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Shock structures in time-averaged patterns for the Kuramoto-Sivashinsky equation
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Kyushu University, Kasuga, Fukuoka 816-8580, Japan
~Received 23 May 2000!

The Kuramoto-Sivashinsky equation with fixed boundary conditions is numerically studied. Shocklike struc-
tures appear in the time-averaged patterns for some parameter range of the boundary values. Effective diffusion
constant is estimated from the relation of the width and the height of the shock structures.

PACS number~s!: 47.54.1r, 05.45.2a
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An ordered structure can be obtained by time average
disordered spatiotemporal patterns. Such ordered struc
are experimentally found in Faraday waves, rotating ther
convection, and electroconvection@1–3#. These ordered
structures seem to come from the boundary effect. T
Kuramoto-Sivashinsky equation is one of the simplest par
differential equations exhibiting spatiotemporal chaos. Av
age patterns of spatiotemporal chaos in the Kuramo
Sivashinsky equation were studied in@4#. We study average
patterns of the Kuramoto-Sivashinsky equation with diff
ent boundary conditions. The equation in one dimension
the form

ht52hxx2hxxxx1
1

2
~hx!

2, ~1!

whereh5h(x,t) is a real function,xP@0,L#, and the sub-
scripts stand for derivatives. An equivalent equation is
tained foru5hx as

ut52uxx2uxxxx1uux . ~2!

Equation~2! possesses the Galilean symmetry (x→x1vt,u
→u1v). The Kuramoto-Sivashinsky equation exhibits sp
tiotemporal chaos and it is conjectured that the large-s
properties of the equation are described by the stocha
Burgers equation@5–8#:

ut5Duxx1luux1j, ~3!

whereD.0, j(x,t) denotes the noise term, and the coe
cientl of the nonlinear term is expected to be 1 owing to t
same Galilean symmetry as the Kuramoto-Sivashinsky eq
tion. The Fourier transformjk(t) of j(x,t) satisfies

^jk~ t !jk8~ t8!&5Tk2dk,k8d~ t2t8!.

Characteristic solutions to the Burgers equation without
last noise term are the shock solutions:

u~x!5A tanh~kx!,

wherek5lA/(2D).
We have performed numerical simulations to seek

some shocklike structures in large-scale-averaged patt
for the Kuramoto-Sivashinsky equation. We have use
simple real-space scheme obtained by replacing spatial
temporal derivatives by finite differences. The spatial d
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cretization step isdx50.25 and the temporal discretizatio
stepdt52.531024, and the system sizeL5400. We have
considered fixed boundary conditions, that is,

u~0,t !52U,u~L,t !5U, ux~0,t !5ux~L,t !50,

where6U are the fixed values at the boundaries andU is
changed as a parameter. We have used the following in
condition that theu value changes rapidly nearx50 andL:

u~x,0!52U1Ux/~2l !, for 0,x, l

5U~x2L/2!/~L22l !, for l ,x,L2 l

5U1U~x2L !/~2l !, for L2 l ,x,L ~4!

where the initial size of the boundary layers is assumed to
l 54. The boundary regions whereu-value changes rapidly
appear naturally even if the initial condition does not ha
such boundary regions. The simulation is performed untt
5t251500 and the temporal average is calculated as

ū~x!5~1/N! (
n51

N

u~x,t11nDt !,

where t15500, Dt550dt, and N5(t22t1)/Dt. Figure 1
displays snapshot patterns att51500 and the averaged pa
tern. In the central region of the averaged pattern,ū takes
nearly 0 and the mean slope ofū is very small forU,1.3.
The u value changes rapidly near the boundaries. This t
of averaged patterns is obtained forU50 in @4,6#.

A stationary shocklike pattern appears atU51.65. Since
the solution is stationary in time, the averaged pattern
the snapshot pattern overlap in Fig. 1~c!. This stationary so-
lution can be understood from the absolute stability o
constant solution as follows. A constant solutionu(x,t)5U
is convectively unstable, but it becomes absolutely stable
U.1.622. The stability of the constant solutionu(x,t)5U
is determined from the linear dispersion relation for the p
turbation du(x,t);uke

ikx2 ivt around u(x,t)5U @9#. The
linear dispersion relation is written as

v~k!52Uk1 i ~k22k4!. ~5!

The solution is absolutely stable under the condition t
dv/dk52U12i (k22k3)50 and Imv(k)52U Im k
8817 ©2000 The American Physical Society
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1Re(k22k4),0 wherek is generally a complex numbe
The transition occurs atU5Uc whereUc satisfies

27Uc
4268Uc

22850,

that is, Uc5$(341A34218327)/27%1/2;1.622. The con-
vectively unstable but absolutely stable solution is obser
in our system, since the fixed boundary conditions are
sumed and no disturbance is created at the boundarie
solution which connects the two absolutely stable soluti
u(x,t)5U andu(x,t)52U appears as a shocklike structu
with oscillating tails in Fig. 1~c!.

Another type of average patterns appears for 1.3,U
,1.6. Two nearly flat regions are observed and a shock
structure connecting the two flat regions appears atU
51.45 as shown in Fig. 1~b!. The averaged value ofu(x,t)
in the flat region is not6U and u(x,t) exhibits spatiotem-
poral chaos around the averaged value. We have assume

FIG. 1. Snapshot patterns~solid lines! u(x,t) at t51500 and the

time-averaged patterns~dashed lines! ū(x) at U51.25~a!, 1.45~b!,
and 1.65~c!.
d
s-
A

s

e

the

form of the averaged pattern asA tanh(kx) and estimated the
value ofA andk. Figure 2 displays the averaged patterns a
the corresponding profileū(x)5A tanh(kx) at U51.33 and
1.45. AsU is increased,A is increased andk is increased.
We have observed this shocklike structure in the tim
averaged pattern even if the initial value ofu(x,0) is a ran-
dom number between20.02 and 0.02. We have checked th
the shocklike structure appears in the time-averaged pa
for a larger system withL53200. It is fairly robust, but we
are not sure that the shocklike structure is maintained in
infinite size system.

Figure 3 displays the heightA of the shocklike structure
as a function ofU. The diamonds denote simulation resu
for L5400 and the crosses denote simulation results foL
51600. The shock amplitudeA seems to be independent o
the system size for sufficiently largeL. The heightA seems
to increase from zero continuously, however, the transitio
not clear, since the spatial fluctuation of the averaged pat

FIG. 2. Time-averaged patterns~solid lines! and their fitting

with ū5A tanh(kx) ~dashed lines! at U51.33 ~a! and 1.45~b!.

FIG. 3. Relation of the heightA vs U for the time-averaged
patterns atL5400 ~denoted by diamonds! and L51600 ~denoted
by crosses!.
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is large nearU;1.3. Figure 4 displays the effective diffu
sion constantD5lA/(2k) at L5400 ~denoted by dia-
monds! and L51600 ~denoted by crosses!, wherel51 is
assumed. In our simulationsA, k, andD depend onU. We
have plotted a relation ofD(U) vs k(U) in Fig. 4. Ask(U)
is decreased,D(U) seems to increase. It might be interpret
that the effective diffusion constant tends to increase, as
length scale is longer. Sneppenet al. estimated the effective
diffusion constantD andl asD;10.5 andl52.32 from the
analysis of the interface widtĥ„h(x,t)2^h&…2& @8#. Our ef-
fective diffusion constant seems to approach about 10 ak

FIG. 4. Relation of the effective diffusion constantD vs k for
the time-averaged patterns atL5400 ~denoted by diamonds! and
L51600 ~denoted by crosses!.
he

→0. This result may be consistent with the result of Snepp
et al., although they consider a very large system and
effective coefficientl of the nonlinear term is not 1 in thei
analysis.

In summary, we have numerically studied the Kuramo
Sivashinsky equation with fixed boundary conditions.
both the boundaries,u(x,t) are fixed to6U. If the U is
smaller than a critical value, the averaged pattern ta
nearly zero. IfU is larger than another critical value, a st
tionary shock pattern with oscillating tails appears owing
the absolute stability. We have found a shocklike structure
the spatiotemporal chaos between the two critical values.
do not understand well the fairly stable structure in the s
tiotemporal chaos, but it may be partly related to the we
ness of the absolute instability. We are not sure whether
shocklike structures are due to finite-size effects.

In our finite-size simulations, the time-averaged patte
take fairly definite nonzero amplitudes6A. The time-
averaged pattern is approximated with the shock solution
the Burgers equation and the effective diffusion constan
estimated. The effective diffusion constant depends on
length scale of the shock width and it seems to appro
about 10 for a very long scale.
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