boundary condit
dck

‡/dn50 atn50. So we consider only the even solution
Thus the eigenvalue at zero is ruled out~which is quite al-
right as end crossing can occur only at the end and not a
where else, but we will put in additional factor of 2 as it ca
occur at any of the two ends!. The discrete spectrum now ha
only the eigenvalues«0

‡525v0
2/4 and«2

‡53v0
2/4. The ex-

pression for the rate is

kend5
kBT

z S mu«0
‡u

2pkBTD 1/2

Ĩ endexp~2Ea,end/kBT!, ~24!

where

Ĩ end5

)
k5” 0

~2pkBT/m«k
‡!1/2

)
k

~2pkBT/m«k!
1/2

.

In this product, there areN21 terms in the numerator andN
terms in the denominator. One of theN21 terms is
the bound state with an eigenvalue«2

‡53v0
2/4. Separating

this out from the product, one can writeĨ end

5(2m/3pkBTv0
2)1/2I end, where I end5()k«k /)k.2«k

‡)1/2.
The evaluation of this product involves some subtlety and
done in the Appendix. The result is

kend5
5mv0

2

2A2pz
exp~2Ea,end/kBT!.

Accounting for the existence of two ends leads to

ktwo ends5
5mv0

2

A2pz
exp~2Ea,end/kBT!. ~25!

IV. THE KINK AND ITS MOTION

A. The kink solution and its velocity

Having overcome the activation barrier, how much tim
would the polymer take to cross it? We denote this time
tcross. To calculate this, we first look at the mathematic
solutions of the deterministic Eq.~2!. The simplest solutions
of this equation areR(n,t)52a0 and R(n,t)5a1. As we
saw earlier, these correspond to the polymer being on ei
side of the barrier and these are just mean values of
position on the two sides. Thermal noise makesR(n,t) fluc-
tuate about these mean positions which may be analy
using the normal coordinates for fluctuations about this m
position. Each normal mode obeys a Langevin equation s
lar to that for a harmonic oscillator, executing Brownian m
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tion. In addition to these two time independent solutions,
~2! has a time-dependent solution~a kink! too, which corre-
sponds to the polymer crossing the barrier. We analyze
dynamics of the chain, with the kink in it, using the norm
modes for fluctuations about this kink configuration. O
analysis makes use of the techniques that have been us
study the diffusion of solitons@26#.

As is usual in the theory of nonlinear wave equations
kink solution moving with a velocityv may be found using
the ansatzR(n,t)5Rs(t) where t5n2vt @26#. Then Eq.
~2! reduces to

m
d2Rs

dt2
1vz

dRs

dt
5V8~Rs!. ~26!

If one imaginest as time, then this too is a simple New
tonian equation for the motion of particle of massm, moving
in the upside down potential2V(R). However, in this case
there is a frictional term too, andvz/m is the coefficient of
friction. This term makes it possible for us to find a soluti
for quite general forms of potential. For the potential of E
~6!, we can easily find a solution of this equation, obeyi
the conditionsRs(t)52a0 for t→2` and Rs(t)5a1 for
t→`. The solution is

Rs~t!5~2a01etv(a01a1)a1!~11etv(a01a1)!21, ~27!

with v5Ak/m. The solution exists only if the velocity ha
the valuev5(Amk/z))(a02a1). This solution is a kink, oc-
curring in the portion of the chain inside the barrier. We sh
refer to the point witht50 as the center of the kink.@Actu-
ally one has a one-parameter family of solutions of the fo
Rs(t1t0), where t0 is any arbitrary constant.# As t5n
2vt, the center of the kink moves with a constant velocityv.
Note that this velocity depends on the shape of the bar
Thus for our model potential witha0,a1, having DV,0,
this velocity is negative. This implies that the kink is movin
in the negative direction, which corresponds to the ch
moving in the positive direction. That is, the chain moves
the lower free energy region, with this velocity. If the barri
is symmetric, thena05a1(Vf5Vb) and the velocity of the
kink is zero.

B. Fluctuations about the kink

We now analyze the effect of the noise term presen
Eq. ~1!. The center of the kink can be anywhere on t
chain—which means that the kink is free to move on
chain. Actually, as the position of the kink is fixed in spac
this means that the polymer is moving across the barrier.
kink would also execute Brownian motion, due to the no
term. The motion of the kink caused by the noise terms
well studied problem in the literature@26# and one can make
use of these methods. Following ‘‘instanton methods’’
field theory@28#, we write

R~n,t !5Rs„n2a~ t !…1 (
p51

`

Xp~ t !fp„n2a~ t !,t…. ~28!

We have allowed for the motion of the kink by taking th
kink center to be ata(t). a(t) is a random function of time
.
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which is to be determined.fp are a set of functions~the
Rouse modes! to be defined below andXp(t) are the expan-
sion coefficients. This may be put into Eq.~1! to derive an
equation of motion fora(t). Neglecting kink-phonon scatter
ing leads to@24#

ȧ~ t !5v1j0~ t !/C. ~29!

We introduce a new variablen̄ by n̄5n2a(t), and define
c0(n̄) by ] n̄Rs(n̄)5Cc0(n̄) with

C25^] n̄Rs~ n̄!uevzn̄/mu] n̄Rs~ n̄!&

5
2

3
pv cscS 2p

a12a0

a01a1
D ~a12a0!a0a1 ~30!

and

j0~ t !5
1

zEover the chain
dn̄c0* ~ n̄!evzn̄/(2m) f @ n̄1a~ t !,t#.

~31!

j0(t) is a random function of time, having the correlatio
function

^j0~ t !j0~ t1!&5d~ t2t1!~2kBT/z!

3E
over the chain

dn̄evn̄z/m@c0~ n̄!#2.

~32!

For the potential given by the Eq.~5! one gets

^j0~ t !j0~ t1!&5d~ t2t1!kBT/~2za0a1!secS 2p
a12a0

a01a1
D

3~3a12a0!~3a02a1!. ~33!

Equations~29! and~30! imply that the kink positiona(t)
executes Brownian motion with drift. Asv is negative, the
drift is in the negative direction.

C. The crossing timetcross

For the polymer to cross the barrier, the kink has to go
the reverse direction, by a distance equal toN. As the Eq.
~29! is just that for a particle executing Brownian motio
with drift, we can estimate the time of crossing as a fi
passage time. As the kink starts at one end, we take
initial position of the particle,a to be N and calculate the
average time required for it to attain the value 0, whi
would correspond to the polymer crossing the barrier fu
Writing the diffusion equation for the survival probabilit
P(a,t) for a Brownian particle starting ata5N at the time
t50 and being absorbed ata50, we get

]P~a,t !

]t
5D

]2P~a,t !

]a2
2v

]P~a,t !

]a
. ~34!

Here, the diffusion coefficient
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D5
1

2tC2E0

t

dt1E
0

t

dt2^j0~ t1!j0~ t2!&

5
3kBT

8pz
Am

k

~3a12a0!~3a02a1!

a0
2a1

2~a12a0!
tanS 2p

a12a0

a01a1
D .

~35!

Equation~34! is to be solved, subject to the initial conditio
P(a,0)5d(a2N) and with absorbing boundary condition
a50 @i.e., P(0,t)50# andP(`,t)50. It is easy to solve the
above equation in the Laplace domain. The result for
Laplace transformP̄(a,s)5*0

`dtP(a,t)exp(2st) is

P̄~a,s!5
1

A4Ds1v2
Fe(a2N)v2A4Ds1v2ua2Nu

2D

2e
(a2N)v2A4Ds1v2uau2A4Ds1v2N

2D G. ~36!

The Laplace transform of the survival probability is given
P̄(s)5*2`

` daP̄(a,s) and is found to be

P̄~s!5
1

s
F12e

2Nv2A4Ds1v2N
2D G. ~37!

The average crossing time is given bytcross

5 limit s2.0P̄(s)5N/(2v), if v,0. As v is proportional
Amk, assumingV(R) to be temperature independent we fi
tcross;N/AT. This is a general conclusion, independent
the model that we assume for the potential. If the barrie
symmetric, the kink moves with an average velocityv50.
Taking thev→0 limit of P̄(s), we get

P̄~s!5
1

s
~12e2AsN/AD! ~38!

so that the survival probability becomes

P~ t !5ErfS N

2ADt
D . ~39!

This expression for the survival probability implies that t
average time that the particle survives istcross;N2/D. For
the symmetric barrier, the value ofD may be obtained by
taking the limit a1→a0, and one finds D
5(3kBT/4za0

3)Am/k and thustcross;N2/T3/2.
In their analysis, Park and Sung@19# considered the pas

sage of a polymer through a pore for which the barrier
entropic in origin. Consequently, it is very broad, the wid
being of the order ofN. Hence they consider the moveme
as effectively that of the center of mass of the polymer wh
diffuses with a coefficient proportional to 1/N. As the center
of mass has to cover a distanceN, the time that it takes is
proportional toN3. If there is a free energy difference driv
ing the chain from one side to the other, then the time
proportional toN2. In comparison, we take the barrier to b
extrinsic in origin and assume its width to be small in co
parison with the length of the chain. The crossing occurs
the motion of the kink, which is a localized nonlinear obje
e

f
is

s

h

s

-
y
t

in the chain whose width is of the same order as that of
barrier. As the polymer is intially in a~metastable! potential
well, the entropic contribution to the barrier that Park a
Sung@19# consider does not exist in our case. Such a pot
tial is realistic, in cases where the polymer is subjected t
driving force~for example, an electric field!. As the kink is a
localized object, its diffusion coefficient has noN depen-
dence and our results are different from those of Park
Sung@19#. In the case where there is no free energy diff
ence between the two wells, our crossing time is proportio
to N2 ~in contrast toN3 of Park and Sung!, while if there is
a free energy difference, our crossing time is proportiona
N ~in contrast toN2 of Park and Sung!. In a very recent pape
@22#, Park and Sung have considered the Rouse dynamic
a short polymer surmounting a barrier. The size of the po
mer is assumed to be small in comparison with the width
the potential barrier. Consequently, the transition state
almost all the segments of the polymer sitting at the top
the barrier, leading to the prediction that the activation e
ergy is proportional toN. This leads to a crossing probabilit
that decreases exponentially withN. In comparison, as found
in Sec. II D, the free energy of activation for the kink mec
nism does not depend on the length of the chain. Hence,
mechanism is the favored one for long chains.

D. The net rate

As the actual crossing is a two step process, with acti
tion as the first step and kink motion as the second step,
net rate of the two has to be a harmonic mean of the
rates. For a very long chain, the motion of the kink has
become rate determining. In the experiments of Kasianow
@13# ~see Sec. V!, one is directly observingtcross and hence
our considerations on kink motion must be directly app
cable. Also, in the case of translocation of biological mac
molecules, considered in Sec. VI there does not seem to
any free energy of activation and then the rate is determi
by tcrossalone. Recently, the motion of long chains in micr
fabricated channels has been investigated by Hanet al. @14#.
In contrast to the situtation for a pore, there is an additio
dimension available for the molecule to form a hairpin, v
perpendicular to the direction of movement of the molecu
Consequently, in overcoming the barrier, both end cross
and hairpin crossing can occur~see Figs. 4 and 5!. They
found the activation energy to be independent ofN, in agree-
ment with our analysis. They also found the activation e
ergy to be inversely proportional to the electric fieldE. As-
suming the barrier to be given byV(R)50 for R,0 and

V~R!5AT2BER ~40!

for R.0, (A,B are constants—the barrier is similar to th
one in field emission! with AT representing the entropic con
tribution to the barrier height andBER the lowering of the
potential due to the electric fieldE, one easily getsEend

54Am(AT)3/(3BE);T2/E. The inverse dependence onE is
in agreement with the experimental observations. Note
with the potential of Eq.~40!, the problem becomes analo
gous to field emission from a metal, withAT being the work
function. Also,Ehp52Eend. Experimental results show tha
the longer molecule crosses the barrier faster. This me
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that theN dependence ofkhp causes the hairpin crossing
be the dominant mechanism of crossing in these exp
ments.

V. DNA DRIVEN THROUGH A PORE

We now discuss a model for the potential which hopefu
can mimic the experiments of Kasianowiczet al. @13,25#.
Under the conditions of the experiment, the DNA strand
negatively charged, and under the influence of a poten
difference, it migrates from the side where the potentia
negative ~cis!, to the side where the potential is positiv
~trans!. We shall assume that the charge on the DNA
spread uniformly over all its segments. Then, a segmen
DNA on the cis side has a higher free energy than on
trans side. As the segment passes through the pore, it w
interact with the walls of the pore, which too are charged.
one expects the free energy per segment of the chai
change as shown in Fig. 7. It is possible that the pore co
represent a region where the free energy is larger and h
the translocation process is activated. The pore is abou
nm wide, and therefore, at any time, there should be m
than 10 nucleotides in it. As this number is not small, o
continuum approach should be a good approximation.
take the pore width to bew and model the potential insid
the pore by V(R)5DV(R/w)2(2R/w23) for 0,R,w
while V(R)50 for R,0 andV(R)52DV for R.w. This
particular functional form was chosen so that the poten
and its derivatives are continuous everywhere in space.
this model potential, the equation for the kink is

m
d2Rs~t!

dt2
1zv

dRs~t!

dt
26DV~Rs /w2!~Rs /w21!50.

~41!

The kink solution is Rs(t)5w(11e2ADV/m(t2t0)/w)22

wheret0 is an arbitrary constant. This solution exists wi
zv525AmDV/w. Thus, we findtcrossto be proportional to
Nw/(zAmDV), i.e., the traversal time is directly propo
tional to the number of units in the polymer, in agreeme
with the experiments of Kasianowiczet al. @13#. Further, our

FIG. 7. The free energy per segment of the polymer, shown
function of the position of the segment~for the case where DNA is
drawn through a pore!. As the segment goes from the left (2ve) to
right (1ve), the free energy changes by2DV.
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analysis predicts thattcross is inversely proportional to the
square root of the applied potential difference.

VI. HOW DO BIOLOGICAL SYSTEMS LOWER
THE ACTIVATION ENERGY?

If there was a high activation energy (@kBT) for the
translocation of biological molecules across membranes,
process would be unlikely and hence, biological syste
would not be able to function, if they depended crucially
such transfers. As translocation seem to be very efficien
biological systems, one needs to look at the mechanism
evolution has designed to reduce the barrier. The destina
~referred to as sorting! of a biological long chain molecule is
determined by a sequence of units at the beginning of
chain, referred to as the signal sequence. For example,
teins destined to the endoplasmic reticulum possess an a
terminal signal sequence, while those destined to remai
the cytosol do not have this. If one attaches this sequenc
a cytosolic protein, then the protein is found to end up in
endoplasmic reticulum~see Ref.@9#, Fig. 14.6!. The way the
sequence works is simple. If the pore is hydrophobic and
chain hydrophilic, then the signal sequence is hydropho
so that the signal sequence has a low free energy inside
pore.

We qualitatively analyze this type of problem in the fo
lowing, using the Rouse model. The way to model the s
ation would be to have a potential that is dependent upon
segment numbern in the chain. Hence, in the equations
the Rouse model the potential term would have an exp
dependence onn. Let us denote the length of the signal s
quence bys. The simplest model would be to have a pote
tial which is attractive, for 0,n,s and which has the shap
of a barrier fors,n,N. The transition state is determine
by the Newton-like equation

m
d2R

dn2
5Vnew8 ~n,R!, ~42!

with n playing the role of time~in the following we shall
refer to n as the time for the motion of this ficticious pa
ticle!. We take the potential to be such that

Vnew~n,R!52V~R! if 0 ,n,s and

5V~R! if s,n,N.

This corresponds to a particle moving in a time depend
potential, which switches from being repulsive to attracti
at the times. The shape of this time-dependent potential
shown in Fig. 8. The boundary conditions$dR(n)/dn%n50
5$dR(n)/dn%n5N50 imply that the particle has to start an
end with zero velocity. Let us imagine that the particle sta
at the pointR0 ~see Fig. 8!. As the potential that it feels up to
the times is repulsive, it follows the path indicated by th
dashed line in the figure, and the conservation of energy m
be written as1

2 m(dR(n)/dn)21V(R)5V(R0). Let it reach
the point Rs after a times. At this time, the potential is
switched fromV(R) to 2V(R). From this time on, the equa
tion of conservation of energy would be

a
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1

2
mS dR~n!

dn D 2

2V~R!5V~R0!22V~Rs!. ~43!

This is the equation of motion of the particle fors,n
,N. We are interested inN→` limit and we have to satisfy
the boundary condition$dR(n)/dn%n5N50 at the end of the
chain. In the particle picture, this is equivalent to the con
tion that the total energy of the particle obeying Eq.~42!
must be zero. This implies thatV(R0)52V(Rs). For a given
s, this uniquely fixes the values of the two variablesR0 and
Rs .

The net transition state is shaped as a hook and the
drophobic part of the chain is completely in the short arm
the hook~see Fig. 9!. A configuration like the one in Fig. 10
where the whole of the hook is formed by the hydropho
part is not a transition state. The transition state in Fig
though it seems likely to occur in crossing between liqu
liquid interfaces, it seems rather difficult to form in the ca
of passage through a pore as there are two difficulties:~1! the
chain has to bend to form the hook,~2! the pore has to be
wide enough to accommodate the two strands of the h

FIG. 8. The full curve is the plot of the potential for the motio
of the particle for 0,n,s, while the dotted curve is the potentia
for s,n,N. The particle starts atR0 at the timet50, moves on
the full curve and reachesRs at the timen5s. At this time, the
potential suddenly switches to its negative. The particle then mo
on this potential~dotted curve!. The path of the particle is drawn
with dashes and the direction in which it moves is shown by
arrows.

FIG. 9. The transition state for a hydrophilic chain with a h
drophobic signal sequence, passing through a hydrophobic p
Compare with Fig. 14-14 of the book by Albertset al.
-

y-
f

c
,

k

simultaneously. In spite of these, nature does seem to
this as an inspection of Fig. 14-14 of Ref.@9# shows.

VII. CONCLUSIONS

We have considered the generalization of the Kram
escape over a barrier problem to the case of a long ch
molecule. It involves the motion of chain molecule ofN
segments across a region where the free energy per seg
is higher, so that it has to cross a barrier. We consider
limit where the width of the barrierw is large in comparison
with the Kuhn lengthl, but small in comparison with the
total lengthNl of the molecule. The limit whereNl!w has
been considered in a recent paper by Park and Sung@22#. We
use the Rouse model and find there are two possible me
nisms that can be important—end crossing and hairpin cr
ing. We calculate the free energy of activation for both a
show that both have a square root dependence on the
peratureT, leading to a non-Arrhenius form for the rate. W
also find that the activation energy for hairpin crossing is t
times the activation energy for end crossing. Inspite of th
for long enough chains, where the geometry of the syste
permits, hairpin formation can be the dominant mode of
cape as seen in the experiments of Hanet al. @14#.

While in the short chain limit Park and Sung@22# find the
activation energy to be linearly dependent onN, we find that
for long chains, the activation energy is independent ofN.
We also show that there is a special time-dependent solu
of the model, which corresponds to a kink in the chain, co
fined to the region of the barrier. In usual nonlinear proble
with a kink solution, the problem has translational invarian
and the soliton/kink can therefore migrate. In our proble
the translational invariance is not there, due to the prese
of the barrier and the kink solution is not free to move
space. However, the polymer on which the kink exists, c
move, though the kink is fixed in space. Thus, the polym
goes from one side to the other by the motion of the kink
the reverse direction on the chain. If there is no free ene
difference between the two sides of the barrier, then the k
moves by diffusion and the time of crossingtcross;N2/T3/2.
If there is a free energy difference, then the kink moves w
a nonzero velocity from the lower free energy side to t
other, leading totcross;N/AT. We also discuss the applica
bility of the mechanism to the recent experiments of Kasi
owicz et al. @13#, where DNA molecules were drawn throug

es

e

re.

FIG. 10. This is not a possible transition state.
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a nanopore by the application of a potential difference. O
result thattcross;N is in agreement with these experimen
We also consider the translocation of hydrophilic polype
tides across hydrophobic pores. Biological systems acc
plish this by having a hydrophobic signal sequence at the
that goes in first. Our analysis leads to the conclusion tha
such a molecule, the configuration of the molecule in
transition state is similar to a hook, and this is in agreem
with presently accepted view in cell biology@9#.
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APPENDIX

1. The eigenfunctions of the HamiltonianĤ ‡

The Hamiltonian Ĥ‡52]2/]n21v0
2$123 sech2(v0n/

2)% has the following eigenfunctions~functions are not nor-
malized! and eigenvalues, ifn allowed to be in the range
(2`,`).

a. Discrete states

~1! c0(n)5sech3(v0n/2); «0525v0
2/4,

~2! c1(n)5sech2(v0n/2)tanh(v0n/2); «150,
~3! c2(n)5$2312 cosh(v0n)% sech3(v0n/2);

«253v0
2/4.

b. Continuum states

The continuous part of the spectrum starts atv0
2. The

potential is reflectionless. Corresponding to an eigenva
v0

21k2, there are two eigenfunctions, which we write as
odd function and an even function. They are

~1! ceven~n!58k~k21v0
2!cos~kn!23v0~8k2

13v0
2!sin~kn!tanh~v0n/2!

230kv0
2 cos~kn!tanh2~v0n/2!

115v0
3 sin~kn!tanh3~v0n/2!,

~2! codd~n!528k~k21v0
2!sin~kn!23v0~8k2

13v0
2!cos~kn!tanh~v0n/2!

130kv0
2 sin~kn!tanh2~v0n/2!

115v0
3 cos~kn!tanh3~v0n/2!.

In the limit n→6`, the even function becomes

ceven~n!52k~4k2211v0
2!cos~kx!

66v0~24k21v0
2!sin~kx!
r
.
-
-
d

or
e
nt

e
He
en
se

e

which may be written as (const)cos@kx7d(k)#, so that the
phase shift

d~k!5arctanS 23v0~v0
224k2!

k~211v0
214k2!

D .

The phase shift for the odd solution is just the same. He
the total change in the density of states is given by

Dn~k!5
2

p

dd~k!

dk
52

2

p S v0

k21v0
2 1

2v0

4k21v0
2 1

6v0

4k219v0
2D .

On integration,*0
`dkDn(k)523, as it should be, as ther

are three bound states forĤ‡.

2. Evaluation of the infinite products

a. Hairpin crossing

The infinite product that is to be evaluated is

I hp5S )
k

«k

)
k.2

«k
‡D 1/2

, ~A1!

where«k represent the eigenvalues of the continuum sta
of the HamiltonianĤms5(2]2/]n21v0

2) and «k
‡ are the

eigenvalues ofĤ‡, satisfying the boundary conditions atn
56`. The above product involves only the continuum e
genvalues of the two Hamiltonians. Now,

ln I hp5
1

2 S (
k

ln «k2 (
k.2

ln «k
‡D

5
1

2E0

`

dk ln~v0
21k2!@n~k!2nhp

‡ ~k!#, ~A2!

where then(k) stands for the density of states in the co
tinuum, for the HamiltonianĤs and nhp

‡ (k) for the Hamil-

tonian Ĥ‡. The change in the density of states isDnhp(k)
52n(k)1nhp

‡ (k) and is easily evaluated from the informa
tion given in Sec. 1 of this Appendix. It is

Dnhp~k!52S v0

v0
21k2 1

2v0

v0
214k2 1

6v0

9v0
214k2D 2

p
.

Using this to evaluate the integral in the Eq.~A2! we get

I hp5
15

2
v0

3 . ~A3!

b. End crossing

The product that we wish to evaluate is

I end5S )
k

«k

)
k.2

«k
‡D 1/2

. ~A4!
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This infinite product in the above equation is over the co
tinuous spectra of the two Hamiltonians. The change in
density of states is now just half of the density of states
the hairpin case. That is,Dnend(k)5 1

2 Dnhp(k). At first sight,
this leads to a problem, such as*0

`dkDnend(k)523/2, in-

stead of the expected 2~as Ĥ‡ has two bound states whil
Ĥms has none!. The solution to ths is quite well known—Ĥms

has a state with eigenvaluev0
2 where its continuous spectrum

starts, and half of this state is to be considered as a bo
state. Then, we can write the above as
,

-

e

et

n

-
e
r

nd

I end5expS 2
1

2E0

`

dkDnend~k!ln~v0
21k2! DAv0.

Hence we find

I end5S 15

2 D 1/2

v0
2 . ~A5!
t
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