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Drift of spiral waves in the complex Ginzburg-Landau equation due to media inhomogeneities
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We test the asymptotical theory of dynamics of spiral waves by applying it to inhomogeneity-induced drift
of the spiral waves in the Complex Ginzburg-Landau equation for two different types of weak media inho-
mogeneities and demonstrate good quantitative agreement with numerical simulations for both.

PACS numbgs): 82.40.Ck, 47.54+r, 02.30.Jr, 02.60.Cb

INTRODUCTION ticular types of inhomogeneity, the gradient of the linear fre-
quency, and the gradient of the nonlinear dispersion coeffi-
Spiral waves are a specific form of self-organization, firstcient.

reported in the Belousov-Zhabotinsky reaction mediurh
and observed in a variety of physical, chemical, and biologi- THE GENERAL THEORY
cal system$2]. Spatial inhomogeneity of the system usually
leads to the drift of the spirals; this is seen in experimgsits
and reproduced in numerical simulatiof]. Attempts to
explain or predict the direction and the velocity of the drift
have been made, based on various phenomenological arg

In this section we briefly recapitulate the general theory of
spiral wave drift proposed in Ref7].

Usually spiral waves are modeled by reaction-diffusion
systems of partial differential equations

ments applicable to narrow classes of autowave mieht. au=f(u)+DV2u+eh(u.x.t
The method of theesponse functiondRF's) [6,7] describes ! () eh(u.x.),
dynamics of spiral waves in terms of Aristotelean dynamics, ufeR' DeR™ |=2

so that the velocities of the drift in space and time are pro-

portional to the forces caused by the perturbation. The theory |5 ynperturbed media, at=0, we assume that a solution
claims to provide auniversal and quantitatively accurate jp the form of a steadily rotating wave exists,

tool for describing drift of spiral waves due to a small per-

turbation, including a small and/or smooth inhomogeneity. u=U(r,t)=U(p(r),6(r) + ot). (1)
RF’s, which are the critical eigenfunctions of the adjoint lin-

earized operator, were first introduced to autowave media tdhis rotating wave will be a spiral wave, iti(p,®)
describe the dynamics of twisted and bent three-dimensional {j (p/A — ¢/27) asp— oo, for aU(&):mod(1),U=const.

scroll waves, and were assumed to be asymptotically perirhen equiphase lines at largeare close to Archimedean
odic in space like the spiral waves themselves. That led to gpjrals with pitchA.

necessity of artificial regularization procedul@. Later a If a spiral wave solutior(1) exists, then
hypothesis about the essential localization of the RF’s in the
vicinity of the spiral wave core was proposg8] and then U=U(p(r—R),8(r—R)+0),

used to describe dynamics of the spiral and scroll waves
[7,9]. A variety of experimental phenomenology, showingwhere ®=wt—®, is another solution for any constaRt
the insensitivity of spiral waves to distant events, supportedp. This is a spiral wave shifted in space Byand rotated by
the hypothesis, but the mathematical peculiarity of the ideaq), or equiva|ent|y, shifted in time bﬁ)/a) Thus, the unper-
which presumed qualitatively different behavior of eigen-tyrbed reaction-diffusion system iRR2 has a three-
functions of a linear operator and its adjoint, resulted in agimensional manifold of spiral wave solutions, parametrized
natural skepticism. Although the existence of the REs by two-dimensional vectoR and phas®. Physical observ-
they are solutions to overdetermined problginsgeneral is  apjlity implies that this manifold is reasonably stable as a
an open question, they have been found numerically fogyhole.
some particular modelsl0-12 and shown to be localized A perturbationeh+0 could be a slight inhomogeneity of
for these cases. Explicit knowledge of localized RF’s for allthe medium or an explicit time-dependent external forcing.
sets of parameters in the complex Ginzburg-Landau equatiofypical effects of the perturbation on the stable invariant
(CGLE) for which stable Spiral wave solutions exist, allows manifold of Spira| waves aré) a disp|acement of the mani-
us to test the predictive ability of the theory. fold and (i) a perturbed dynamics along this manifold. The
In this paper, we demonstrate this predictive ability for|atter is a slow change of previously constant paramegers
the inhomogeneity-induced drift of spiral waves in CGLE, gndo, i.e., spatial and temporal drift of the spiral watbe

by showing good quantitative agreement of the prediction$empora| drift is the shift of the rotation frequency
with the results of direct numerical simulations, for two par-

3O=w+eHo(R,0), #R=€eH(R,O), (2

*Present address: School of Biomedical Sciences, University oivhere the second equation can also be writtendgd®
Leeds, Leeds LS2 9JT, UK. =eH(R,0), whereR=R,+iR, andH;=H;+iH;,.
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The velocitieseHy, eH, of these drifts, in the first ap-

proximation, are linear functionals of the perturbation. Both

Ho andH, after sliding averaging over the spiral wave ro-

tation period, can be expressed as

[ [

_ ) t+mlogy dr . — —_—
Hn(t):e'”q)jg - | O e ~0.98  0.98 —0.00640.0064 —0.045 0.071 —0.11
t=7lo i U Wo Re (W) Im (Wl)

X(Wh(p(r=R),0(r=R)+wr—®),h), (3 FIG. 1. Spiral wave and response functions fer0.1 and

=0.6.
where h=h(U(r,7), r,7), R=R(t), ®=®(t), and W, A

caIIe(_j response functionsn=0,+=1 are the critical eigen- whereP(p)=a(p)e’ ") e C, andw solve a nonlinear eigen-
functions, value problem
L*W,=—iwnW,, n=0,*+1,
(1+ZB)

1 1
L. . ) PII+ _ PI - P)
of the adjoint linearized operator p p?

T +[1-Zw—(1-Za)|P|?]P=0,

=DV?+ wdy+|—
\" (I)ag ou

u=u(n) P(p—0)p,

chosen to be biorthogonal to the Goldstone modes,

P(p—»)~\1—k?exdZkp+o(p)][1+0(1)],

Vo= =d,U(p(r),6(r))li-o, k=k(a,B) is the asymptotic wave number and

Vilz - %ejrio(apI ipilaﬂ)u(p(r)! H(r))|t=01 w=uo— akz—ﬁkzl

which are the critical eigenfunctions of the linearized opera-The response functions have the fofiri]
tor, _

. W,=e"=MQ(p), &)

J
_ 2_ e
L=DV*—wdy+ gu) o )' whereQ,,, n=0,1 are solutions to linear problems
u= r
(Z—in)?
RESULTS (1-ZB)§ Qp+ — Qn ——Qn
p
We apply the asymptotic theory of the spiral wave dy- 5 -

namics [7] to the perturbed CGLE, which is a two- +{1+Zw—a’[2(1+Za)+(1-Za)e*”'C]}Q,=0, (6)
component reaction-diffusion system conveniently presented
in the complex form |Qn(p—0)[<>, Qn(p—=)—0. (7)

du=u—(1—Za)u|u|?+(1+ZB)V?u+ eh, (4)  HereC is the operator ofZ conjugation;W; and Q; are
bicomplex-valued functions, each having four components.
whereueC, a, BeR, andZ is the imaginary unit. The Solutions to Eqs(6) and (7) were found numerically in
above asymptotic theory is applied to real-valued systems dghe form
equations. Equatio®) can be rewritten as a two-component

real system, e.g. for the real and imaginary parts;ahenZ Qo(p)=[A(p)+IB(p)]e™),
would be represented by the matrix _ _ .
Q1(p)=[C(p)+ID(p)+iE(p) +iIF(p)]e™, (8)
0 -1
Iz(l Bk where the function€, D, E, andF were tabulated.

For calculations, it was convenient to keep treating (Bgas
a complex equation. The complexification of the linearized

theory then leads to an algebra with two imaginary urits, ¢

from Eq. (4), andi of the linearized theory, with®>=72=

—1 andiZ=17i. It has divisors of zero, e.g.i tZ)(i—2)

—0. See also Ref11] for details of realification of Eq4).  “oer 097 0oL 0.0l 016 00019 0085 0.075
The steadily rotating spiral wave solutions to this equation U Wo Re (W1) Im (W1)

have been studied by Hagéh3] and have the form
FIG. 2. Spiral wave and response functions f@e=0 and

U(r,H=eX**Ip(p), p=-1.
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Let us now consider the perturbation
h=7x|ul?u, 9
which corresponds to a linear inhomogeneity in the parameter(r) = a + ex. Substitution ofQ, from Egs.(8) and(9) into

Egs.(5), (3), and(2), with account of the normalizatiof\W;(a),V\(a))=d; «, gives the following expression for the spiral
wave drift velocity due to the inhomogeneity of the medi(®n

ef [D—iF]a3p? dp
0

dR=€eH,;= , (10

fo {aF—p(a’C+ay'D)+i[aD+p(a’E+ay’F)]} dp

and zero for the frequency correctibty, as the perturbation ered here. The trajectory of the center of the spiral was de-
hin Eq. (9) is an even function and the response funciign  fined as the intersection of the null isolines Bireal and
in Eq. (5) is an odd function. Z-imaginary parts ofi. This trajectory was used to measure
Thus, if we know Hagan'’s solutiors, ¢ and the compo- the velocity of the drift: after a short transient the trajectories
nents of the response functionS, D, E, andF, Eq. (10) become straight lines that were fitted by linear functions to
gives a theoretical prediction for the spiral wave drift veloc-find the drift velocities. We measured the components of the
ity due to the inhomogeneit{9). normalized drift velocity,d;R,/e and d;R,/e in numeric
The spiral wave solutiorJ(r) and response functions simulations, and their behavior d§—0 andh;—0. The
Wo(r) andW,(r) for «=0.1 andB=0.6, are shown in Fig. crucial parameter limiting the convergence to the theoretical
1. value was the spatial discretization step of the numerical
The integral(10) calculated for these functions predicts simulation. At the smallest steps used in simulations,
the normalized velocities);R,/e=Re(H)~—1.958 and =0.005 andh,=0.25, the components of the normalized
dRy/e=Im(H1)~—29.137. This has been calculated at thedrift velocity were 9;R,/e=—1.923 anddR,/e=—29.09,
spatial discretization stefp,=0.01. Comparison with veloci- so the difference from the theoretical value was less than 2%.
ties calculated at larger, has shown that these values are Thus, predictions of the asymptotic theory were in very good
accurate within 0.1%. quantitative agreement with the results of direct numerical
To check the theoretical prediction, we numerically simulations, up to the precision achievable by these simula-
solved the CGLE4) with the perturbation(9) of amplitude  tions.
€=0.0001. We used the first-order fully explicit time-  We have also verified the theory on the perturbation
stepping scheme with five-point approximation of the La-
placian. The computational grid was of spatial size 128 h=17xu, (11
X 128, with discretization stegds from 0.005 to 0.4 andh,
from 0.25 to 0.5. Initial conditions were specified usingto compare the prediction with the recently published nu-
Hagan’s solution. merical results for this cagd 4]. For the perturbatiori11),
The dynamics of the phase of the spiral for this perturbathe theory gives the following expression for the velocity of
tion is not interestingsee aboveand has not been consid- the spiral wave drift:

eJ [D—iF]ap? dp
0

(9tR= EHl:

f {aF—p(a’C+ay’'D)+i[aD+p(a’E+ay’F)]} dp
0

and zero for the frequency correctiéhy, again. while the end is quite beyond it. The spiral waves and the
Coefficientsm,, | andm,, , of Ref.[14] coincide toH,,  components of the RF’s for these two ending points of the
andH,, from Eq. (2) if inhomogeneity is in the forn{11). parameter interval are shown in Figs. 2 and 3.
We have calculated Hagan’s solutiam,» and the compo- The resulting velocities are shown in Fig. 4. They are
nents of the response functior®, D, E, andF for « in the  indistinguishable from results obtained by another method
interval[ —1,0], which corresponds ta [0,1] in Ref.[14]  [14] (which were published for € «<0.8). More than that,
due to different choice of the sign, at fixgg=—1. This the calculations using RF predict thdt , changes the sign
interval crosses the Eckhaus instability lineaat —0.4[12]  at a~—0.87. This is an interesting qualitative prediction
so that its beginning is before the Eckhaus instability linethat could be checked by numerical simulations; however, in
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FIG. 3. Spiral wave and response functions te=—1 and 0 02 04 06 08 1
pB=-1. -a

. . . - FIG. 4. Velocity coefficients as functions of.
this particular region of parameters it is not easy because of

the Eckhaus instability of the spiral. . . . .
y P and to continue the linél,, in the («,B) plane to a physi-

CONCLUSIONS cally observable region.
Bearing in mind that the existence of the response func-

The method of the response functions allows us to predictjons, in a general case, is still an open question, the good
quantitatively the velocity of the spiral wave drift due to quantitative predictive ability of the theory allows us to
VaI‘iOUS Weak media inhomogeneities in the CGLE Withoutspeak about a new phenomenma”tative'y different be-
any restrictions on the type of an inhomogeneity. These prenavior of eigenfunctions of a linear operator and its adjoint
dictions are obtained by a computationally much less experpne (see Figs. 1, 2, and)3as the hypothesis about local
sive way than direct numerical simulations: for the CGLE, sensitivity of spiral wave$6] and the asymptotic theory of
instead of solving systems of partial differential equations inspiral wave dynamic§7] now has been confirmed directly
two spatial dimensionstime, only the response functions and quantitatively for the CGLE.
for each particular set of parameters need to be fdwich The important fact is that due to the localization of the
is a solution of a 1D boundary value problemfter that the  sensitivity of spiral waves to perturbations, including reso-
spiral wave dynamics following any slight perturbation canpance drift of spiral wavekl5] and drift due to weak spatial
be predicted with a good quantitative precision by just thenhomogeneities, the dynamics of spiral waves may be con-

calculation of the integra(3). sidered as dynamics of effectively localized “particles,” de-
The quantitative advantage of the method of the responsgpite their nonlocal appearance, unlike solitons.

functions over direct simulations may sometimes give new
qualitative results. An example is the change of the sign of
the longitudinal velocity coefficienH;, as 8=—1 anda

~ —0.87 and inhomogeneity is of the forfi1). This phe- The author is grateful to Dr. V. N. Biktashev for the re-
nomenon is difficult to see by the direct simulations becaussearch supervision and to Professor A.V. Holden for the
of the Eckhaus instability of the spiral. The advantage of thecomputational facilities and for the linguistic and stylistic
method of the response functions allows us to learn this poinadvice.
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