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Fourier grid Hamiltonian method and Lagrange-mesh calculations

Claude Semay
Universitede Mons-Hainaut, Place du Parc, 20, B-7000 Mons, Belgium
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Bound state eigenvalues and eigenfunctions of a slinger equation or a spinless Salpeter equation can be
simply and accurately computed by the Fourier grid Hamiltoiig®H) method. It requires only the evaluation
of the potential at equally spaced grid points, and yields the eigenfunctions at the same grid points. The
Lagrange-mesiiLM) method is another simple procedure to solve a Stihger equation on a mesh. It is
shown that the FGH method is a special case of a LM calculation in which the kinetic energy operator is
treated by a discrete Fourier transformation. This gives a firm basis for the FGH method and makes possible
the evaluation of the eigenfunctions obtained with this method at any arbitrary values.

PACS numbgs): 02.70—c, 03.65.Ge, 03.65.Pm, 02.30.Mv

[. INTRODUCTION bases. As a result, it appears that this method is not fully
variational but that the eigenfunctions stemming from FGH
The Fourier grid HamiltonialFGH) method[1,2] is a  computations can be obtained at arbitrary values and not
very accurate and simple procedure to compute eigenvalugly at grid points. It is worth noting that both FGH and LM
and eigenfunctions of a Schtimger equation. This method techniques can be applied if the potential is nonlocal, or if
requires only the evaluation of the potential at equally spaceg@ouplings exist between different channels.
grid points, and yields directly the amplitude of the eigen- The connection between the FGH method and the LM
functions at the same grid points. It relies on the fact that thénethod for one-dimensional problems is outlined in Sec. I,
kinetic energy operator is best represented in momenturwhile the three-dimensional case is treated in Sec. IlI. A brief
space, while the potential energy is generally given in coorsummary is given in Sec. IV.
dinate space. This method has been generalized to treat semi-
relativistic operators in the three-dimensional space for II. ONE-DIMENSIONAL EGH METHOD
bound state§3]. The accuracy of the method depends on the o ] ) ]
number of grid points and on the maximal radial distance Within the one-dimensional FGH method, the eigenfunc-
considered to integrate the eigenvalue equation. An ansatz f#9ns are assumed to be defined within a finite range of val-
evaluate at best this last parameter is given in R3jf. The  ues[1]. So we will present the main ingredients of the LM
FGH method has also been applied to the study of scatteringtethod on a finite domain of values. Let us assume the ex-
equationg 4]. istence of a set oM dimensionless functiong;(y) and M
The Lagrange-mestLM) method is another simple pro- Vvaluesy; in the range[0,1] such that
cedure to solve with a great precision a Sclinger equation

on a mesH5]. Actually, trial eigenstates are developed in a gi(yj)=6ij,

basis of well chosen functions and Hamiltonian matrix ele- (1)
ments are obtained with a Gauss approximate quadrature. No L, B

numerical evaluation of matrix elements is required, only the fo g (Y)g;(y)dy=A;d; .

computation of the potential at grid points. With this method,

the spacings between grid points depend on the basis chos@iith these functions, we can buill new functionsf;(x)

and are not necessarily equal. As a consequence, a-Schigepending on the dimensioned variableon the interval
dinger equation can be solved with the same accuracy Wlttla,b],

fewer points in the LM method than in the FGH method. The
LM method can be extended to treat three-body systems very
accurately{6] as well in nuclear physics as in atomic phys- fj(xX)=g;
ics. Recently, a general procedure for deriving an infinity of 7
new Lagrange meshes related to orthogonal or nonorthogo-
nal bases has been develop&dl ——y ; e
In this paper. it is shown that the FGH method is equiVa_These functions;(x) have then the following properties:
lent to a LM calculation in which the matrix elements of the
kinetic energy operator are computed by a discrete Fourier
transformation. This makes possible the computation of b
bound states for semirelativistic kinematics. The FGH J' X (x)f(x)dx=h\,5;; .
method can then be reinterpreted in terms of firm theoretical a ! s

X—a

with  h=b—a and x=hy+a.

fi(x)) =9y,
®d

With the numberg\;} and{x;}, we can define an approxi-
*Email address: claude.semay@umbh.ac.be mate Gauss quadrature formula
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be(x)dx~h21 NiF (X)) (4)

With the propertieg3), one verifies that Eq4) is exact for
any productf* f; .

Now, let us introduce a set of trial basis statg$ whose
representation in the position variablés given by

(x|fiy="fi(x), ®)
the identity operatot;, ,; on the interval a,b] being written

b
Jl[a'b]:fa |X>dX<X|. (6)

The orthogonality properties of these basis states are

b b
(o= [ (bt [ oon0dx- s,

(7
A trial state|¢) can be developed within this basis,
M
|¢>:i21 cilfi)- (8)

From Egs.(3), it follows immediately thatc;= ¢(x;) with
B(x)=(x|$).
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anteed. This is only possible if an exact quadrature is per-
formed. In practice, for a sufficiently high number of basis
states, the method is often variational. But this is not always
the case. We will show an example below.

If the kinetic operator is the nonrelativistic one, then its
matrix elements can easily be obtair{éd,

! ! d2 )\'] 14
T(x',x)=C 8(x—X )—dx2 = T;=C _?\ifi(xj)'
(13

Note that the Hamiltonian matrix can be nonsymmetrical.

For semirelativistic systems, the kinetic energy operator
has no simple form in the configuration space. It is best
represented in the momentum space. As the eigenvalue equa-
tion is solved on a finite interval of length there exists a
minimal possible momentumk=2s/h, and all the values
of the momenta are quantifiddl=nAk, wheren is an inte-
ger. Expressed in terms of the eigenstakgs of the square
relative impulsion operatok?, the identity operator can be
written

+ o

2
Jl[a,bﬁn;_m |kn>T<kn|v (14)

where the stategk,) are given in configuration space (
e[a,b]) by

We can now search for a variational solution of an eigen-

value equation. In the restricted space of trial states, the clo-

sure relation is written

)=

L1
2 |fi>h—ki<fi|}|¢>. (©)

The eigenvalue equation for a Hamiltonikhis then given
by

M <f-|H|f->
1211 Hij VAo (X)) =EVNijo(Xx;)  with Hij:thi)\Jj’
(10

whereE is an upper bound of an eigenvalue léf We can

see that thé/l components of the eigenvector are directly the

values of the trial states at ti@ mesh pointgx;}.
Let us consider a general Hamiltoni&h with a kinetic
partT, a local potentiaV, and a nonlocal interactiow,

2n
W
(19

with k.=

)= 1 _2mn
(x| n>—E exgi——(x—a)

From Eg.(15), the orthogonality relation of these states is

h
<km|kn>: Eémn- (16)

Insertion of expressiofi4) in the scalar produdtx| ) gives
the Fourier decomposition af(x) in the interval[ a,b].
The computation of a matrix element of a general kinetic

energy operatoir(RZ) gives

amiey= "o ["ae 35 (27 sk

X(Kn| TIkm) (Kl X)X [f5), (17)
(X' H[X)=T(X,x") +V(x) S(x=x") +W(x,x"). (11
in which
In the following, we will work with natural units #{=c
=1). The matrix elements of the potentials are very easy to ,. h . 2
compute within the approximate quadrature r(#. One <kn|T|km>:T(kn)ﬁanm with  ky=-—-n. (18)
finds
Using relation(5), we obtain
Vij=V(x)§j,
(12 1 (b b
Wij :h\/)\i)\jW(Xi 'Xj)' <f||T|fJ>: Hfa dxfa dX'fi*(X)fj(X')
It is necessary to compute the potential only at the mesh +oo
i ; ; ; 2mn
points. It is worth noting that, when matrix elemefig) are > 2 ex i—(x—x’))T(kz). (19)
used, the variational character of the method cannot be guar- n=—w h .
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Now we replace the integrations on position variables by thé his is exactly the expression obtained in Réf} adapted
approximate quadrature formul@). But in this case the for a more general operator than the nonrelativistic one. Let
variablesx andx’ cannot be arbitrarily close to each other, us remark thafl;; =T,

since there is always a finite spacing between two mesh

points. This implies that the momentum cannot be arbitrarily IIl. THREE-DIMENSIONAL FGH METHOD

large. Consequently, we cut the infinite sum on momenta and

consider only momenta below Ak. We will compute the In the following, we will assume that a wave functiph)
value ofK below. This procedure gives can be decomposed into its central and orbital parts,
M (r,r|W)=R(r)Y, o(r) with r=r/r. (26)
<fi|T|fj>~HE " _ _ .
Within the three-dimensional FGH method, it is assumed
K 5 that the regularized radial part of the wave functioir)
% E ex;{iin( X, — ))T(k ). (20 =r R,(r) vanishes at the origin and at a distariResuffi-
=K h X ciently large. An ansatz to evaluate at best this distance is
given in Ref.[3]. As the wave function exists in a ball of

Finally, we obtain the real matrix elements radiusR, we will consider the identity operatdg for this
domain,
fi|T|f
Tij < | | I> =+/A E 200{ _Xj)> R IR .
hv\; lBR:f r2drfdr|r,r><r,r|. (27)
0 S
T(k})+T(0)|. (21)  Expressed in term of staték, ,\,») characterized by good

orbital quantum numbers\(v), and eigenstates of the

To compute the value df, we replace the kinetic energy Sduare relative impulsion operaik#, the identity operator is
operatoiT by the identity operator. The expressi@1) must ~ Written
then reduce to

® o A
=> > D ke N w)XKa o\, v (29)
n=1 \x=0 v=—\

+1]. (22

K
2mn
5”: \/)\i)\]{zl 2 CO%T(Xi—X]—)

The representation of these states in the configuration space

. . . _ (r e[O,R]) is given by
In particular, fori=j, we must verify the equality

. 2 r R
1=\ (2K+1). (23 TN Sy ( n—)v o
(il = N R GR) Yt

Consequently, all factons; must be equal. But they are used q
to define a quadrature rule, approximate for arbitrary func- with  k,= n (29
tions and exact for the basis functiofi$x). Moreover, for

physical problems, one can expect that these basis functions . _ . .
vanish at both boundaries of the interfal,b] in order to  WNerej, is a spherical Bessel function aag is a positive

match the asymptotic behavior of a real eigenfunction. Th&®r° ©f 'this function. The orthogonality properties of these
simple way to satisfy all these conditions is to use the secongtetes come from the following relatig8]:
sine basis functions defined in REB]. They are given in the

. 1 1
appendix. f Xy 4 12 AmX¥) Iy + 12 AnX) AX= Sm= [I1 4 1 An) 12
With the N—1 basis functionsAL), \;=1/N, K=(N o 12 A5 2 nmg s
—1)/2, andy;=i/N, Eq.(21) is then written (30

whereJ , is a Bessel function of the first kin@ positive zero
(24)  ofj, is also a positive zero of,, . 1/).
The basis for the LM method can be built with the func-
tions f; defined in the previous section. In the three-
which is a well-known identity. A matrix element of the dimensional space, the basis states are then given by

kinetic energy operatoT(Rz) is then ¢ (
r .
(N=-1)/2 (rlfiy=——Y, () with re[OR]. (31

(N=1)/2
1 2
6ij= N{ E 2c05<i(|—1) +1],

1 2mn
2 2cos{ <|—1>)T(k2>
With the previous notations, we take=0 andb=h=R.
The computation of potentidlocal or nonlocal matrix ele-
+T(O)| with i,j=1,...N-1. (25) ments does not differ from the one-dimensional case and
gives the resulf12) (in which x; must be replaced by , and
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h by R). Let us focus on the calculation of the matrix ele- ~ TABLE I. Error on g; for formula (39) as a function oN and
ment of a general kinetic energy operafqik?), K'in the casd =1.

. . . N K i j Erorong; i i Error ong;
f-Tf-=fdr’fdr filr ' |kye N0

(fil Tl {n,%“’v,} {n%ﬁ AL AT N 1 1 0.020 1 2 0.020

. 50 50 0.0099 50 51 0.0097

X (ko N0 [Tl N v) (K N ] EG). (32) N-1 1 1 36<10° 1 2 3.6¢10°

) 50 50 2.%10°% 1 2 29x10°¢
Since we have

— —4 —4
K A0 [TI M0y = T(KE) 8o B B 0 N-1 1 1 3.6¢10 1 2  35%10

100 1 1 3&10°% 1 2 3.6x10°
qn 1000 1 1 3&10% 1 2 36x10°
with  k,= (33
the matrix element32) can be written ( i j )
i~ 3 JE ——— il anyg /il @ (39)
el [m(qn)]z "NJUN

R R
<f‘|T|f1>:JO erO drirr " f;(r")f(N)T(r,r"), (34

An exact equality occurs only in the cabe 0 with K=N
—1 or N. Forl=1, a strict equality is no longer possible.

in which We have numerically verified that it is preferable to tdke
=N-1 instead oiN or any other values, and that the equal-
, r' an ity (39) is true in the limitN— < (see Table)l Forl=2, the
Trr)=rgs 21 [“H(qn)]zl'(qn R)Jl(qﬂ R) (RZ) situation is similar but formul&39) cannot be satisfied for

(35) small values of andj, even for large values dfl. Conse-
quently, the accuracy of this method becomes poorer Wwhen
Now we replace the integrations on radial variables by théncreases; nevertheless, for large enough number of grid
approximate quadrature formul#4). As in the one- points, very good results can be obtained. Finally, the matrix
dimensional case, the variableandr’ cannot be arbitrarily ~€lements of the kinetic energy operator are given by

close to each other, since there is always a finite spacing N_1

between two mesh points. This implies that the momentum T.— 2 2 1 j Qn
cannot be arbitrarily large and that we have to cut the infinite 1l ~ N3') & [ir+1(q )]2“ qn N TR
summation on momenta. This procedure gives T
with i,j=1,... N—1. (40
_(HilTIE) o o
i R\/r ~RYNNTFT(ri L rg) (36) Actually, Eq. (40) is equivalent to Eq(18) of Ref. [3]
I

only whenl=0. Indeed, forl#0, we haveq,#nw and
To find where to cut the infinite summation (r; ,r;), we 1{“”1(””)]27&(”_77)2' In Ref. [3], the discretization of the
replace the kinetic energy operator by the identity. In thisE19envalue equation was performed on the basis of physical
case the matrix elemeri86) must reduce to arguments, which led to a form different from the one found

here. Surprisingly, the results from the two forms are not

K very different. In Table Il, binding energies of two hydrogen
8: =2 NNy D ————— (Y (dnY) atom states obtained with E¢40) are compared with the
N ' Jy'anzl [j|+1(qn)]2JI Ay {Gn; ones obtained with Eq18) of Ref.[3]. Differences between

values given by both equations are small with respect to the
gaps from the exact value. These differences tend to vanish
when the number of points increases. As there is no analyti-
cal form known for the zeros of spherical Bessel functions, it
is preferable to use the simplest form of Re&f]. With Table
II, it can be seen that the exact values can be reached from
K above (=2) or from below (=1), which clearly shows
—9- 2 Ny 2; ; that the method is not variational.
% =2 VNiA ‘yin; Jo(nmyio(nmy;). (38 It could be interesting to have an estimation of the con-
vergence speed of eigenvalues as a function of the number of
This equation is tru¢see Eq.(Al) of Ref. [3]] if we have grid points. Unfortunately, this speed depends strongly on
Ni=1/N, K=N-1 orN, andy;=i/N, that is to say, if thd; the potential. For instance, 50 grid points are sufficient to
functions are built with the sine basis functions used in theobtain five exact digits for the ground state of a Sclmger
previous sectiorthe termn=N in the summation has a equation with a linear potential. The same accuracy is ob-
vanishing contribution sincgy(i)=0]. tained with about 1000 grid points for the Coulomb poten-
With this choice of Lagrange functions, Eq37) tial. Some extrapolation methods to compute an estimation
is written of the exact eigenvalues knowing some successive approxi-

with vy, €[0,1]. (37)

To simplify more, let us consider the cake 0, for which
qn=nm and [j,(nm)]?=1/(nm)2. Equation (37) is then
written
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TABLE Il. Binding energies in eV for th&® andD ground states 1.2
of the hydrogen atom calculated with the FGH method, as a func-

1.0 A
tion of the numbeiN of mesh intervals, using formul@0) or for-

mula (18) of Ref. [3]. The exact binding energy is the value ob- 0.8
tained with the analytical expression for the energy with the 0.6 1
parameters of the Hamiltonian used. 04
&
I N Formula(40) Ref.[3] S 0.2
1 25 —3.4056204 —3.4062227 0.0 \
50 —3.4003916 —3.4004032 20,8 {rle i N T i
100 —3.3996396 —3.3996398 o il ~0 ez
200 —3.3995777 —3.3995777 o6 — it
Exact —3.3995731 Bl 5 fi B Bl 10
2 25 —1.5029362 —1.5030474 y
o0 —1.5107195 —1.5107219 FIG. 1. The four sine basis functiortd1) for N=5 are given
100 -1.5109177 —1.5109177 between 0 and 1.
200 —1.5109213 —1.5109213
Exact —1.5109214 (derivation, integration can then be performed more reli-
ably.
mations have been testédee Ref[10] for instance. But ACKNOWLEDGMENT

they cannot give reliable results. A good procedure to reach

a high precision is to calculate the optimal value of the inte- | thank Professor D. Baye for useful discussions.
gration radiusk with a small number of grid points. Then,

with R fixed, the number of grid points can be increased until APPENDIX: SINE BASIS

the required accuracy is reached. It is worth noting that the The N—1 basis functionsf,(x) suitable for the FGH

calculation time increases, in g_ood approximation, with themethod are built with theN—1 dimensionless functions
cube of the numbers of grid points.

gi(y) defined on the intervdlo,1] by the following relation

[8]:
IV. CONCLUDING REMARKS

1 [ sinNw(y—y;)  sinNw(y+y;)

In this paper, we have shown that the Fourier grid Hamil- gi(y)= N SN2 (y—y,) _sin(w/2)(y+y) .
i i

tonian method is equivalent to a Lagrange-mesh calculation
in which the matrix elements of the kinetic energy operator
are computed by a discrete Fourier transformation. Consefhey satisfy conditiongl) with
guently, any kinetic energy operator that depends only on the
square relative impulsion can be considered. Moreover, the 1 [ .
Hamiltonian matrix is always symmetrical, which makes di- N=q and yi=g for i=1,...N-1 (A2)
agonalizations easier.

The FGH method is reinterpreted in terms of firm theo-Their boundary values are
retical bases. As a first result, it appears that this method is
not fully variational. Secondly, the eigenfunctions stemming 6i(0)=06i(1)=0 = fi(a)=fi(b)=0
from FGH computations can be obtained in an analytical for i=1,...N—1. (A3)
form and not only as a set of values at grid points, since each
eigenvector can be considered as the set of coefficients of arhe four functiong;(y) are represented in Fig. 1 in the case
expansion in a basis. Any operation on the eigenfunctionN=>5.
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