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Shock structures in time-averaged patterns for the Kuramoto-Sivashinsky equation
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The Kuramoto-Sivashinsky equation with fixed boundary conditions is numerically studied. Shocklike struc-
tures appear in the time-averaged patterns for some parameter range of the boundary values. Effective diffusion
constant is estimated from the relation of the width and the height of the shock structures.

PACS numbds): 47.54+r, 05.45-a

An ordered structure can be obtained by time averages dafretization step isSx=0.25 and the temporal discretization
disordered spatiotemporal patterns. Such ordered structurggep st=2.5x10 4, and the system size=400. We have
are experimentally found in Faraday waves, rotating thermatonsidered fixed boundary conditions, that is,
convection, and electroconvectiofl—3]. These ordered
structures seem to come from the boundary effect. The u(0t)=-U,u(L,t)=U, u,(0t)=u,(L,t)=0,
Kuramoto-Sivashinsky equation is one of the simplest partial
differential equations exhibiting spatiotemporal chaos. Averwhere = U are the fixed values at the boundaries &hdis
age patterns of spatiotemporal chaos in the Kuramotochanged as a parameter. We have used the following initial
Sivashinsky equation were studied[#]. We study average condition that theu value changes rapidly near=0 andL:
patterns of the Kuramoto-Sivashinsky equation with differ-
ent boundary conditions. The equation in one dimension has u(x,00=—-U+Ux/(2l), for 0<x<I

the form —U(X=L/2)/(L—21), for I<x<L—I
ht=—hxx—hxxxx+;(hx)2, 0 —U+U(x—L)/(21), for L—1<x<L (4

where the initial size of the boundary layers is assumed to be
I=4. The boundary regions whetevalue changes rapidly
‘appear naturally even if the initial condition does not have
such boundary regions. The simulation is performed until
) =t,=1500 and the temporal average is calculated as

whereh=h(x,t) is a real functionxe[0.L], and the sub-
scripts stand for derivatives. An equivalent equation is ob
tained foru=h, as

U= — Uyyx— Uyyxxxt Uy
N

Equation(2) possesses the Galilean symmetxy«{x+uvt,u —
b @ p y " u(x)=(1/N)2 u(x,ty+nAt),
n=1

—u-+v). The Kuramoto-Sivashinsky equation exhibits spa-
tiotemporal chaos and it is conjectured that the large-scale
properties of the equation are described by the StOChaStWheretﬁSOO At=5068t, and N=(t,—t,)/At. Figure 1
Burgers equatiof5—8]: displays snapshot patternstat 1500 and the averaged pat-
U= DUy + NUU+ €, (3)  tern. In the central region of the averaged patterriakes

) _nearly 0 and the mean slope wofis very small forU<1.3.
whereD>0, £(x,t) denotes the noise term, and the coeffi- The u value changes rapidly near the boundaries. This type
cientX of the nonlinear term is expected to be 1 owing to theof gqyeraged patterns is obtained tar=0 in [4,6].

same Galilean symmetry as the Kuramoto-Sivashinsky equa- A stationary shocklike pattern appearstat 1.65. Since

tion. The Fourier transforng(t) of £(x,t) satisfies the solution is stationary in time, the averaged pattern and
the snapshot pattern overlap in Figc)l This stationary so-
I\ — 2 4
(D€ (1)) =Tk G (L —t"). lution can be understood from the absolute stability of a

gonstant solution as follows. A constant solutiofx,t) =U
Is convectively unstable, but it becomes absolutely stable for
U>1.622. The stability of the constant solutioiix,t)=U
u(x)=Atanh «x), is determined from the linear dispersion relation for the per-
turbation su(x,t) ~ue™ 't around u(x,t)=U [9]. The
wherex=\A/(2D). linear dispersion relation is written as
We have performed numerical simulations to seek for
some shocklike structures in large-scale-averaged patterns w(k)=—Uk+i(k’®—k*). (5
for the Kuramoto-Sivashinsky equation. We have used a
simple real-space scheme obtained by replacing spatial arithe solution is absolutely stable under the condition that
temporal derivatives by finite differences. The spatial dis-dw/dk=—-U+2i(k—2k®)=0 and Imw(k)=-UImk

Characteristic solutions to the Burgers equation without th
last noise term are the shock solutions:
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FIG. 2. Time-averaged patterrisolid lineg and their fitting
with u=Atanh{x) (dashed linesat U=1.33(a) and 1.45(b).

form of the averaged pattern Ag¢anh(x) and estimated the

4 value ofA andk. Figure 2 displays the averaged patterns and
the corresponding profila(x) = A tanh{x) at U=1.33 and
0k 1.45. AsU is increasedA is increased and is increased.
We have observed this shocklike structure in the time-
averaged pattern even if the initial value wfx,0) is a ran-

2r ] dom number between0.02 and 0.02. We have checked that
8r 7 the shocklike structure appears in the time-averaged pattern
-4 S for a larger system with =3200. It is fairly robust, but we

0 50 100 150 200 250 300 350 400
X

infinite size system.

FIG. 1. Snapshot patteriisolid lineg u(x,t) att=1500 and the

are not sure that the shocklike structure is maintained in an

Figure 3 displays the heighit of the shocklike structure

time-averaged patterridashed lingsu(x) atU=1.25(a), 1.45(b),  as a function olU. The diamonds denote simulation results
and 1.65(c). for L=400 and the crosses denote simulation resultd_for
=1600. The shock amplitud&é seems to be independent of

+Re(K®—k*) <0 wherek is generally a complex number. the system size for sufficiently larde The heightA seems

The transition occurs dl =U_. whereU,, satisfies

to increase from zero continuously, however, the transition is

not clear, since the spatial fluctuation of the averaged pattern

27U%—68U%2—8=0,

that is, U,={(34+ 34 +8X27)/27%*?~1.622. The con-
vectively unstable but absolutely stable solution is observed
in our system, since the fixed boundary conditions are as-
sumed and no disturbance is created at the boundaries. A
solution which connects the two absolutely stable solutions
u(x,t)=U andu(x,t)= —U appears as a shocklike structure
with oscillating tails in Fig. 1c).

Another type of average patterns appears for<u3
<1.6. Two nearly flat regions are observed and a shocklike
structure connecting the two flat regions appearsUat
=1.45 as shown in Fig.(b). The averaged value af(x,t)

1

FIG. 3. Relation of the heigh# vs U for the
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in the flat region is not- U and u(x,t) exhibits spatiotem- patterns at. =400 (denoted by diamondsand L =1600 (denoted
poral chaos around the averaged value. We have assumed thecrosses
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FIG. 4. Relation of the effective diffusion constabtvs « for
the time-averaged patterns lat= 400 (denoted by diamongisand
L=1600(denoted by crossgs

is large nealU~1.3. Figure 4 displays the effective diffu-
sion constantD=AA/(2«) at L=400 (denoted by dia-
mondg and L=1600 (denoted by crossgswherex=1 is
assumed. In our simulations, «, andD depend orlJ. We
have plotted a relation d(U) vs x(U) in Fig. 4. Asx(U)

—0. This result may be consistent with the result of Sneppen
et al, although they consider a very large system and the
effective coefficient\ of the nonlinear term is not 1 in their
analysis.

In summary, we have numerically studied the Kuramoto-
Sivashinsky equation with fixed boundary conditions. At
both the boundariesy(x,t) are fixed to+U. If the U is
smaller than a critical value, the averaged pattern takes
nearly zero. IfU is larger than another critical value, a sta-
tionary shock pattern with oscillating tails appears owing to
the absolute stability. We have found a shocklike structure of
the spatiotemporal chaos between the two critical values. We
do not understand well the fairly stable structure in the spa-
tiotemporal chaos, but it may be partly related to the weak-
ness of the absolute instability. We are not sure whether the
shocklike structures are due to finite-size effects.

In our finite-size simulations, the time-averaged patterns
take fairly definite nonzero amplitudesA. The time-
averaged pattern is approximated with the shock solution of
the Burgers equation and the effective diffusion constant is
estimated. The effective diffusion constant depends on the

is decreased)(U) seems to increase. It might be interpreted|qn g scale of the shock width and it seems to approach
that the effective diffusion constant tends to increase, as th&‘bout 10 for a very long scale.

length scale is longer. Sneppenal. estimated the effective
diffusion constanD and\ asD~10.5 and\ =2.32 from the
analysis of the interface widtf(h(x,t) —(h))?) [8]. Our ef-
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fective diffusion constant seems to approach about 18 as Education, Science, Sports, and Culture.
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