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Kramers problem for a polymer in a double well
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We consider a long chain molecule, initially confined to the metastable side of a biased double well
potential. It can escape from this side to the other by the motion dfl is@gments across the barrier. We
assume that the length of the molecule is much larger than the widfithe barrier. The widthv is taken to
be sufficiently large that a continuum description is applicable to even the portion over the barrier. We use the
Rouse model and analyze the mechanism of crossing the barrier. There can be two dominant mechanisms: end
crossing and hairpin crossing. We find the free energy of activation for the hairpin crossing to be two times that
for end crossing. The pre-exponential factor for hairpin crossing is proportiohgivile it is independent of
N for end crossing. In both cases, the activation energy has a square root dependence on the tefperature
leading to a non-Arrhenius form for the rate. We also show that there is a special time dependent solution of
the model, which corresponds to a kink in the chain, confined to the region of the barrier. The movement of the
polymer from one side to the other is equivalent to the motion of the kink on the chain in the reverse direction.
If there is no free energy difference between the two sides of the barrier, then the kink moves by diffusion and
the time of crossind,ss~ N?/T%2 If there is a free energy difference, then the kink moves with a nonzero
velocity from the lower free energy side to the other, leading,tQs- N/\/T. We also discuss the applicability
of the mechanism to the recent experiments of Kasianof#tcac. Natl. Acad. Sci. USA3, 13 770(1996)],
where DNA molecules were driven through a nanopore by the application of an electric field. The prediction
thatt,,ss~ N is in agreement with these experiments. Our results are in agreement with the recent experimental
observations of Han, Turner, and CraighéRtys. Rev. Lett83, 1688(1999]. We also consider the trans-
location of hydrophilic polypeptides across hydrophobic pores, a process that is quite common in biological
systems. Biological systems accomplish this by having a hydrophobic signal sequence at the end that goes in
first. We find that for such a molecule, the transition state resembles a hook, and this is in agreement with
presently accepted view in cell biology.

PACS numbe(s): 83.10.Nn

[. INTRODUCTION string) leads to interesting new aspects to the problem that
are not present in the case where there are only finite number
The escape of a particle over a one dimensional barrieof degrees of freedom. Also, the problem is of great interest
has been studied in a large number of papers. The problenm biology as many biological processes involve the translo-
often referred to as the Kramers probléiy?2|, has been the cation of a chain molecule from one side of a membrane to
subject of detailed review8,4]. Kramers found solutions in the other, through a pore in the membrane. The translocation
the limit of weak friction and also in the limit of moderate to of proteins from the cytosol into the endoplasmic reticulum,
strong dampind1,2]. The intermediate regime has been anor into mitochondria or chloroplasts are processes of great
active area of investigatidi8]. The reason for this extensive interest and importance. Often, the proteins are hydrophilic
activity is that this forms a model for a chemical reactionand the pore in the membrane forms a hydrophobic region,
occuring in a condensed medium. Kramers problem for fewthrough which they have to pa3s-10|, resulting in an in-
degrees of freedom has also been the topic of s{3§i.  crease in the free energy for the portion of the chain inside
The quantum problem of escape or tunneling through a bathe pore. In infection by bacteriophages, conjugative DNA
rier too is of considerable interest. In the case where theransfer etc, long chain DNA molecules snake through pores
system has an infinite number of degrees of freedom, this haa membrane$11,12. In all these cases, the chain molecule
been referred to as the decay of metastable vacuum, a probeems to get across the membrane rather easily, contrary to
lem that has attracted quite a bit of attention in field theorythe expectation that one gets from the theoretical analysis
cosmology and mesoscopic quantum phenoménél. In available in the literature on the subjesee below. In a
this paper, we consider a similar situation involving only very interesting experiment Kasianowiet al. [13] forced a
classical physics. The trapped object (s~ ) degrees of 150 nucleotide long, single stranded DNA to move through a
freedom, and is a polymeia string. Though there are no pore in a membrane and studied the time that it takes the
guantum effects, the problem is similar, and some experimolecule to cross the pore, as a function of the length of the
ments are already available, that the results of the theory amaolecule. In this experiment, the pH was such that the poly-
easily verified. Further, the mathematics is considerably simaucleotide had a negative charge and the pore itself was
pler than in the other cases, being equivalent to that of quareharged 13]. The molecule was forced to move through the
tum mechanical tunneling of a single particle in a bistablepore by the application of a potential difference between the
potential. two sides of the membrane. Bezeruketval. [16] have stud-
The way that theN degrees of freedom are connected ied the partitioning of polymer molecules into a nanoscale
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pore. Chipot and Pohoillgl5] have carried out a molecular assumed to be much larger than the Kuhn lerigdf the
dynamics simulation of a polypeptide, translocating throughpolymer, but small in comparison with the total length of
the interface between hexane and water. They found that thtae polymer. That is,.<w<NI . For example, in the experi-
polypeptide(undecamer of poly-L-leucinginitially placed  ments of Kasianowicet al.[13,25], the length of the pore is
in a random coil conformation on the aqueous side of theabout 100 A, while the Kuhn length for a single stranded
interface rapidly translocates to the interfacial region anddNA is perhaps around 15 A23]. Therefore, one is justi-
then folds. In another interesting experiment, Harml.[14]  fied in using a continuum approach to the dynamics of the
observed the forced movement of long, double strandetbng chain.(It is possible to retain the discrete approach, and
DNA molecules through microfabricated channels whichdevelop the ideas based on them, but this is more involved
have regions that present an entropic barrier for the entry ahathematically. Our approach is the following: We describe
the molecules. the motion of the polymer using the Rouse model. The force
All these problems involve the passage of a long chairthat the barrier exerts on the chain appears as an additional,
molecule, through a region in space, where the free energyonlinear term in the model. We refer to this as the nonlinear
per segment is higher, thus effectively presenting a barrieRouse model. The nonlinear term causes a distortion of the
for the motion of the molecule. This problem forms the gen-portion of the chain inside the barrier, which we refer to as
eralization that we refer to as the Kramers problem for ahe kink. Movement of the chain across the barrier is equiva-
chain molecule. On the theoretical side, a variety of studiegent to the motion of the kink in the reverse direction. The
exist on this kind of problem. Muthukumar and Baumgartnerkink is actually a special solution of the nonlinear Rouse
[17] studied the movement of self-avoiding polymer mol- model, arising because of the nonlinearity. In the presence of
ecules between periodic cubic cavities seperated by bottlex free energy difference between the two sides, the kink
necks. The passage through the bottleneck presents an aneves with a definite velocity and hence the polymer would
tropic barrier to the motion, and they show that it leads to arcross the barrier with, s proportional toN. Traditionally,
exponetial slowing down of diffusion with the number of the nonlinear models that one studiés example, thep?* or
segmentsN in the chain. Baumgartner and Skolni¢k8]  the sine-Gordon modg¢PR6,28—3() have potentials that are
studied the movement of polymers through a membrangranslationally invariant, and hence the kink can migrate
driven by an external bias and membrane asymmetry. Parkeely in space. In comparison, in our problem, the non-
and Sung[8,19], have studied the translocation through alinear term is fixed in position space and hence the kink too
pore. They analyze the passage through a pore on a fl@ fixed in space. However, the chain molec(igodelled as
membrane, with only the effects of entropy included. Thea string[20]) can move in space and hence the kink migrates,
resultant entropic barrier is rather broad, its width being pronot in space, but on the chain. As far as we know, such a
portional toN. Consequently, they consider the translocationsuggestion has never been made in the past and we believe
process as being equivalent to the motion of the center dhat this is a very useful idea in understanding barrier cross-
mass of the molecule. Using the result of the Rouse modeghg by long polymer molecules.
that the diffusion coefficient of the center of mass is propor- In general, the polymer can escape by essentially two
tional to 1N, they effectively reduce the problem to the bar- mechanisms. The first, which we refer to as end crossing,
rier crossing of single particle having a diffusion coefficientinvolves the passage of one end of the polymer over the
proportional to IN. As the translocation involves motion of barrier, by thermal activation. This leads to the formation of
N segments across the pore, the time taken to crggsd  the kink, which is then driven by the free energy difference
scales adN®. They also show that in cases where there isbetween the two sides of the barrier. The second is by the
adsorption on the trans side, translocation is favored and thesscape of any portion of the polymer over the barrier, in the
toossScales ad?. In a very recent paper, Park and Siiag]  form of a hairpin. The hairpin is a kink-antikink pair. For a
have given a detailed investigation of the dynamics of &flexible polymer, the hairpin crossing has twice the activa-
polymer surmounting a potential barrier. They use multidi-tion energy for end escape and hence one expects it to be less
mensional barrier crossing theory to study the motion of grobable. However, as it can take place anywhere on the
chain molecule over a barrier, in the limit where the width of chain, the frequency factor for it is proportionalitb Hence,
the barrier is much larger than the lateral dimension of thdor a sufficiently long chain, hairpin crossing can become the
molecule. In an interesting recent paper, Lubensky and Neldominant mechanism for the escape. Hairpin crossing leads
son[23] study a case where they assume the interaction dib the formation of a kink-antikink pair. The pair moves
the segments of the polymer with the pore to be strong. Thegpart on the chain, driven by the free energy gain and hence
argue that effectively, the dynamics of the portion of thethe time of crossing is still proportional tN, though one
chain inside the pore is the one that is important and thisexpects that it is roughly half the time of crossing in the end
they show, can give rise tf,,ss proportional toN. Again,  crossing case. In addition to these, in principle, it is possible
they assume diffusive dynamics. In a recent paper, we havi®er more than one hairpin to be formed. The formation of a
suggested24] a kink mechanism for the motion of the chain hairpin would require bending the chain. The polymer chain
across a barrier and it is our aim to give details of thisis flexible only over a length larger than the Kuhn length.
mechanism in this paper. This means that the curved portion of the hairpin would have
We consider a polymer undergoing activated crossing radius of curvature of the order of a few Kuhn lengths.
over a barrier. This can form a model for a polymer goingHence, in passage through a narrow pore, only the end-
through a pore too, as the pore can cause an increase in thessing mechanism can operate. However, if the width of
free energy of the segments inside it, as they would interadhe pore is a few times larger than the Kuhn length, hairpin
with the walls of the pore. The widtiv of the barrier is  crossing too can occur.
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FIG. 1. The potential energy per segment of the chain, plotted as

a function of position. FIG. 2. The total free energy shown as a function of the reaction

coordinate. Thé . is independent of the length of the chain. After
the barrier is crossed, there is a region of witthwith W propor-

. In aI.I our mathematlcal development, we use the_ ON€%onal to N, which is to be crossed. The time required to cross this
dimensional version of the Rouse model. This is no I'm'ta'regions ist

tion, if one is concerned with translocation across the inter-

face between two immiscible liquids or the experiments Ofis 5 minimum, then the total free energy of the chain would
Han et al. [14], which involve motion in a channel, whose

S . . . . decrease. Thus the transition state shown in the free energy
width is large in comparison W'th the size O.f the m°|ecu,le'hypersurface in the Fig. 2 has the configuration shown in the
On the other hand, if one is interested in translocationiy 3 Once the system has crossed the transition state, the
through_ a pore, strictly speaking, one has to C(_)n5|der the fullhain is stretched across the barrier. The path of steepest
three-dimensional nature of the problem, which at presenfiegcent then corresponds to moving segments from the cis
seems rather involved. However, we believe that the onegige 15 the trans side, without changing the configuration of
dimensional model captures the essential physics of thﬁ.]e polymer in the barrier region. As there is a free energy
problem. Our analysis should also be useful in Situation%ifferenceAV between the two sides, this would lead to a

\(/jvhere _the Who'E of tEe polykr)ner s ir('j_a pore, SIO th_art] tr;]elowering of the free energy bAV per segment, and this
ynamics may be taken to be one dimensional, With g, qg 15 g path on the free energy surface with a constant
chain trying to cross a region of high free energy.

slope, and of widthw proportional toN (see the Fig. R
Such a landscape implies that the barrier crossing would in-

cross:

1. THE MODEL volve two steps. The first step is going through the transition
state by overcoming the activation barrier. Once this is done,
A. The free energy landscape there is a rather wide region of width proportional to the

The considerations in this subsection are quite general arl§@ngth of the chain. Traversing this is the second step. As this
do not depend on the model that one uses to describe tHg9ion has a constant slope, the motion is driven and it is
polymer dynamics. We assume only that the polymer is flexSimilar to that of a Brownian partlcle' subject to a gonstant
ible over a length scale comparable to the width of the barforce. Such a particle would take a timigoss, proportional
rier. We start by considering the free energy landscape foto N to cross this region. _
the crossing of the barrier. The barrier and the polymer Till now, we considered the case of end crossing. The
stretched across it are shown in the Fig. 1. The polymer hagcenario for hairpin crossingee Fig. 5is similar. However,
initially all its units on the cis side, where its free energy perthe activation energy is higher for hairpin crossing. In hair-
segment is taken to be zero. So the initial state has a freldin crossing, the transition state is equivalent to the one end
energy zero in the free energy hypersurface shown in Fig. 2.
In crossing over to the trans side, it has to go over a barrier,
as in the Fig. 1. The transition state for the crossing can be
easily found, from physical considerations, by remembering
that the transition state is a saddle point—i.e., it is a maxi-
mum on the free energy surface in one direction, while in all
the other directions it is a minimum. The transition state is
shown in the Fig. 3see also Fig. ¥ In the transition state,
the configuration of the polymer is such that the free energy
of the chain is a minimum, subject to the two constraifes:
the end of the polymer on the trans side is located exactly at
the point at which its free energy per segment is Zbjahe
other end is on the cis side. This is the transition state, be-
cause if one moves the end at the trans side either in the
forward or in the backward directiofand the rest of the
chain adjusted so that the free energy of the chain as a whole FIG. 3. The transition state.
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crossing, repeated two times. Hence the activation energy fonaximum located aR=0. All these conditions can be sat-
the process is two times largéesee Sec. Il . Once a hairpin isfied if one take®/’'(R)=2kR(R+ay)(R—a;). Herekis a
crossing occurs, a kink-antikink pair is formed and the kinkconstant and will determine the height of the barrier. Inte-
and the antikink separate on the chain, due to the drivingjrating this and takiny(—ay) =0, we get
force of the free energy gain. Then further crossing occurs by .
the movement of these two on the chain, and this too leads to _ 2, nm2 2
a time of crossing proportional tbl. In the following we V(R)=5(R+20)"(3R"~ 2R~ 4Ray + a5+ 2a0a,)-
make all these considerations quantitative, using the Rouse (5)
model to describe the dynamics of the chain.
The barrier height for the forward crossing ¥%=V(0)

B. The Dynamics —V(—ap)= 1/6ka8(a0+ 2a;) and for the reverse process, it

I'is Vp=V(0)—V(ay) = 1/6ka§(2a0+ a,). On crossing the

discussed in detail by Doi and Edwarfi20]. The chain is P&rier, a unit of thel polymer lowers itSS free energy by
approximated as a string, with segmethisads labeled by = V(a1) =V(—ag)=sk(ao—ai)(ap+a;)”. As we assume
their positionn along the chainn is taken to be a continuous 20<a1, AV is negative. The form of the potential is
variable, having values ranging from O kb The position of ~ Shown in Fig. 1.

the nth segment in space is denoted Byn,t), wheret is

time. In the Rouse model, the segment undergoes over-D. The activation free energy for end and hairpin crossings
damped Brownian motion and its time development is de-
scribed by the equation

We consider the continuum limit of the Rouse mode

In this section, we consider the first step and calculate the
activation free energy for both end and hairpin crossing. Ac-
JR(N.1) SR(N.1) tivati(_)n free energy can be obtained fro_m the; fre_e energy
g " —m " _V'[R(n,t)]+f(n,t). (1) functional of Eq.(2). This free energy functional implies that
ot an? at equilibrium, the probability distribution functional is
, o . exp(— (1kgT) fdn{3m(dR/dn)2+V[R(n)]}). The configu-
In the above/( is a friction coefficient for thenth segment. rations of the polymer which makes free energy a minimum

2 2
The termm[_& R(n,t)/on ].comes from the fact tha}t stretch—. are found fromSE[R(n)]/6R(n)=0, which leads to the
ing the chain can lower its entropy and hence increase 'tﬁquation

free energy. Consequently, the parameteis temperature

dependent and is equal tkgT/I2. [See Doi and Edwards d2R
[20], Eq. (4.5. They use the symbd for the quantity that m— =V'(R). (6)
we callm.] As the ends of the string are free, the boundary dn

conditions to be satisfied are {dR(n,t)/dn},—g
={dR(n,t)/on},_n=0. V(R) is the free energy of a seg- Notice that this is just a Newton’s equation for a ficticious

ment of chain, located at the positiéh V(R) represents a particle of massn moving in a potentiat- V(R) (see Fig. 6.
biased double well and has the barrier located riea0. This equation has four solutions that are of relevance for the
f(n,t) are random forces acting on théh segment and have barrier crossing problem for the polymer. The first two are:
the correlation function (f(n,t)f(ny,t;))=22kgTS(n (1) R(N)=—a,, (2) R(n)=a, which are the minima in the
—ny)8(t—t,) [see Ref[20], Eq. (4.12]. The deterministic ~free energy hypersurface. The first solution is the initial state,

part of the Eq(1), which will play a key role in our analysis, Where the polymer is trapped in the vicinity efay. This
is obtained by neglecting the random noise ternflin It is ~ represents the metastable initial state. The second is the most

stable minimum and is the final state. In addition to these

IR(N,1) 92R(n,t) two solutions, there are two more solutions which are of

0 =m 5 —=V'[R(n,t)]. (2 interest to us. These aredependent and correspond to end
an and hairpin crossings.

This may also be written as 1. End crossing

dR(n,t)  SE[R(N,1)] As we are interested in the case where the polymer is very
¢ a SR(n,t) 3 long, we can imagine to vary from —« to 0 and find a
saddle point in the free energy surface by searching for a
whereE[R(n,t)] is the free energy functional for the chain solution of the Eq.(6) satisfying the following conditions:
given by (a8) R(— =)= —a,, (b) the other end of the polymer has to be
at a point withR> R, [WhereR ., is the point wher&/(R)
@ has its maximum valde The Newton’s Eq(6) implies that
: E.=im(dR/dn)2—V[R(n)] is conserved along the path.
For the extremum path that corresponds to the end crossing,
E.=0. The ficticious patrticle starts &(—»)=—ay with
the velocity zera(this follows from the boundary conditons
The chain is assumed to be subject to a biased double welif the Rouse modgland ends up aR; at the “time” n=0,
potential, of the form shown in Fig. 1. The two minima are atagain with velocity zero. Her®;(>Ra4, IS the point such
—ag anda,, with ag<a;. There is barrier nedR=0 withits  that V(R;) =0. The total free energy of the polymer corre-

2
) +V[R(n,t)]

m(aR(n,t)
2

N
E[R(n,t)]:fO dn n

C. The form of the barrier
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V(R)

V(R) and -V(R)

R->

FIG. 6. The barrier and its inverted form. The barrier heights in
the forward and backward directions are shown. The dotted line
represents the path that determines the activation energy.

analogous to those that result from a semiclassical treatment
of quantum tunneling and thd, o,q iS just the tunneling
exponen.

. 2. Hairpin crossin
FIG. 4. End crossing. P 9

If one imagines to vary in the range { «,») a second
sponding to this configuration is activation free energy forsaddle point may be found by taking(—<)=—a, and
end crossing. AE.=0, we have;m(dR/dn)>=V[R(n)]  R(*)=—a,, so that the Newtonian particle starts a8,

and we find the activation free energy to be given by makes a round trip in the inverted potentiaV(R) and gets
back to the starting point. This obviously has an activation
R energy
Eavenff V2mV(R)dR. (7)
—ag

Ry
Ea’hpZZJ V2MmV(R)dR=2E, ¢ng. (8)
~ag

The end crossing is illustrated in Fig. 4. For the sake of
clarity, in Figs. 4 and 5, we have drawn the barrier as a
surface by adding one more dimension. For the oneThus the activation energy is exactly two times that for end
dimensional Rouse model, this extra dimension is not therecrossing[21]. The hairpin crossing is shown in Fig. 5.
However, for polymer motion through channels, discussed in

the Sec. IV D, this extra dimension is prese(titis of great 3. The temperature dependence

interest to note that the formulas of this section are quite As the parametem is proportional to the temperature
(=3kgT/I?), we arrive at the general conclusion that both
the activation energieg, ¢ng and E, , are proportional to
JT. For our model potential of Eq(5) we find Ry=aq(y

—¥?*—v) wherey=[1+2(a;/a,)]% and

Jmka)

Eaend=—5 —1(3¥°+1)V1+3y=3y(y*~1)

XIn[Ny(y=1/(1+y=+1+3y)]}. ©)

—Eact/kgT

The Boltzmann factoe for both end crossing and

hairpin crossing over the barrier thus has the farnionst T
Further, we find that both are independent\ofor large N.

Ill. THE RATE OF CROSSING
A. Hairpin crossing

We now calculate the rate of crossing in the two cases.
We first consider the hairpin crossing, as this has connec-
tions with material available in the literatuf6]. The meth-
ods that we use are quite well known in the soliton literature
FIG. 5. Hairpin crossing. [26] and hence we give just enough details to make the ap-
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proach clear. The Rouse model in the Ef). leads to the minimum. So, instead of using the quartic potential of Eq.
functional Fokker-Planck equation (5), we use the simpler cubic potential of H45). This has

no stable minimunicorresponding to the final statdut that
does not matter, because the quantities that we calculate do

dP 1 (N 8 P SE[R(n)]

—=— f dn kgT + P (10 . ! :
ot CJo  OR(n) SR(n) SR(n) not depend on its existence. Thus we use the potential
for the probability distribution functionalP. This equation +ag)|2 R+ag

implies that the flux associated with the coordinR(@) is Ve(R)=Vq Ry TR, ) (19
[26]

where we adjusV, and R, to reproduce the values fas,
p} (1)  and the barrier height; [27]. Solving Eq.(6) for this po-
tential, in the limit of an infinitely long chain and taking it to

extend fromn=—x to +, the saddle point that corre-

We now consider the initial, metastable sta_t(_a. A_s the r"."t%ponds to hairpin crossing is easily found to be given by the
of escape is small, we can assume the probability d|str|but|og

_ 1 SP  SE[R(N)]

to be the equilibrium one, which is quation
! Rhy(N)=—ao+R WAL 2 16
P= Z—Oexp[—E[R(n)]/kBT}. (12) hp(N)=—a0+Rg| sechh \/zn | . (16)
To determineZ, we use the conditionf/D[R(n)]P=1, In fact one has a continuous family of solutions of the form

where [D[R(n)] stands for functional integration. It is con- Rjp(N—ng), wherenge (—,%) is arbitrary and determines
venient to introduce the normal co-ordinates for small amplicenter of the kink-antikink pair. Now expanding the energy
tude motion around the metastable minimum and do th&[R(n)] about this saddle, by writindgR(n) =Ry,(n—ng)
functional integration using them. For this, we expand+ SR(n) we get

E[R(n)] around the metastable minimum, by puttiRgn)

= —ag+ 6R(n), and expanding as a functional Taylor series 1 2
in SR(n) and keeping terms up to second ordersiR(n). E[R(N)]=Egnpt Emf dnsR(n)| — -
Then an
1 (N 9 209 _
E[R(n)]zsz dnéR(n)< -7 ) e, + w2{1—3 sech[ wo(n—no)/2]} | SR(n).
0 n
13 17

We have defined, by puttingmwg=[*V(R)/dR’Ir=—a;:  For the potential of Eq(15) Eanp=(8Ro/15)y2mV,. The

The normal(Rous¢ modes are just the eigenfunctiogig(n) normal modes for fluctuations around the saddle are deter-
of the operatorH™s=(— %/an%+ wg), having the eigen- mined by the eigenfunctions of the operatéf= — 4%/dn?
value e, and satisfying the Rouse boundary conditions+ w3{1—3 sech[wo(n—ny)/2]} (1 is used to denote the
dP(n)/on=0 at the two ends of the string. We assumesaddle point The eigenfunctions aré) the discrete states

¥ (n) to be normalized. The superscript “ms” ™S stands Y5, Wi, and ¢} having the eigenvaluesi=—5w3/4, £}
for metastable. Now we can expanéR(n) as J6R(n) =0, ande3=3w3/4 and(b) the continuum of eigenstates
=2 Cxif(n) so that the expression for ener@hd) becomes  with eigenvalues of the form§=w§+ k? (more details are
. given in the Appendix The existence of the eigenvalaé
- 2 =0 comes from the freedom of the kink-antikink pair to
ELR(m]= 2 mEk EHCic- (149 have its center anywhere on the chdin.the polymer prob-
lem, this just means that the hairpin can be formed anywhere
We now do the functional integration using the varialdgs  along the chain.In the following, 2, would stand for sum-
Then the normalization conditioiD[R(n)]P=1 becomes mation over all the eigenstates, including both the discrete
(1/Zo)11, S dc, exd —imBeci]=1. Evaluation of the Gauss- and continuum states while a symbol such33s,; means
ian integrals in this expression giv@g=1I1,(27/mBe,)Y2  that the bound statg? is to be excluded from the sum. Now
Now we consider the vicinity of a saddle point, where thewriting SR(n)=3,.,c{yi , we get
probability distribution deviates from the equilibrium one.
We first consider the saddle point which corresponds to hair- 1
pin crossing. The potential of Ed5) is rather difficult to E[R(N)]=Egnpt EmE si(ci)z.
handle as we have not been able to obtain analytic solutions k=1
to the Newton’s equatiof6). In determining the crossing of
the barrier, the key role is played by the quantitigs and
the height of the barrier for crossing in the forward direction -
V;. The quantities that we calculate in this section have no 6(Co,C1, - - ')exp[ B E[R(n)]]

dependence of the behavior of the potential near the stable P= Zy kgT

We write the probability density near the saddlg 26]

(18
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Wheree(cﬁ,ci, ...), is afunction that must approach unity B. End crossing
in the vicinity of the metastable minimum. Near the saddle, | thjs case, the analysis is similar to the above. The op-
one can calculate the flui in the direction ofc} using the

eratorA* is the same as earlier. However, there is an inter-
analog of Eq(11):

esting difference. In the hairpin case, the boundary condi-
tions onyj. (dyi/dn=0, at the two endswere atn= *,
1—_3[ P Mp] while in this case, they are ai=0 and atn== (i.e., the

k= B :

4 3C§ ‘9C§ boundary value problem is now on the half-linBue to this,
one has to rule out the odgf that exists in the hairpin case
Using Egs.(17) and (18) we get as they do not satisfy the Rouse boundary condition
dz,bﬁ/d n=0 atn=0. So we consider only the even solutions.
keT 96(ct,ct ) Thus the eigenvalue at zero is ruled duthich is quite al-
t B 0:%1s - - - . .
I Vv a— right as end crossing can occur only at the end and not any-
of JCy where else, but we will put in additional factor of 2 as it can

occur at any of the two englsThe discrete spectrum now has
}, (19 only the eigenvalues§= —5wj/4 ande}=3wf/4. The ex-
pression for the rate is

1 1
z 12

X - _
exp{ kBT ( Ea,hp+ 2 kaél Sk(ck)

1/2

In a steady state, there is flux only in the unstable direction. keT [ m[eg|
l'eng€XP(— Ea,end/kBT)i (24)

That is, onlng is nonzero. This means tha&tcan depend e“d:T 2mkgT

only on c(*), which implies thaijg must have the form
where

1 /1
cE_ to 12
=Aexpg ———=|=m c , 20
o p{ kBT(Z 2 oo )] (20 [T (2mkeT/mef)*?
k£0

whereA is a constant, to be determined. Using the &%) lend= Tl (2mksT/ )1/2'
TKB m8k

in (19) we getdd(ch)/aci=—Aexp{—(m2kgT)|e§|(ct)?). .
The fact that(cg) must approach unity as— — o, enables
one to get A=(m|s§|/27-rkBT)1’2. Hence 0(03) In this product, there ard—1 terms in the numerator arid
=(m|s§|/277kBT)1’2fw¢dzexp{—(1/Z<BT)m|s§|22}. Now terms in the denominator. One of the—1 terms is

K the bound state with an eigenvalué= 3w§/4. Separating
this out from the product, one can writel g
=(2m/BrkgTwd) Y gng, Where |gn= (e /M= oe) Y2
The evaluation of this product involves some subtlety and is
done in the Appendix. The result is

the net flux crossing the barrier is found by integratir@g
over all directions other thag, . The integrals over alt},
exceptc} is straight forward. Ax¥=0, fdc} needs spe-
cial handling. The integral, as is well known, is performed
by converting it to an integral over the kink-antikink

position, no. That is, [dci=afdn, where a? Eme?
=f°ﬁmdn[ﬁth(n)/an]2= Eanp/m. Hence the rate becomes kend:—oexp(_ EaendKsT).
2\2m¢ ‘
1\ 12 12 12
m . .
N :kB_T< <ol ) 2mkeT (Eavhp Accounting for the existence of two ends leads to
P Zo{ \ 2mwkgT k>1 m|si| m
Eono/KsT 21 5Mmaws
Xexp(—Eanp/ksT). (21) Kawo ends:m exp —Ea endKsT). (25)
The notationll,- ; is used to indicate product over all eigen-
values ofH¥, except the first two. On using the expression IV. THE KINK AND ITS MOTION

for Z,, : i . :
A. The kink solution and its velocity

keT{ m |32
khp:i( 5 T) 0 : would the polymer take to cross it? We denote this time by
4 The |25/m teosss 1O calculate this, we first look at the mathematical
_ solutions of the deterministic EqR). The simplest solutions
Xexpl—Egnp/keT), @2 of this equation arR(n,t)=—ay and R(n,t)=a;. As we
where Ihp:(Hksk/Hk>28bl/2- This infinite product is saw earlier, thes_e correspond to the_ polymer being on either
. 3 . 15 3 side of the barrier and these are just mean values of the
evaluated in the Appendix and is found to bg="3'wo.  osition on the two sides. Thermal noise mak¥s, t) fluc-
This leads to tuate about these mean positions which may be analyzed
using the normal coordinates for fluctuations about this mean
position. Each normal mode obeys a Langevin equation simi-
lar to that for a harmonic oscillator, executing Brownian mo-

led|E 12 Having overcome the activation barrier, how much time
€0 a,hp

y 5NMw (156, hp
W ans | 2akgT

12
) exp—Eanp/keT). (23
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tion. In addition to these two time independent solutions, Eqwhich is to be determineds, are a set of functiongthe

(2) has a time-dependent soluti¢a kink) too, which corre-  Rouse modegsto be defined below an¥,(t) are the expan-

sponds to the polymer crossing the barrier. We analyze thsion coefficients. This may be put into E@) to derive an

dynamics of the chain, with the kink in it, using the normal equation of motion for(t). Neglecting kink-phonon scatter-

modes for fluctuations about this kink configuration. Ouring leads to[24]

analysis makes use of the techniques that have been used to

study the diffusion of solitong26]. a(t)=v+&(t)/C. (29)
As is usual in the theory of nonlinear wave equations, a

kink solution moving with a velocity may be found using

the ansatzR(n,t)=R¢(7) where 7=n—uvt [26]. Then Eg.

(2) reduces to

We introduce a new variable by n=n—a(t), and define
Po(n) by drRs(n)=Ciho(n) with

d’R;  dRg C2=(dpRy(n)|e”" M FyR¢(N))
m +tvi{——=V'(Ry). (26)
dr? dr 2 a;—ag
=3z7w cs{ 27-ra Ta (a;—ag)agay (30
If one imaginesr as time, then this too is a simple New- 0t

tonian equation for the motion of particle of massmoving 54
in the upside down potentiat V(R). However, in this case,
there is a frictional term too, an@l{/m is the coefficient of 1 - o
friction. This term makes it possible for us to find a solution ~ &(t)= = dnygg (n)esMCMfn+a(t),t].
for quite general forms of potential. For the potential of Eq. ¢ Joverthe chain

(6), we can easily find a solution of this equation, obeying (31)

the conditionsRg(7) = —a, for 7— — andRy(7)=a, for

7% The solution is &o(t) is a random function of time, having the correlation

function
—(_ Tw(ag+a,) Tw(agtag))—1

Rolm) =T e ay (L e =, (20 (£ &o(tr)= (1~ 1) (2KksT/)
with w=k/m. The solution exists only if the velocity has o _
the valuev = (\Vmk/¢))(ag—a;). This solution is a kink, oc- X f ~dne’™™ yo(n) ]2
curring in the portion of the chain inside the barrier. We shall over the chain
refer to the point withr=0 as the center of the kinkActu- (32
ally one has a one-parameter family of solutions of the form
R«(7+ ), where 7, is any arbitrary constarjtAs r=n  For the potential given by the E¢5) one gets
—uvt, the center of the kink moves with a constant veloeity
Note that this velocity depends on the shape of the barrier.
Thus for our model potential witlay<a,, havingAV<O0,
this velocity is negative. This implies that the kink is moving
in the negative direction, which corresponds to the chain X (3a;—ao)(3ap—ay). (33
moving in the positive direction. That is, the chain moves to ] ] ) »
the lower free energy region, with this velocity. If the barrier ~ Equations(29) and(30) imply that the kink positiora(t)
is symmetric, therag=a,(V;=V,) and the velocity of the ex_ec.ut(_es Brownlan_ mot_|on wlth drift. As is negative, the
kink is zero. drift is in the negative direction.

a;—ag
ap+a

(Eo(t) éo(ty))= 5(t_t1)kBT/(2§aoa1)39({ 2w

B. Fluctuations about the kink C. The crossing timetqss

We now analyze the effect of the noise term present in For the polymer to cross the barrier, the kink has to go in
Eqg. (1). The center of the kink can be anywhere on thethe reverse direction, by a distance equaNoAs the Eg.
chain—which means that the kink is free to move on the(29) is just that for a particle executing Brownian motion
chain. Actually, as the position of the kink is fixed in space,With drift, we can estimate the time of crossing as a first
this means that the polymer is moving across the barrier. ThBassage time. As the kink starts at one end, we take the
kink would also execute Brownian motion, due to the noisgnitial position of the particlea to be N and calculate the
term. The motion of the kink caused by the noise terms is &verage time required for it to attain the value 0, which
well studied problem in the literatuf@6] and one can make Would correspond to the polymer crossing the barrier fully.
use of these methods. Following “instanton methods” of Writing the diffusion equation for the survival probability

field theory[28], we write P(a,t) for a Brownian particle starting &=N at the time
t=0 and being absorbed at=0, we get
R(n,H=Ry(n—a(t)+ >, X()dp(n—a(t),t). (28 aP(a,t) _ #*P(ait)  dP(at)
p=1 =D —v . (34)
ot (7a2 Ja

We have allowed for the motion of the kink by taking the
kink center to be aa(t). a(t) is a random function of time Here, the diffusion coefficient
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1t i in the chain whose width is of the same order as that of the
D= 2j dtlf dt(éo(t)&o(tn)) barrier. As the polymer is intially in émetastablepotential
2tC<Jo 0 well, the entropic contribution to the barrier that Park and
3k,T  [m(3as—ay)(3a,—ay) a—a Sung[19] consider does not exist in our case. Such a poten-
_ B \/: 1 F07RTT0 i tar( 2ot 0 tial is realistic, in cases where the polymer is subjected to a
8w Vk ala’(a;—ap) aptay driving force (for example, an electric fieJdAs the kink is a
(35) localized object, its diffusion coefficient has mb depen-
dence and our results are different from those of Park and
Equation(34) is to be solved, subject to the initial condition SUng[19]. In the case where there is no free energy differ-
P(a,0)= 8(a— N) and with absorbing boundary condition at €Nce between the two wells, our crossing time is proportional
a=0 [i.e., P(04)=0] andP(x,t)=0. It is easy to solve the t0 N (in contrast toN® of Park and Sung while if there is
above equation in the Laplace domain. The result for th%l f(ree enterg)t/t((j;\flffr?rl‘ace:kOdechOSS)g}g time is I3>r0F)Ct)rt|0n<’=II to
Y _ (o o i in contras of Park and Sung In a very recent paper
Laplace transfornP(a,s) =[5 dtP(a,t)exp(-s}) is [22], Park and Sung have considered the Rouse dynamics of
a short polymer surmounting a barrier. The size of the poly-

_ —N)v— V. 2la— ; . . . :
__ 1 | faNe-vibstudaN mer is assumed to be small in comparison with the width of
P(a,s) e . . "
J4Ds+v? the potential barrier. Consequently, the transition state has

(a—N)v— V4Ds+v?|a| - V4Ds+v°N
—€ 2D

almost all the segments of the polymer sitting at the top of
} (36) the barrier, leading to the prediction that the activation en-

ergy is proportional tdN. This leads to a crossing probability
The Laplace transform of the survival probability is given by that decreases exponentially with In comparison, as found

P(s)=/*.daP(a,s) and is found to be in Sec. 11D, the free energy of activation for the kink mech-
o ’ nism does not depend on the length of the chain. Hence, the

_ 1 —Nv—V4Ds+v°N mechanism is the favored one for long chains.
P(s)= s l-e 20 (37)

D. The net rate

The average crossin time is iven b . . .
g g ¢ Meross As the actual crossing is a two step process, with activa-

=limits_~.oP(s)=N/(—v), if v<0. As v is proportional . o the first step and kink motion as the second step, the
vmk, assuming/(R) to be temperature independent we find hot rate of the two has to be a harmonic mean of the two

teross~N/A/T. This is a general conclusion, independent of ates. For a very long chain, the motion of the kink has to
the model that we assume for the potential. If the barrier iyecome rate determining. In the experiments of Kasianowicz
symmetric, the kink moves with an average veloaity 0. [13] (see Sec. Y, one is directly observing,ssand hence

Taking thev—0 limit of P(s), we get our considerations on kink motion must be directly appli-
cable. Also, in the case of translocation of biological macro-

E(s)= E(l—e‘ v“§N/\e‘5) (39) molecules, considereo_l in _Sec. VI there does n_ot seem t_o be

S any free energy of activation and then the rate is determined

by t.ossalone. Recently, the motion of long chains in micro-
so that the survival probability becomes fabricated channels has been investigated by étaai. [14].
In contrast to the situtation for a pore, there is an additional
dimension available for the molecule to form a hairpin, viz.
Zﬁ : (39 perpendicular to the direction of movement of the molecule.
Consequently, in overcoming the barrier, both end crossing
This expression for the survival probability implies that the@nd hairpin crossing can occisee Figs. 4 and)5 They
average time that the particle survivestjs,.c~N%D. For  found the activation energy to be independenipin agree-

the symmetric barrier, the value & may be obtained by Ment with our analysis. They also found the activation en-
taking the limit a,—a, and one finds D  €rgy to be inversely proportional to the electric fi€ldAs-

P(t)=Erf(

=(3kBT/4§ag) J/K and thustese N2/ T32 suming the barrier to be given By(R)=0 for R<0 and
In their analysis, Park and Sufg9] considered the pas- V(R)=AT-BER (40)

sage of a polymer through a pore for which the barrier is

entropic in origin. Consequently, it is very broad, the width

being of the order oN. Hence they consider the movement for R>0, (A,B are constants—the barrier is similar to the
as effectively that of the center of mass of the polymer whichone in field emissionwith AT representing the entropic con-
diffuses with a coefficient proportional toN/ As the center tribution to the barrier height anBER the lowering of the

of mass has to cover a distanbe the time that it takes is potential due to the electric field, one easily getEe.q
proportional toN®. If there is a free energy difference driv- =4m(AT)%/(3BE)~T?/E. The inverse dependence 6iis

ing the chain from one side to the other, then the time idn agreement with the experimental observations. Note that
proportional toN?. In comparison, we take the barrier to be with the potential of Eq(40), the problem becomes analo-
extrinsic in origin and assume its width to be small in com-gous to field emission from a metal, wi&T being the work
parison with the length of the chain. The crossing occurs byunction. Also,Ey,=2E.ng. Experimental results show that
the motion of the kink, which is a localized nonlinear objectthe longer molecule crosses the barrier faster. This means
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negative side W = analysis predicts that, . is inversely proportional to the
square root of the applied potential difference.

VI. HOW DO BIOLOGICAL SYSTEMS LOWER
THE ACTIVATION ENERGY?

V(R)

If there was a high activation energy-kgT) for the
translocation of biological molecules across membranes, the
process would be unlikely and hence, biological systems
would not be able to function, if they depended crucially on
such transfers. As translocation seem to be very efficient in
biological systems, one needs to look at the mechanism that
R-> evolution has designed to reduce the barrier. The destination

FIG. 7. The free energy per segment of the polymer, shown as §€f€ITed to as sortingf a biological long chain molecule is
function of the position of the segmefior the case where DNA is  deétérmined by a sequence of units at the beginning of the

drawn through a pojeAs the segment goes from the left ¢ e) to chain, ref(_arred to as the signal sequence. For example, pro-
right (+ve), the free energy changes byAV. teins destined to the endoplasmic reticulum possess an amino

terminal signal sequence, while those destined to remain in
the cytosol do not have this. If one attaches this sequence to
@ cytosolic protein, then the protein is found to end up in the
endoplasmic reticulunisee Ref[9], Fig. 14.6. The way the
sequence works is simple. If the pore is hydrophobic and the
chain hydrophilic, then the signal sequence is hydrophobic,
V. DNA DRIVEN THROUGH A PORE so that the signal sequence has a low free energy inside the

positive side

that theN dependence df,,, causes the hairpin crossing to
be the dominant mechanism of crossing in these exper
ments.

. . . pore.
We now discuss a model for the potential which hopefully T : ; )
can mimic the experiments of Kasianowiet al. [13,25, We qualitatively analyze this type of problem in the fol

Under th diti £ 1h . ¢ the DNA strand i lowing, using the Rouse model. The way to model the situ-
nder the conditions of the experiment, the Strand 1S4ti6n would be to have a potential that is dependent upon the
negatively charged, and under the influence of a potenti

. o . =~ .Segment numben in the chain. Hence, in the equations of
difference, it migrates from the side where the potential isye"poyse model the potential term would have an explicit

negative (cis), to the side where the potential is positive de ;
- dependence on. Let us denote the length of the signal se-
(trang. We shall assume that the charge on the DNA is uence bys. The simplest model would be to have a poten-

SD?\;iad u?r:fornjly p(;/erhall Its ;e%me][]ts. Then, atﬁegmenih al which is attractive, for 82n<s and which has the shape
i o_r:j eACItSh side nas f‘ Igher trr]ee e?]etrhgy an _ct)n a barrier fors<n<N. The transition state is determined
rans side. As the segment passes throug e pore, it wouldl - "Newton-like equation

interact with the walls of the pore, which too are charged. So
one expects the free energy per segment of the chain to
change as shown in Fig. 7. It is possible that the pore could d°R Y R 42
represent a region where the free energy is larger and hence mﬁ_ new(M:R), (42
the translocation process is activated. The pore is about 10

nm wide, and therefc.)re., at any time, ‘her?‘ should be MOTGjith n playing the role of time(in the following we shall
than_ 10 nucleotides in it. As this number is not_ small, OUl'efer ton as the time for the motion of this ficticious par-
continuum approach should be a good approximation. W%cle) We take the potential to be such that

take the pore width to b&v and model the potential inside '

the pore by V(R)=AV(R/w)?(2R/w—3) for 0<R<w _

while V(R)=0 for R<0 andV(R)=—AV for R>w. This Viel,R)=—V(R) if 0<n<s and

particular functional form was chosen so that the potential =V(R) if s<n<N.

and its derivatives are continuous everywhere in space. For

this model potential, the equation for the kink is This corresponds to a particle moving in a time dependent

potential, which switches from being repulsive to attractive
5 at the times. The shape of this time-dependent potential is
—6AV(Rs/w)(Rs/w—1)=0. shown in Fig. 8. The boundary conditiofdR(n)/dn},
(41) ={dR(n)/dn},,—=0 imply that the particle has to start and
end with zero velocity. Let us imagine that the particle starts
N at the pointR, (see Fig. 8 As the potential that it feels up to
The kink solution is Ry(7)=w(1+e AV/Mr=7/W)=2  ihe times is repulsive, it follows the path indicated by the
where 74 is an arbitrary constant. This solution exists with dashed line in the figure, and the conservation of energy may
{v=—5ymAV/w. Thus, we findt.ssto be proportional to  be written assm(dR(n)/dn)?+V(R)=V(R,). Let it reach
Nw/({VymAV), i.e., the traversal time is directly propor- the pointRg after a times. At this time, the potential is
tional to the number of units in the polymer, in agreementswitched fromV(R) to —V(R). From this time on, the equa-
with the experiments of Kasianowiet al.[13]. Further, our  tion of conservation of energy would be

d’Ry(7) dRy(7)
m 4.2 + v dr
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path of the particle [E— hydrophilic hydrophobic

VR) & -V(R) >

Ro K

R->

FIG. 8. The full curve is the plot of the potential for the motion
of the particle for B<n<s, while the dotted curve is the potential FIG. 10. This is not a possible transition state.
for s<n<N. The particle starts &R, at the timet=0, moves on
the full curve and reacheB; at the timen=s. At this time, the simultaneously. In spite of these, nature does seem to use

potential suddenly switches to its negative. The particle then movegis as an inspection of Fig. 14-14 of RE®] shows.
on this potentialdotted curvg The path of the particle is drawn

with dashes and the direction in which it moves is shown by the
arrows. VII. CONCLUSIONS

1 (dR)\? We have considered the generalization of the Kramers
- _ _ _ escape over a barrier problem to the case of a long chain
Zm( dn ) V(R)=V(Ro) ~2V(Ry). “3 molecule. It involves the motion of chain molecule Nf
segments across a region where the free energy per segment
This is the equation of motion of the particle fern i_s higher, SO that_ it has to cross a.barrier._We consi.der the
<N. We are interested iN— limit and we have to satisfy IMit where the width of the barriew is large in comparison
the boundary conditiofd R(n)/dn},_y=0 at the end of the with the Kuhn lengthl, but small in ‘comparison with the
chain. In the particle picture, this is equivalent to the condi-tOtaI IengthNI of t.he molecule. The limit wherbl|<w has
tion that the total energy of the particle obeying E42) been considered in a recent paper by Park and mgwe
must be zero. This implies th#(Ry) = 2V(R,). For a given  YS€ the Rouse model and find there are two possible mecha-
s, this uniquely fixes the values of the two variabRgand nisms that can be important—end crossing "’.‘”d hairpin cross-
R.. ing. We calculate the free energy of activation for both and
SThe net transition state is shaped as a hook and the h how that bOth. have a square root dependence on the tem-
drophobic part of the chain is completely in the short arm o era“.”eT’ leading tq a r_10n-Arrhen|us for.m .for the Fate: We
also find that the activation energy for hairpin crossing is two

the hook(see Fig. 9. A configuration like the one in Fig. 10 i th tivati ‘ q ina. Insoite of thi
where the whole of the hook is formed by the hydrophobic Imes he activation energy for end crossing. Inspite ot this,

part is not a transition state. The transition state in Fig. 9for Io_rtlg inqughfchalnts_, Wherebtheihgegme_try c;f thedsysftems
though it seems likely to occur in crossing between quuidberml S: hairpin formation can be the dominant mode ot es-

Y : e . in the experiments of Harml. [14].

liquid interfaces, it seems rather difficult to form in the caseCapPe as seen in t S )

of passage through a pore as there are two difficultigshe Wh'.le in the short Ch"%'” limit Park and Sufg2] f_md the
chain has to bend to form the hoof2) the pore has to be activation energy to be linearly dependentMnwe find that

wide enough to accommodate the two strands of the hoo(;\j/r long chains, the activ_ation energy is independeniof .
e also show that there is a special time-dependent solution

of the model, which corresponds to a kink in the chain, con-
hydrophobic fined to the region of the barrier. In usual nonlinear problems
with a kink solution, the problem has translational invariance
and the soliton/kink can therefore migrate. In our problem,
the translational invariance is not there, due to the presence
of the barrier and the kink solution is not free to move in
. space. However, the polymer on which the kink exists, can
hydrophilic move, though the kink is fixed in space. Thus, the polymer
goes from one side to the other by the motion of the kink in
the reverse direction on the chain. If there is no free energy
] difference between the two sides of the barrier, then the kink
T — moves by diffusion and the time of crossifg,ss N%/ T2
If there is a free energy difference, then the kink moves with
a nonzero velocity from the lower free energy side to the
FIG. 9. The transition state for a hydrophilic chain with a hy- other, leading td ¢ oss~ N/ JT. We also discuss the applica-
drophobic signal sequence, passing through a hydrophobic por®ility of the mechanism to the recent experiments of Kasian-
Compare with Fig. 14-14 of the book by Albess al. owicz et al.[13], where DNA molecules were drawn through

barrier due to hydrophobic pore
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a nanopore by the application of a potential difference. Oukhich may be written as (const)d&s+ 4k)], so that the
result thatt .cs~ N is in agreement with these experiments. phase shift
We also consider the translocation of hydrophilic polypep-

tides across hydrophobic pores. Biological systems accom-

plish this by having a hydrophobic signal sequence at the end

that goes in first. Our analysis leads to the conclusion that for

such a molecule, the configuration of the molecule in theThe phase shift for the odd solution is just the same. Hence
transition state is similar to a hook, and this is in agreementhe total change in the density of states is given by

with presently accepted view in cell biolog9].

—3wo(wg—4k2))

o(k)= arctar{ k(—Tg"—‘lkz)

(OFs) 2(1)0 6(1)0

2d5(k)_ 2 N N
k2+wg 4k2+wg 4k2+9wg

An(k)=— — ==~
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The infinite product that is to be evaluated is

2. Evaluation of the infinite products

APPENDIX 112
1. The eigenfunctions of the HamiltonianH * l_k[ &k
The Hamiltonian H*=—$?%/9n’+ w3{1— 3 secR(won/ hp= L (A1)
2)} has the following eigenfunctiongunctions are not nor- kll €k
malized and eigenvalues, if allowed to be in the range
(—o,). whereg represent the eigenvalues of the continuum states

of the HamiltonianA™s=(—¢%/9n’+ w?) and ¢{ are the

a. Discrete states ) ~ i o -
eigenvalues oH", satisfying the boundary conditions at

(1) o(n)=sech(won/2); eo=—5wj/4, =+o. The above product involves only the continuum ei-
(2) ¢1(n)=sech(won/2)tanhen/2);  &;=0, genvalues of the two Hamiltonians. Now,
(3) p(n)={—3+ 2 coshfwgn)} seci(wyn/2);

£,=3wal4.

1
Inlhp=5 E Insk—z Insi
. 2 k k>2
b. Continuum states

The continuous part of the spectrum startSaét The =}fmdk|n(w§+ k2)[n(k)—nﬁp(k)], (A2)
potential is reflectionless. Corresponding to an eigenvalue 2Jo

wg+k?, there are two eigenfunctions, which we write as an

odd function and an even function. They are where then(k) stands for the density of states in the con-

tinuum, for the HamiltoniarH® and nj; (k) for the Hamil-

(1) t/fever(n)=8k(k2+w%)COS{kn)—Swo(Skz tonian H*. The change in the density of statesAgi (k)
. = —n(k)+nﬁp(k) and is easily evaluated from the informa-
+3wg)sin(kn)tani( wen/2) tion given in Sec. 1 of this Appendix. It is
—30(0)(2) cogkn)tantf( wyn/2) A (k) wo ) 2wy . 6w 2
n =— —
+ 1503 sin(kn)tani( won/2), P wotk? 0o+ 4k? wg+4ak?|

Using this to evaluate the integral in the E§2) we get
(2) houd )= —8k(k2+ wé):sin(kn)—3w0(8k2 g g a2 g
15

+3wj)cog kn)tank wen/2) lhp=5 3. (A3)

+30kw3 sin(kn)tantf( won/2)
b. End crossing

+15w3 cog kn)tant?( won/2).
o coskn) (won/2) The product that we wish to evaluate is

In the limit n— =, the even function becomes 1/2

Hgk

k

Yeved N) = 2K(4k?— 11wg) cogkx) | enc= (A4)

24 2\ ef
*+6wo(— 4k + wg)sin(kx) ey K
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This infinite product in the above equation is over the con-

tinuous spectra of the two Hamiltonians. The change in the
density of states is now just half of the density of states for

the hairpin case. That i ng,(k) = %Anhp(k). At first sight,
this leads to a problem, such #§dkAng,(k)=—3/2, in-
stead of the expected @sH* has two bound states while
H™S has nong The solution to ths is quite well knownH™s
has a state with eigenvalux% where its continuous spectrum

starts, and half of this state is to be considered as a bound

state. Then, we can write the above as

KRAMERS PROBLEM FOR A POLYMER IN A DOUBLE WELL

939
1= 2,12
lena=exp = 5 | - dkAnend K)In(wg+k?) Jaoo.
0
Hence we find
15 1/2
|end:(?) Wq (A5)
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