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Positivity preserving non-Markovian master equations
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A general class of integrodifferential non-Markovian master equations is developed which is representative
of the dynamics of small subsystems interacting with open reservoirs with memory. Conditions which guar-
antee positivity of the subsystem reduced density are established.

PACS numbd(s): 02.50—r

Master equation approaches remain an important tool for The Redfield and CPDS master equations share a com-
predicting the quantum mechanical dynamics of small submon limitation: they can only be applied when the reservoir
systems interacting with open reservoirs. More rigorous aprelaxes to equilibrium much more quickly than the sub-
proaches, such as the Feynman-Vernon influence functionalystem. Situations where this separation of time scales may
method[1-3], while preferable in principle, suffer the disad- not exist include relatively slow processes such as electron
vantage that they can at present only be applied to simplaansfer in biological moleculd4 3], destruction of local ori-
model systems such as the spin-boson mp2idl. Numeri-  entational order in supercooled wafdd], and vibrational
cal methods for calculating the influence functionals of morerelaxation of ions in solutiof15]. Breakdown of this sepa-
general reservoirs are still in the early stages of developmemttion of time scales is also characteristic of faster processes
[5]. Applications of the exact Nakajima-Zwanzig mastersuch as chemical reactions in solution. Approximate master
equation[6] are also hampered by high computational costsequations therefore need to be, and are b¢ihg,16-19,
Approximate master equation approaches are often the onlyeveloped for this non-Markovian regime.
method available for application to systems of current ex- Here we construct a general class of non-Markovian mas-
perimental interest, and efforts to improve the accuracy ofer equations, analogous to the Markovian CPDS equation
these equations are therefore ongoing. (1), and establish conditions which guarantee positivity of

The issue of positivity has drawn the most attention. Ma-the subsystem density(t). When the reservoir relaxation
trix elements( ¢|p(t)| ) of the subsystem densify(t) are  time is comparable to the time scale of the subsystem dy-
occupation probabilities, and they should be positive for anynamics, information about the history of the subsystem is
state¢. For some initial densities(0) the popular Redfield stored in the phases of subsystem-reservoir interaction
master equatiofi7] is known to produce time evolving den- modes. Because the interaction modes influence the sub-
sitiesp(t) which violate positivity. Slipped initial conditions system, the history of the subsystem plays a role in determin-
[i.e., specialp(0)] correct this problem for the spin-boson ing its future. Thus, from a mathematical perspective, master
system[8,9], but have not been shown to work in general.equations in the non-Markovian regime must take the form
The only master equations which are known to produce posief integrodifferential equations. A promising class of suit-
tive p(t) for all p(0) are of the completely positive dynami- able integrodifferential equations can be obtained by a
cal semigrougCPDS9 form [10,11]. This class of equations straightforward generalization of CPDS theory,
is very general and includes master equations derived in
many different way$12]. All CPDS equations have the form t
[10,17 dp(t)/dt=f(t)—in(t)—fodt’W(t—t’)LDp(t’), (4)

dp(t)/dt=—iLp(t)—7Lpp(1), 1)
whereL is the nondissipative Liouville operatdi:q. (2)],
whereL is a nondissipative Liouville operator, andLp is the dissipation operatdEq. (3)]. Equations like
Eqg. (4) can be viewed as approximations to the exact
1 Nakajima-Zwanzig equatiof6]. W(t) is a memory function
Lp=5[H.pl, (2)  which weights the integral over the history of the subsystem,
while the Hermitian operatdf(t) is an inhomogeneous term
introduced to include the effects of initial subsystem-
reservoir correlatiof19]. If fydt W(t)=7< and if f(t) is
1 zero outside the initial non-Markovian regime, then E4.
Lep= — + ) reduces to CPDS forfEq. (1)] at long times. Performing a
oP h? nzv CunlpS, SuI+LS, Supl) 9 trace over both sides of Eq(4) yields dTrp(t)/dt
=Trf(t), and so if Trf(t) =0 then probability is conserved.
Here H is an effective subsystem Hamiltonian,is the re- It is also straightforward to show that(t) andp'(t) satisfy
laxation time of the reservoir, the Hermitian operat&®s the same equation with the same initial condition, and there-
mediate interactions of the subsystem with the reservoir, anfbre the solutions of Eq(4) are Hermitian operators. Thus
C,., is a positive definite Hermitian matrix. Eqg. (4) has a number of important physical properties.

andLp is a positive semidefinite Lindblad operafdrl]:
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The fact that Eq(4) reduces to CPDS form at long time which allows us to use methods developed for the propagator
proves useful for establishing positivity criteria. Defining of the Schrdinger equation. Applying the Trotter product
M (t)=75(t) —W(t), Eq. (4) can be rewritten in the form  formula[22],

t
dp(t)/dt=f(t)—(iL+TLD)p(t)+f dt’M(t—t")Lpp(t'), ( p(t) ) _ p[(—(iLHLD) 0) t}

0 = lim { ex —

(5) xX(tu)) N 0 O/ N
where we have separated out the generat@il + 7Lp) of 0 5o N
the long time Markovian dynamics. SinteandL do not in 5 t p(0)
general commute, it would be easier to analyze (Byjif we XX M(uLp — N f(u))’
Ju

could treat the second and third terms on the right-hand side
independently. This can be done by converting the integro- _ . : .
differential equation(5) to a larger set of differential equa- andl th_e de_suedhs_epa(rjatlon of Markovian and non-Markovian
tions. Defining a new operatoy(t,u) which depends on evo gtlons IS achieved. (L + L)t .
time t. and a new timelike variable Since the CPDS propagater o)t preserves positiv-

' ' ity, we also know that

—(iL+7L S :
d| p(t) ) (b 7ko) % ( p(t) F{(‘U'-JFTLD) 0)
— = d ! ex t
dtl x(t,u) M(u)Lp U x(t,u) 0 0
preserves positivity. Thus, E) will preserve positivity if

where the usual initial conditions apply fop(t) and  the operator
x(O,u)=f(u). The linear functional §, is defined via

e~ (L+7lp)t
B 0 1

60g(u)=9g(0). Theequivalence of 0 2
ex J |t
dp(t M(u)Lp —
B (Lt rLo(t) + Box(t), (6) Whe 3
preserves positivity, and we may thus confine our attention
dx(t,u) _ M(U)Lgp(t)+ ax(t,u) (77 1o the simpler integrodifferential equation
dt

t
to Eq. (5) can be easily established. Solving Eg) for dp(t)/dt:f(t)+fodt’M(t_t,)LDp(t’) (12)

x(t,u) in terms ofp(t) gives
generated by this operator.

t . . . o
_ atalou +f 1 a(t—t")alu / Equations like Eq(11) were studied by Pss[23], who
X(tw=eTTx(0u) odt © M(WLop(t') showed that solutions of E¢L1) will be positive if the func-
(8  tion

t t t

=f(t+u)+J dt’M(t—t"+u)Lpp(t’), 9) a(t)=f0dt’M(t’)=r— fodt’W(t’) (12
0

from which it then follows that is (i) positive or(ii) nonincreasinggiii ) if log a(t) is convex

(i.e., a(t)[d?a(t)/dt?]—[da(t)/dt]?>=0), and(iv) if f(t) is
t, , , positive. Clearlya(t) will be positive and nonincreasing if
50X(t’u):f(t)+fodt M(t=t")Lpp(t). (10 W(t) is positive and nonincreasing, conditions consistent
with the role ofW(t) as a memory function.
Substituting this result into Ed6) then gives Eq(5). Thus We now explain how these conditions arise. Laplace
Egs. (8) and (9) are equivalent to Eq5), but have a more transforming both sides of Eg(ll)—and denoting the
convenient form. This method of converting integrodifferen-Laplace transforms dfi(t), a(t), f(t), andp(t) by M(2),
tial equations to differential equations, first introduced byz(z), F(z), andp(z)—one can show that
Chen and Grimmef20], is closely related to the, t’
method, which is used to solve the Sotirmer equation for o(2)=[z—M(2)Lp] Y p(0)+T(2)]. (13
time-dependent Hamiltonia&1].
The solutions of Eqs(6) and (7) can be expressed as a The trick now is to rewrite
propagator of exponential form acting on the initial condi-

tions, [-z—M(z)LD]*lzf dr'e [z-M@Lol” (14
0
_(|L+TLD) 50

( p(t) ):ex 5 |t (9(0)) B 3
x(t,u) M(u)Lp = f(u)/’ =fodreLDTh(z,r), (15
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where r=7/M(z) and TF(z7)=e *MAI(2) —(iL+7Lp) 0 °om
=e "49/za(z). Combining Eqgs.(13) and (15), one can exp{( ° )t ex J |t
show that 0 ° Mwke u

t
p(t)=5(t)p(0)+Jodt’S(t—t')f(t’), (16)

preserves positivity. Finally, it follows that the limit

where

N—o
is the inverse Laplace transform of Ed.5), andh(t,7) is

the inverse Laplace transform bfz, 7). Now, clearly,e-o”
preserves positivity, sinckep is of Lindblad type[11], and X exp
so if h(t,7) is positive for allt, and = then S(t) will be
positive. A necessary and sufficient condition fojt, ) to

be positive(Bernstein’s theorerf24]) is thath(z, 7) be com-

pletely monotonic,[i.e., (—1)"(dVdz")h(z,7)=0, for z  Must also preserve positivity. _
e (0). Priss[23] showed that(i)—(iii) are sufficient to Thus, the results of Pss[23] for Eq. (11) can be readily
extended to Eq5), and therefore equations like E¢,) have

positive solutions iff(t) is positive and ifW(t) satisfies
conditions (i)—(iii ). In addition, the condition that Ti(t)

=0 must be satisfied, so that probability is conserved. Thus
we have shown that a large class of non-Markovian positiv-

I 0 PX N

t
(? J—
M(uLlp - | N

guarantee tha(z,7) is completely monotonic with respect
to z Finally, if S(t) preserves positivity, then solutions of
Eq. (16) will be positive if f(t) is positive.

In summary, if requirement$)—(iv) are satisfied, then the

operator ity preserving master equations can be constructed. Since
0 P several recently derived master equatiph8,25 are of the
P form of Eq. (4), this class of equations is worthy of further
ex
M(U)L. — study.
(Wlp -~
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