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Perturbation theory for the kink of the sine-Gordon equation
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A singular perturbation theory is developed to investigate the kink propagating in systems governed by the
sine-Gordon equation with perturbations. The outstanding characteristic of the present theory lies in that the
dynamic equation and the dispersive wave as well as the “translation mode” are consistently determined in a
natural manner, involving no sophisticated derivations pertaining to the inverse scattering transform. A distinct
and strict linearization for the subject is introduced. Some notable cases are reformulated by the theory.

PACS numbeg(s): 41.20.Jb, 52.35.Mw

The study of solitons under the influence of perturbationkink, and then calculated the first-order correction through a
is a subject of considerable significance for both applicatiorconstructed radiative Green’s function. They stated that their
and theoretical researches. From the point of view of thénethod is partially based upon the inverse scattering trans-

invalid even for linear systems suffering from weakly non- "€Presentation. Foget al. [10] put forward a direct pertur-

linear perturbationfl], which certainly hold true for solitons bhi{i?(?nf(hsv?{g rg\:vﬂ\]/il gé’%eﬂ' cI)r:T?gaeggna\t;\[/ietﬂtiﬁg Iﬁnrrilt?r% to
affected by p_erturbauons. Among a number of techn|que§ t alue of unity, based on their expectation that perturbations
handle this kind of problems, the most popular and effectlven

- . . ) “have little influence on the kink with large velocity. This
one utilized to determine an asymptotic expansion that igheqry s founded on the basis of eigenfunctions of a Schro

uniformly valid is the technique of multiple scalgll. Itwas  ginger operator being of a simple form. Some of their results
gctually employed in the development of perturbat_lon theo-[lo] were discussed by othefd1,17. Moreover, in this

ries for the KDV equatiori2] and the nonlinear Schdinger  scheme, Flesch and TrullingéL3] investigated the static
equation[3] in an attempt to prevent the occurrence of seCukink, Analytical forms for the Green’s function are derived
lar terms. Now, it is universally acknowledged that, at theand expressed in terms of “modified” Lommei functions.
presence of perturbations, solitons not only modify theirin addition to above formal theories, there is still a more
shape by a correction of a linear dispersive wave but alspopular and simpler approximate scheme designated to de-
undergo a slow change of their paramefdis These are two termine moving equations for the kifk2,14 by making
basic features of the soliton’s perturbation problems. We reuse of modified conservation laws. An apparent disadvantage
alized that a perturbation theory for a soliton should depicof this scheme is generally remarked to be that it is useless
these in a natural manner, which will provide a more directfor the understanding of linear elementary excitations in the
insight into fundamental aspects of such problems. The sgystem.

called “two timing” technique, or its archetype of the more ~ From the above introduction, a plain and general theory is
general method of multiple scales, should be a canonical wajjeeded for this important subject. In the present paper, a

to characterize these problems in the framework of direcflirect perturbation approach to investigate the motion of
perturbation approaches. kink in the systems described by the sine-Gordon equation

In the study of nonlinear wave phenomena the sineWith perturbations will be developed. In this scheme, we

Gordon equation frequently emerges from a vast range OeFmpon the derivative expansion method to linearize the per-

: C ; turbed sine-Gordon equation in the coordinate frame at-
physical applicationg4,5]. As an important example, the . , T .
o : ached to the moving kink. In order to eliminate potential
m°d?' of long Josephson transmission line, which recentl ecular terms in the solution, parameters of the kink are first
received renewed interest due to the appearance of high;

: t ductdial i licabl ssumed to be dependent on slow time scales. Although this
emperature superconductd®), provides us an applicable igtinet process of linearization for the perturbed sine-

problem to investigate the kink's dynamics under the action;y.qon equation involves somewhat complicated calcula-
of external force and some dissipations. This topic receivegons its idea is plain and strict. After the linearization, we
much attention in previous studies as wllg]. It is well  take the Laplace transform to reduce the linearized equation
known that the sine-Gordon equation is an integrable ongy an ordinary differential equation that is, by virtue of a
and possesses a number of remarkable mathematical prop@lirther function transform, converted into a form appropriate
ties. The most celebrated inverse scattering transform can ler solution by the method of eigenexpansion. Naturally, an
used to formulate the kink solution and its perturbationeigenvalue problem that is not self-adjoint is extracted from
theory[9]. But this elaborate mathematical feat seems a littleour derivation, and its eigenfunctions are used to construct a
abstruse for most physical researchers, and it is difficult t@omplete basis underlying our solution. The solution turns
derive an explicit expression for the dispersive wave from arout to contain two types of secular terms that are directly
associated linear integral equation. A two-stage scheme wasoportional tot andt?, respectively. Imposition of secular
thus proposed by McLaughlin and Scpi. They first com-  conditions results in two equations governing the slow varia-
puted slow modulations of velocity and initial position of the tion of the parameters in time. The final solution for first-
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order correction consists of two branches of dispersive wave We would like to indicate that we are now in the frame

traveling in opposite directions and a localized state usuallgomoving with the kink. Obviously, the zeroth-order E6)

referred to as the “translation mode.” requires tham= 1/\/(1—a?). In consequence, the first-order
We start with the perturbed sine-Gordon in the form Eg. (7) becomes

Uy~ Uy tsinU=eP[U], 1) Ug—2mau,—[u,,+ (2 secR z—1)u]=M(z)  (8)

wheree is a small positive parameter, aljU] is a func- with
tion of U and its derivatives with respect to time and space. _
If perturbations are absent, i.e., by settingo zero, Eq(1) M(2)=P(2)+2may io(2) +4m*a’a; io(2)
admits a kink solution given by _
+amPay i (2), )

U(t,x)=4 arctane™>*-vt=x"), ) .
where o(z) =sechz, y(z)=sechz(1—ztanhz), and
wherev and x’ signify the kink's velocity and initial posi- 4, (z) = sechztanhz. Thus the distinct linearization for the
tion, respectively, anch=1/y1—v?% Now, we consider Eq. sine-Gordon equation has been completed. Apart from the
(1) with an initial stateU(0x)=4 arctane™ X)) |n this  neglect of high-order terms of, no approximation is in-
case, the initial profile cannot travel as that described by Egvolved. The reason we carry out such a somewhat compli-
(2), but it is reasonable to suppose that it is a slowly varyingcated process is to preliminary provide extra freedoms to
kink shape plus a small correction. Thus, we first introduce demove secular terms that will appear in the solution of Eq.

series of slow time scalég=¢"t and then write the solution (8). Now, we proceed with the solution by use of Laplace
of Eq. (1) as transform to Eq(8), which gives

U(t,2,t,)) =U©(2) + eu(t,z,{t,}) + higher-order terms, s?u—2masy—[u,,+(2 seck z—1)u]=s"'M (Z)-( )
3 10

where U(©)(z) =4 arctané? figures a moving kinkz=m[x Equa_tion(lO) is hard to handle d_irgctly; hence we dev_ise two
—e L({t.)— x'({t,)] is the coordinate variable in the funct'lon transforms to redupe it mto_forms approp_rl_ate for
frame co-moving with the kink and the higher-order terms ofSolution by the method of eigenfunction decomposition. By
e are neglected in our subsequent calculations. Since thedetting u=ve "1 and u=y’e" M@ 1)Z respectively,
time scales introduced above will be treated as independend inserting them into Eq10), we get

variables, the derivative with respect to time should be re-

placed byd,=di+ed; + - - -, which is the so-called deriva- 2ms,—Lo=s"'M(z)em@" 1)z, (13)
tive expansion$l]. If we further select, z t; as indepen- - . .
dent variables and just consider up to the first ordet,dhe 2mw,+Lo’ = —s"IM(z)em@ 1z (12
second-order temporal and spatial derivatives in(Egmust R ~
be replaced by where L is an ordinary differential operator defined Iy
=d?/dZ?+ (2 secR z—1). Equationg11) and(12) are inho-
2 92 92 92 9 92 mogeneous ordinary differential equations in nature. As
—= —2—2ma—+m2a2——32am —+tz— usual, we must first consider its homogeneous counterpart,
a2 gt odtoz 072 Nz  p72 - - . . . .
which will result in the following eigenvalue problem:
& a  2my 2 -
+e2mlay] — —ema, — +e—z—— Ly=\y,. (13)
e2m athazz emay, - +e— 2o z
) 5 5 The above eigenvalue problem is apparently not self-
/ J d adjoint, its eigenstates consist of a continuous spectrum
- —_—— + T ; ; .
82th1¢9taz Szma&tlaz Szat&tl @ ¥(z,k) with the eigenvaluen=i(k?+1)/k and a discrete
stateyy(z) with the eigenvalua=0. Under the definition of
and inner product in Hilbert space, these states are orthogonal,
but not complete; an extra orthogonal discrete siat€z)
92 92 =zsechz must be appended to the eigenstates to complete
. —_m2_ 5) . .
PV m pars ( the closure relation. This phenomenon comes out to be

popular in the direct soliton perturbation theor{d$]. We

h _ is defined for lat . Substituti recall that, in the previous theories, one usually derived an
wherea= xy, Is defined for fater convenience. Substitulion ;,complete eigenstate from a partial differential operator

of Egs.(3)—(5) into Eq. (1) yields a sequence of equations py virtue of a smart relation with the inverse scattering
for each power ok. The zeroth- and first-order ones read transform and then completed them, which is really cumber-
i (0) 4 it 100) some. In the present scheme, a set of complete basis

m*(a®=1)Uz;/+sinU™"=0, 6 {y(z,K),¥o(2),41(2)} is easily constructed from eigenstates

of Eq. (13). The explicit expression for the continuous spec-

Uy —2mau,+m?(a2—1)u,,+ (cosU@)u=M(z). (7)  trum is given by
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+ oo
1j dzl[l_ei[(k2+1)/2mk]/3+]
+1J)-=

. oo
(1—k?-2ik tanhz)e'kz. (14 U(t,Z)ZJ dk

1
W(z,k)= m K2

: . : XM(Z")¢* (2" K) ¢p(z,k)
Tﬂe corrEsponEmg adjoint states of the above set consist of
{(z,K),¥o(2),¢1(2)}. The continuous spectrum of adjoint 1 f+°° L o
states is calculated by the relatiof(z,k) = ,(z,k)/ik, * am2J = M(2')Z %o(2)dZ gl 2).
which reads

(20

The first term in the solution corresponds to the dispersive
_ 1 _ wave traveling along the positiadirection; the second term
. o ling along the positidirecti h d
lP(Z,k):m(l—k —2ik tanhz— 2 secfiz)e'*. is the “translation mode.” Following absolutely the same
m( (15) procedure, we can acquire another solution via #8),

There exists a relation bet\ﬁeen the noneigenstate and its ad- u(t,z)= f+xdk 1 f*wdz/[l_e—i[(k2+1)/zmk]ﬁ’]
joint, namely,£¢1(z)=—2¢1(z). These relations will be —o K2+ 1)-=

used in the later derivation. Based on this set we can decom-
posev(s,z) in Eq. (11) as

XM(Z")y* (2" k) p(z,k)

1 (+= ,
v - - +—2f M(z)Z 2p0(2))dZ Yo(2),  (2D)
o(52)= | (S KUK +To(8)e(2) +Ta(9)(2). ant)
(16 where B~ =[t+m(a—1)(z'—2)]. The secular conditions

and the “translation mode” are just the same as preceding

By virtue of expansion Eq(16), we can derivev(s,2)  results, which is very reasonable, but the dispersive wave
from Eqg. (11 without difficulty. Recalling that u travels in the opposite direction. Inserting E§) into Egs.
=pe M@*1)sz and taking the inverse Laplace transform for (18) and(19), we have

u(s,z), we get

1 (+=
ag=———2 P(z)sechz dz, (22)
+ o 1 + . n 1 4 3)_.
U(t,2)=ﬁ dkk2+1f dz’[l_el[(k2+l)/2rnk]ﬁ ] m
’ ’ e
el X, =~ f P(z)zsectz dz (23
1 4mPal-«

1 [+

+ﬁf dz' BTM(2" )y (2') ol 2)
- which govern the slow variation of the kink’s velocity and

1 (e initial position i.n time. S .

- _zf dz' (B7)2M(2') (2 ) tho(2), (17) ~ To further display the intrinsic aspect of this scheme, we
4meJ — give our different viewpoint of a notable example of the kink
under the action of a small constant external force corre-
sponding to the dc bias current in the long Josephson junc-

andg* =[t+m(a+1)(z'—2)] is defined. It is apparent that tion and a dissipative loss resulting from tunneling(g;‘ normal
) i (0)]= ~ —
secular terms directly proportional toandt? occur in the ~ S/€Ctrons across the barrier, namétylU™]=y— U 7. In

second and third terms in the above solution. Removindh€ case oP =y, since the right-hand side of E(L1) ap-
them, we must impose proaches infinity az— +« and so does Eq12) as z—

—o, some modifications must be made to our theory. This
. problem can be settled by dividing the solution of Ef0)

— o0

where ¢* (z,k) represents the complex conjugatediz,k)

sZuW—2masy?-LuW=s"19(-2)M(z), (24
and

i s2u@—-2masy?-LuP=s"to(zM(z), (25
fwM(z’)wl(z’)dzEO, (19

in which 6(z) is the Heaviside function. It can be easily

verified thatu=u"+u® is our desired solution. Solving
which are customarily referred to as secular conditionsEq.(24) as that for Eq(11) and Eq.(25) as that for Eq(12),
Hence we get the final solution incorporating these two solutions, we get
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St constructed in a normal frame in the modern perturbation
f dz'[1—€ll(+Dmks" theory and can be viewed as a successful implementation of
- the powerful technique and idea of the method of multiple
scales in the perturbation theory of solitons. Hence we have
reason to believe that it is a more reasonable and natural way
e 1 [ in comparison with previous theories. Here, we should note

+f dk f dzr[l_e—i[(kzﬂ)/aﬂk]ﬁ’] that the theory by MacLaughlin and Sc#] is canonical.
= KP+1J)-= Although it is principally devised for the multikink problem,
it is actually of practical sense for the single kink. The basic
idea of their theory is very plain, but they came up against a
1 e partial differential operator in matrix form that is hard to
+ —J’ M(z')Z 2o(2')dZ’ o(2). (26)  manage directly and necessary for sophisticated mathemati-
4m?J = cal tools. It is fortunate enough that the representation for the
L ) . Green’s function is found to be constructed by virtue of a
In the modification, relations for variation of the «squared eigenfunction” from the inverse scattering method
velocity and 3|n|£|3I position remain unchanged. Thus, by the use of Beklund transformations, which is really an
ay, =~ y(1/4m°) [ Z sechz dz Recalling thatx, =a and  gxpibition of remarkable properties of the sine-Gordon equa-
t;=et, by integration, we derive x(e,t)=[mg tion. The theory by Fogett al. [10] is in the framework of
—J(mpag—eat)’+1)]/a, where m0=1/\/(1—a02), a  regular expansion, and is usually mentioned as the “collec-
=mvyl4, anda, is the initial velocity of the kink. tive coordinate method.” Their result, that the kink behaves
Now, let us proceed to the next perturbatiBpu(®)(z)] as a Newtonian particle in their theory, caused some contro-
=_ 7;U§°)=2ma17 sechz. From Eq. (22) we have a, versy by.a number of aut.hov[al,la. In fact, this one i_s
= —azn/m?=—a(1—a?) 7. Integrating this equation from 0 mclud_ed in our theory by introducing the same approxima-
to t, yields ay(1—a)/(1+a)=a,(1—ag)/(1l+age °" tion, i.e., a is small, whereas we hold extra freedom to
Considering a small value of the initial velocity, we find that handle the secular term.

the initial velocity exponentially decreases, via(e,t) [n conclusion, nonlinear ev_olutlon equations ur?derlym.g
. —ent . TR solitons turn out to share a series of special properties, which
=age” °7, and the equation of motion is given hy(e,t)

—ap(1—e M)/ 7. is certainly true for its perturbed counterpart. Hereby, it is

We have demonstrated a theory for the study of the sine@xpected that some theoretical structure more intrinsic

Gordon equation under perturbations. The slow variation o hould be discovered and illustrated at the perturbation level.
quati pert ) . i En this sense, our theory reveals a facet of perturbation theory
parameters in time and the first-order correction consisting o

two branches of dispersive wave traveling in opposite direc-Of solitons.

tions and a localized state are determined in a consistent This work was supported by the Outstanding Young Re-
manner. It can be seen that no advanced and sophisticatedarch Foundation of the NNS{Eontract No. 19625409
mathematical techniques are necessary for the theory. It isnd the Nonlinear Project of the MST.

1
k?+1

u(t,z)zfj:dk

XO(=2")M(Z") " (2" K)h(z,K)

X (" )M(z")y* (2", K) h(z,k)
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