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Drift of spiral waves in the complex Ginzburg-Landau equation due to media inhomogeneities

I. V. Biktasheva*
Institute for Mathematical Problems in Biology, Pushchino, Moscow Region 142292, Russia

~Received 18 January 2000; revised manuscript received 18 August 2000!

We test the asymptotical theory of dynamics of spiral waves by applying it to inhomogeneity-induced drift
of the spiral waves in the Complex Ginzburg-Landau equation for two different types of weak media inho-
mogeneities and demonstrate good quantitative agreement with numerical simulations for both.

PACS number~s!: 82.40.Ck, 47.54.1r, 02.30.Jr, 02.60.Cb
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INTRODUCTION

Spiral waves are a specific form of self-organization, fi
reported in the Belousov-Zhabotinsky reaction medium@1#
and observed in a variety of physical, chemical, and biolo
cal systems@2#. Spatial inhomogeneity of the system usua
leads to the drift of the spirals; this is seen in experiments@3#
and reproduced in numerical simulations@4#. Attempts to
explain or predict the direction and the velocity of the dr
have been made, based on various phenomenological a
ments applicable to narrow classes of autowave media@4,5#.
The method of theresponse functions~RF’s! @6,7# describes
dynamics of spiral waves in terms of Aristotelean dynami
so that the velocities of the drift in space and time are p
portional to the forces caused by the perturbation. The the
claims to provide auniversal and quantitatively accurate
tool for describing drift of spiral waves due to a small pe
turbation, including a small and/or smooth inhomogene
RF’s, which are the critical eigenfunctions of the adjoint li
earized operator, were first introduced to autowave medi
describe the dynamics of twisted and bent three-dimensi
scroll waves, and were assumed to be asymptotically p
odic in space like the spiral waves themselves. That led
necessity of artificial regularization procedures@8#. Later a
hypothesis about the essential localization of the RF’s in
vicinity of the spiral wave core was proposed@6# and then
used to describe dynamics of the spiral and scroll wa
@7,9#. A variety of experimental phenomenology, showi
the insensitivity of spiral waves to distant events, suppor
the hypothesis, but the mathematical peculiarity of the id
which presumed qualitatively different behavior of eige
functions of a linear operator and its adjoint, resulted in
natural skepticism. Although the existence of the RF’s~as
they are solutions to overdetermined problems! in general is
an open question, they have been found numerically
some particular models@10–12# and shown to be localized
for these cases. Explicit knowledge of localized RF’s for
sets of parameters in the complex Ginzburg-Landau equa
~CGLE! for which stable spiral wave solutions exist, allow
us to test the predictive ability of the theory.

In this paper, we demonstrate this predictive ability f
the inhomogeneity-induced drift of spiral waves in CGL
by showing good quantitative agreement of the predicti
with the results of direct numerical simulations, for two pa
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ticular types of inhomogeneity, the gradient of the linear f
quency, and the gradient of the nonlinear dispersion coe
cient.

THE GENERAL THEORY

In this section we briefly recapitulate the general theory
spiral wave drift proposed in Ref.@7#.

Usually spiral waves are modeled by reaction-diffusi
systems of partial differential equations

] tu5 f ~u!1D“

2u1eh~u,x,t !,

u, f PRl , DPRl 3 l ,l>2.

In unperturbed media, ate50, we assume that a solutio
in the form of a steadily rotating wave exists,

u5U~r ,t !5U„r~r !,u~r !1vt…. ~1!

This rotating wave will be a spiral wave, ifu(r,f)
'Ũ(r/L2f/2p) asr→`, for a Ũ(j):mod(1), ŨÓconst.
Then equiphase lines at larger are close to Archimedean
spirals with pitchL.

If a spiral wave solution~1! exists, then

ũ5U„r~r2R!,u~r2R!1Q…,

whereQ5vt2F, is another solution for any constantR,
F. This is a spiral wave shifted in space byR and rotated by
F, or equivalently, shifted in time byF/v. Thus, the unper-
turbed reaction-diffusion system inR2 has a three-
dimensional manifold of spiral wave solutions, parametriz
by two-dimensional vectorR and phaseQ. Physical observ-
ability implies that this manifold is reasonably stable as
whole.

A perturbationehÞ0 could be a slight inhomogeneity o
the medium or an explicit time-dependent external forcin
Typical effects of the perturbation on the stable invaria
manifold of spiral waves are~i! a displacement of the mani
fold and ~ii ! a perturbed dynamics along this manifold. Th
latter is a slow change of previously constant parameterR
andF, i.e., spatial and temporal drift of the spiral wave~the
temporal drift is the shift of the rotation frequency!,

] tQ5v1eH0~R,Q!, ] tR5eH1~R,Q!, ~2!

where the second equation can also be written as] tR
5eH1(R,Q), whereR[Rx1 iRy andH1[H1,x1 iH1,y .

of
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The velocitieseH0 , eH1 of these drifts, in the first ap
proximation, are linear functionals of the perturbation. Bo
H0 andH1, after sliding averaging over the spiral wave r
tation period, can be expressed as

H̄n~ t !5einF R
t2p/v

t1p/vv dt

2p E
R2

d2r e2 invt

3^Wn„r~r2R!,u~r2R!1vt2F…,h&, ~3!

where h5h„U(r ,t), r ,t…, R5R(t), F5F(t), and Wn
called response functions, n50,61 are the critical eigen-
functions,

L1Wn52 ivnWn , n50,61,

of the adjoint linearized operator

L15D“

21v]u1S ] f

]uD TU
u5U(r )

,

chosen to be biorthogonal to the Goldstone modes,

V052]uU„r~r !,u~r !…u t50 ,

V6152 1
2 e7 iu~]r7 ir21]u!U„r~r !,u~r !…u t50 ,

which are the critical eigenfunctions of the linearized ope
tor,

L5D¹22v]u1S ] f

]uD U
u5U(r )

.

RESULTS

We apply the asymptotic theory of the spiral wave d
namics @7# to the perturbed CGLE, which is a two
component reaction-diffusion system conveniently presen
in the complex form

] tu5u2~12Ia!uuuu21~11Ib!“2u1eh, ~4!

where uPC, a, bPR, and I is the imaginary unit. The
above asymptotic theory is applied to real-valued system
equations. Equation~4! can be rewritten as a two-compone
real system, e.g. for the real and imaginary parts ofu; thenI
would be represented by the matrix

I5S 0 21

1 0 D .

For calculations, it was convenient to keep treating Eq.~4! as
a complex equation. The complexification of the lineariz
theory then leads to an algebra with two imaginary unitsI
from Eq. ~4!, and i of the linearized theory, withi 25I 25
21 and iI5Ii . It has divisors of zero, e.g., (i 1I)( i 2I)
50. See also Ref.@11# for details of realification of Eq.~4!.

The steadily rotating spiral wave solutions to this equat
have been studied by Hagan@13# and have the form

U~r ,t !5eI(u1vt)P~r!,
-

-

d

of

d

n

whereP(r)5a(r)eIc(r)PC, andv solve a nonlinear eigen
value problem

~11Ib!S P91
1

r
P82

1

r2
PD

1@12Iv2~12Ia!uPu2#P50,

P~r→0!}r,

P~r→`!'A12k2 exp@Ikr1o~r!#@11o~1!#,

k5k(a,b) is the asymptotic wave number and

v5a2ak22bk2.

The response functions have the form@11#

Wn5e(I2 in)uQn~r!, ~5!

whereQn , n50,1 are solutions to linear problems

~12Ib!H Qn91
1

r
Qn81

~I2 in !2

r2
QnJ

1$11Iv2a2@2~11Ia!1~12Ia!e2IcC#%Qn50, ~6!

uQn~r→0!u,`, Qn~r→`!→0. ~7!

Here C is the operator ofI conjugation;W1 and Q1 are
bicomplex-valued functions, each having four componen

Solutions to Eqs.~6! and ~7! were found numerically in
the form

Q0~r!5@A~r!1IB~r!#eIc(r),

Q1~r!5@C~r!1ID~r!1 iE~r!1 iIF~r!#eIc(r), ~8!

where the functionsC, D, E, andF were tabulated.

FIG. 1. Spiral wave and response functions fora50.1 and
b50.6.

FIG. 2. Spiral wave and response functions fora50 and
b521.
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Let us now consider the perturbation

h5Ixuuu2u, ~9!

which corresponds to a linear inhomogeneity in the parametera: ã(r )5a1ex. Substitution ofQ1 from Eqs.~8! and~9! into
Eqs.~5!, ~3!, and~2!, with account of the normalization̂Wj (a),Vk(a)&5d j ,k , gives the following expression for the spira
wave drift velocity due to the inhomogeneity of the medium~9!:

] tR5eH15

eE
0

`

@D2 iF #a3r2 dr

E
0

`

$aF2r~a8C1ac8D !1 i @aD1r~a8E1ac8F !#% dr

, ~10!
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and zero for the frequency correctionH0, as the perturbation
h in Eq. ~9! is an even function and the response functionW0
in Eq. ~5! is an odd function.

Thus, if we know Hagan’s solution,a,c and the compo-
nents of the response functions,C, D, E, and F, Eq. ~10!
gives a theoretical prediction for the spiral wave drift velo
ity due to the inhomogeneity~9!.

The spiral wave solutionU(r ) and response function
W0(r ) andW1(r ) for a50.1 andb50.6, are shown in Fig.
1.

The integral~10! calculated for these functions predic
the normalized velocities] tRx /e5Re(H1)'21.958 and
] tRy /e5Im(H1)'229.137. This has been calculated at t
spatial discretization stephr50.01. Comparison with veloci
ties calculated at largerhr has shown that these values a
accurate within 0.1%.

To check the theoretical prediction, we numerica
solved the CGLE~4! with the perturbation~9! of amplitude
e50.0001. We used the first-order fully explicit time
stepping scheme with five-point approximation of the L
placian. The computational grid was of spatial size 1
3128, with discretization stepsht from 0.005 to 0.4 andhx
from 0.25 to 0.5. Initial conditions were specified usin
Hagan’s solution.

The dynamics of the phase of the spiral for this pertur
tion is not interesting~see above! and has not been consid
ine
-

-
8

-

ered here. The trajectory of the center of the spiral was
fined as the intersection of the null isolines ofI-real and
I-imaginary parts ofu. This trajectory was used to measu
the velocity of the drift: after a short transient the trajector
become straight lines that were fitted by linear functions
find the drift velocities. We measured the components of
normalized drift velocity,] tRx /e and ] tRy /e in numeric
simulations, and their behavior ashx→0 and ht→0. The
crucial parameter limiting the convergence to the theoret
value was the spatial discretization step of the numer
simulation. At the smallest steps used in simulations,ht
50.005 andhx50.25, the components of the normalize
drift velocity were] tRx /e521.923 and] tRy /e5229.09,
so the difference from the theoretical value was less than
Thus, predictions of the asymptotic theory were in very go
quantitative agreement with the results of direct numeri
simulations, up to the precision achievable by these sim
tions.

We have also verified the theory on the perturbation

h5Ixu, ~11!

to compare the prediction with the recently published n
merical results for this case@14#. For the perturbation~11!,
the theory gives the following expression for the velocity
the spiral wave drift:
] tR5eH15

eE
0

`

@D2 iF #ar2 dr

E
0

`

$aF2r~a8C1ac8D !1 i @aD1r~a8E1ac8F !#% dr

,

the
the

re
od

n
, in
and zero for the frequency correctionH0, again.
Coefficientsmv,uu andmv,' of Ref. @14# coincide toH1,x

andH1,y from Eq. ~2! if inhomogeneity is in the form~11!.
We have calculated Hagan’s solution,a,c and the compo-
nents of the response functions,C, D, E, andF for a in the
interval @21,0#, which corresponds toaP@0,1# in Ref. @14#
due to different choice of the sign, at fixedb521. This
interval crosses the Eckhaus instability line ata'20.4 @12#
so that its beginning is before the Eckhaus instability l
while the end is quite beyond it. The spiral waves and
components of the RF’s for these two ending points of
parameter interval are shown in Figs. 2 and 3.

The resulting velocities are shown in Fig. 4. They a
indistinguishable from results obtained by another meth
@14# ~which were published for 0<a<0.8). More than that,
the calculations using RF predict thatH1,x changes the sign
at a'20.87. This is an interesting qualitative predictio
that could be checked by numerical simulations; however
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this particular region of parameters it is not easy becaus
the Eckhaus instability of the spiral.

CONCLUSIONS

The method of the response functions allows us to pred
quantitatively, the velocity of the spiral wave drift due t
various weak media inhomogeneities in the CGLE witho
any restrictions on the type of an inhomogeneity. These p
dictions are obtained by a computationally much less exp
sive way than direct numerical simulations: for the CGL
instead of solving systems of partial differential equations
two spatial dimensions1time, only the response function
for each particular set of parameters need to be found~which
is a solution of a 1D boundary value problem!. After that the
spiral wave dynamics following any slight perturbation c
be predicted with a good quantitative precision by just
calculation of the integral~3!.

The quantitative advantage of the method of the respo
functions over direct simulations may sometimes give n
qualitative results. An example is the change of the sign
the longitudinal velocity coefficientH1,x as b521 and a
'20.87 and inhomogeneity is of the form~11!. This phe-
nomenon is difficult to see by the direct simulations beca
of the Eckhaus instability of the spiral. The advantage of
method of the response functions allows us to learn this p

FIG. 3. Spiral wave and response functions fora521 and
b521.
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and to continue the lineH1,x in the (a,b) plane to a physi-
cally observable region.

Bearing in mind that the existence of the response fu
tions, in a general case, is still an open question, the g
quantitative predictive ability of the theory allows us
speak about a new phenomenon:qualitatively different be-
havior of eigenfunctions of a linear operator and its adjo
one ~see Figs. 1, 2, and 3!, as the hypothesis about loca
sensitivity of spiral waves@6# and the asymptotic theory o
spiral wave dynamics@7# now has been confirmed directl
and quantitatively for the CGLE.

The important fact is that due to the localization of t
sensitivity of spiral waves to perturbations, including res
nance drift of spiral waves@15# and drift due to weak spatia
inhomogeneities, the dynamics of spiral waves may be c
sidered as dynamics of effectively localized ‘‘particles,’’ d
spite their nonlocal appearance, unlike solitons.
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