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Fourier grid Hamiltonian method and Lagrange-mesh calculations

Claude Semay*
Universitéde Mons-Hainaut, Place du Parc, 20, B-7000 Mons, Belgium

~Received 15 June 2000!

Bound state eigenvalues and eigenfunctions of a Schro¨dinger equation or a spinless Salpeter equation can be
simply and accurately computed by the Fourier grid Hamiltonian~FGH! method. It requires only the evaluation
of the potential at equally spaced grid points, and yields the eigenfunctions at the same grid points. The
Lagrange-mesh~LM ! method is another simple procedure to solve a Schro¨dinger equation on a mesh. It is
shown that the FGH method is a special case of a LM calculation in which the kinetic energy operator is
treated by a discrete Fourier transformation. This gives a firm basis for the FGH method and makes possible
the evaluation of the eigenfunctions obtained with this method at any arbitrary values.

PACS number~s!: 02.70.2c, 03.65.Ge, 03.65.Pm, 02.30.Mv
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I. INTRODUCTION

The Fourier grid Hamiltonian~FGH! method @1,2# is a
very accurate and simple procedure to compute eigenva
and eigenfunctions of a Schro¨dinger equation. This metho
requires only the evaluation of the potential at equally spa
grid points, and yields directly the amplitude of the eige
functions at the same grid points. It relies on the fact that
kinetic energy operator is best represented in momen
space, while the potential energy is generally given in co
dinate space. This method has been generalized to treat s
relativistic operators in the three-dimensional space
bound states@3#. The accuracy of the method depends on
number of grid points and on the maximal radial distan
considered to integrate the eigenvalue equation. An ansa
evaluate at best this last parameter is given in Ref.@3#. The
FGH method has also been applied to the study of scatte
equations@4#.

The Lagrange-mesh~LM ! method is another simple pro
cedure to solve with a great precision a Schro¨dinger equation
on a mesh@5#. Actually, trial eigenstates are developed in
basis of well chosen functions and Hamiltonian matrix e
ments are obtained with a Gauss approximate quadrature
numerical evaluation of matrix elements is required, only
computation of the potential at grid points. With this metho
the spacings between grid points depend on the basis ch
and are not necessarily equal. As a consequence, a S¨-
dinger equation can be solved with the same accuracy
fewer points in the LM method than in the FGH method. T
LM method can be extended to treat three-body systems
accurately@6# as well in nuclear physics as in atomic phy
ics. Recently, a general procedure for deriving an infinity
new Lagrange meshes related to orthogonal or nonortho
nal bases has been developed@7#.

In this paper, it is shown that the FGH method is equiv
lent to a LM calculation in which the matrix elements of th
kinetic energy operator are computed by a discrete Fou
transformation. This makes possible the computation
bound states for semirelativistic kinematics. The FG
method can then be reinterpreted in terms of firm theoret
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bases. As a result, it appears that this method is not f
variational but that the eigenfunctions stemming from FG
computations can be obtained at arbitrary values and
only at grid points. It is worth noting that both FGH and LM
techniques can be applied if the potential is nonlocal, o
couplings exist between different channels.

The connection between the FGH method and the
method for one-dimensional problems is outlined in Sec.
while the three-dimensional case is treated in Sec. III. A b
summary is given in Sec. IV.

II. ONE-DIMENSIONAL FGH METHOD

Within the one-dimensional FGH method, the eigenfun
tions are assumed to be defined within a finite range of v
ues@1#. So we will present the main ingredients of the L
method on a finite domain of values. Let us assume the
istence of a set ofM dimensionless functionsgi(y) and M
valuesyi in the range@0,1# such that

gi~yj !5d i j ,
~1!

E
0

1

gi* ~y!gj~y!dy5l id i j .

With these functions, we can buildM new functionsf i(x)
depending on the dimensioned variablex on the interval
@a,b#,

f i~x!5gi S x2a

h D with h5b2a and x5hy1a.

~2!

These functionsf i(x) have then the following properties:

f i~xj !5d i j ,
~3!

E
a

b

f i* ~x! f j~x!dx5hl id i j .

With the numbers$l i% and $xi%, we can define an approxi
mate Gauss quadrature formula
8777 ©2000 The American Physical Society
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E
a

b

F~x!dx'h(
i 51

M

l iF~xi !. ~4!

With the properties~3!, one verifies that Eq.~4! is exact for
any productf i* f j .

Now, let us introduce a set of trial basis statesu f i& whose
representation in the position variablex is given by

^xu f i&5 f i~x!, ~5!

the identity operator1[a,b] on the interval@a,b# being written

1[a,b]5E
a

b

ux&dx^xu. ~6!

The orthogonality properties of these basis states are

^ f j u f i&5E
a

b

^ f j ux&^xu f i&dx5E
a

b

f j* ~x! f i~x!dx5hl id i j .

~7!

A trial stateuf& can be developed within this basis,

uf&5(
i 51

M

ci u f i&. ~8!

From Eqs.~3!, it follows immediately thatci5f(xi) with
f(x)5^xuf&.

We can now search for a variational solution of an eig
value equation. In the restricted space of trial states, the
sure relation is written

uf&5F(
i 51

M

u f i&
1

hl i
^ f i uG uf&. ~9!

The eigenvalue equation for a HamiltonianH is then given
by

(
j 51

M

Hi jAl jf~xj !5EAl if~xi ! with Hi j 5
^ f i uHu f j&

hAl il j

,

~10!

whereE is an upper bound of an eigenvalue ofH. We can
see that theM components of the eigenvector are directly t
values of the trial states at theM mesh points$xi%.

Let us consider a general HamiltonianH with a kinetic
part T, a local potentialV, and a nonlocal interactionW,

^x8uHux&5T~x,x8!1V~x!d~x2x8!1W~x,x8!. ~11!

In the following, we will work with natural units (\5c
51). The matrix elements of the potentials are very eas
compute within the approximate quadrature rule~4!. One
finds

Vi j 5V~xi !d i j ,
~12!

Wi j 5hAl il jW~xi ,xj !.

It is necessary to compute the potential only at the m
points. It is worth noting that, when matrix elements~12! are
used, the variational character of the method cannot be g
-
o-

to

h

ar-

anteed. This is only possible if an exact quadrature is p
formed. In practice, for a sufficiently high number of bas
states, the method is often variational. But this is not alw
the case. We will show an example below.

If the kinetic operator is the nonrelativistic one, then
matrix elements can easily be obtained@5#,

T~x8,x!5C d~x2x8!
d2

dx2
⇒ Ti j 5CAl j

l i
f i9~xj !.

~13!

Note that the Hamiltonian matrix can be nonsymmetrical
For semirelativistic systems, the kinetic energy opera

has no simple form in the configuration space. It is b
represented in the momentum space. As the eigenvalue e
tion is solved on a finite interval of lengthh, there exists a
minimal possible momentumDk52p/h, and all the values
of the momenta are quantifiedkn5nDk, wheren is an inte-
ger. Expressed in terms of the eigenstatesukn& of the square
relative impulsion operatork̂2, the identity operator can be
written

1[a,b]5 (
n52`

1`

ukn&
2p

h
^knu, ~14!

where the statesukn& are given in configuration space (x
P@a,b#) by

^xukn&5
1

A2p
expS i

2pn

h
~x2a! D with kn5

2pn

h
.

~15!

From Eq.~15!, the orthogonality relation of these states is

^kmukn&5
h

2p
dmn . ~16!

Insertion of expression~14! in the scalar product̂xuc& gives
the Fourier decomposition ofc(x) in the interval@a,b#.

The computation of a matrix element of a general kine
energy operatorT( k̂2) gives

^ f i uTu f j&5E
a

b

dxE
a

b

dx8 (
n52`

1`

(
m52`

1` S 2p

h D 2

^ f i ux&^xukn&

3^knuTukm&^kmux8&^x8u f j&, ~17!

in which

^knuTukm&5T~kn
2!

h

2p
dnm with kn5

2p

h
n. ~18!

Using relation~5!, we obtain

^ f i uTu f j&5
1

hEa

b

dxE
a

b

dx8 f i* ~x! f j~x8!

3 (
n52`

1`

expS i
2pn

h
~x2x8! DT~kn

2!. ~19!



th

r,
es
ril
an

y

d
nc

tio

h
on

e

Let

ed

e is
f

e

pace

se

c-
e-

and

PRE 62 8779FOURIER GRID HAMILTONIAN METHOD AND . . .
Now we replace the integrations on position variables by
approximate quadrature formula~4!. But in this case the
variablesx andx8 cannot be arbitrarily close to each othe
since there is always a finite spacing between two m
points. This implies that the momentum cannot be arbitra
large. Consequently, we cut the infinite sum on momenta
consider only momenta belowK Dk. We will compute the
value ofK below. This procedure gives

^ f i uTu f j&'
1

h (
r 51

M

(
s51

M

h2l rlsf i* ~xr ! f j~xs!

3 (
n52K

K

expS i
2pn

h
~xr2xs! DT~kn

2!. ~20!

Finally, we obtain the real matrix elements

Ti j 5
^ f i uTu f j&

hAl il j

5Al il jF (
n51

K

2 cosS 2pn

h
~xi2xj ! D

3T~kn
2!1T~0!G . ~21!

To compute the value ofK, we replace the kinetic energ
operatorT by the identity operator. The expression~21! must
then reduce to

d i j 5Al il jF (
n51

K

2 cosS 2pn

h
~xi2xj ! D11G . ~22!

In particular, fori 5 j , we must verify the equality

15l i~2K11!. ~23!

Consequently, all factorsl i must be equal. But they are use
to define a quadrature rule, approximate for arbitrary fu
tions and exact for the basis functionsf i(x). Moreover, for
physical problems, one can expect that these basis func
vanish at both boundaries of the interval@a,b# in order to
match the asymptotic behavior of a real eigenfunction. T
simple way to satisfy all these conditions is to use the sec
sine basis functions defined in Ref.@8#. They are given in the
appendix.

With the N21 basis functions~A1!, l i51/N, K5(N
21)/2, andyi5 i /N, Eq. ~21! is then written

d i j 5
1

N F (
n51

(N21)/2

2 cosS 2pn

N
~ i 2 j ! D11G , ~24!

which is a well-known identity. A matrix element of th
kinetic energy operatorT( k̂2) is then

Ti j 5
1

N F (
n51

(N21)/2

2 cosS 2pn

N
~ i 2 j ! DT~kn

2!

1T~0!G with i , j 51, . . . ,N21. ~25!
e

h
y
d

-

ns

e
d

This is exactly the expression obtained in Ref.@1# adapted
for a more general operator than the nonrelativistic one.
us remark thatTi j 5Tji .

III. THREE-DIMENSIONAL FGH METHOD

In the following, we will assume that a wave functionuC&
can be decomposed into its central and orbital parts,

^r , r̂ uC&5Rl~r !Yl ,m~ r̂ ! with r̂ 5rW/r . ~26!

Within the three-dimensional FGH method, it is assum
that the regularized radial part of the wave functionul(r )
5r Rl(r ) vanishes at the origin and at a distanceR suffi-
ciently large. An ansatz to evaluate at best this distanc
given in Ref.@3#. As the wave function exists in a ball o
radiusR, we will consider the identity operator1BR

for this
domain,

1BR
5E

0

R

r 2drE
S
dr̂ur , r̂ &^r , r̂ u. ~27!

Expressed in term of statesukn ,l,n& characterized by good
orbital quantum numbers (l,n), and eigenstates of th
square relative impulsion operatork̂2, the identity operator is
written

1BR
5 (

n51

`

(
l50

`

(
n52l

l

ukn ,l,n&^kn ,l,nu. ~28!

The representation of these states in the configuration s
(r P@0,R#) is given by

^r , r̂ ukn ,l,n&5A 2

@ j l11~qn!#2R3
j lS qn

r

RDYl,n~ r̂ !

with kn5
qn

R
, ~29!

where j m is a spherical Bessel function andqn is a positive
zero of this function. The orthogonality properties of the
states come from the following relation@9#:

E
0

1

xJl11/2~qmx!Jl11/2~qnx!dx5dnm

1

2
@Jl11/28 ~qn!#2,

~30!

whereJm is a Bessel function of the first kind~a positive zero
of j m is also a positive zero ofJm11/2).

The basis for the LM method can be built with the fun
tions f i defined in the previous section. In the thre
dimensional space, the basis states are then given by

^rWu f i&5
f i~r !

r
Yl ,m~ r̂ ! with r P@0,R#. ~31!

With the previous notations, we takea50 and b5h5R.
The computation of potential~local or nonlocal! matrix ele-
ments does not differ from the one-dimensional case
gives the result~12! ~in which xi must be replaced byr i , and
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h by R). Let us focus on the calculation of the matrix el
ment of a general kinetic energy operatorT( k̂2),

^ f i uTu f j&5E drW8E drW (
$n8,l8,n8%

(
$n,l,n%

^ f i urW8&^rW8ukn8 ,l8,n8&

3^kn8 ,l8,n8uTukn ,l,n&^kn ,l,nurW&^rWu f j&. ~32!

Since we have

^kn8 ,l8,n8uTukn ,l,n&5T~kn
2!dnn8dll8dnn8

with kn5
qn

R
, ~33!

the matrix element~32! can be written

^ f i uTu f j&5E
0

R

drE
0

R

dr8rr 8 f i~r 8! f j~r !T~r ,r 8!, ~34!

in which

T~r ,r 8!5
2

R3 (
n51

`
1

@ j l 11~qn!#2
j l S qn

r 8

R D j l S qn

r

RDTS qn
2

R2D .

~35!

Now we replace the integrations on radial variables by
approximate quadrature formula~4!. As in the one-
dimensional case, the variablesr andr 8 cannot be arbitrarily
close to each other, since there is always a finite spa
between two mesh points. This implies that the moment
cannot be arbitrarily large and that we have to cut the infin
summation on momenta. This procedure gives

Ti j 5
^ f i uTu f j&

RAl il j

'RAl il j r i r jT~r i ,r j !. ~36!

To find where to cut the infinite summation inT(r i ,r j ), we
replace the kinetic energy operator by the identity. In t
case the matrix element~36! must reduce to

d i j 52Al il j yiy j (
n51

K
1

@ j l 11~qn!#2
j l~qnyi ! j l~qnyj !

with yiP@0,1#. ~37!

To simplify more, let us consider the casel 50, for which
qn5np and @ j 1(np)#251/(np)2. Equation ~37! is then
written

d i j 52p2Al il j yiy j (
n51

K

n2 j 0~npyi ! j 0~npyj !. ~38!

This equation is true@see Eq.~A1! of Ref. @3## if we have
l i51/N, K5N21 or N, andyi5 i /N, that is to say, if thef i
functions are built with the sine basis functions used in
previous section@the term n5N in the summation has a
vanishing contribution sincej 0( ip)50#.

With this choice of Lagrange functions, Eq.~37!
is written
e

g
m
e

s

e

d i j '
2

N3 i j (
n51

K
1

@ j l 11~qn!#2
j l S qn

i

ND j l S qn

j

ND . ~39!

An exact equality occurs only in the casel 50 with K5N
21 or N. For l 51, a strict equality is no longer possible
We have numerically verified that it is preferable to takeK
5N21 instead ofN or any other values, and that the equa
ity ~39! is true in the limitN→` ~see Table I!. For l>2, the
situation is similar but formula~39! cannot be satisfied fo
small values ofi and j, even for large values ofN. Conse-
quently, the accuracy of this method becomes poorer whl
increases; nevertheless, for large enough number of
points, very good results can be obtained. Finally, the ma
elements of the kinetic energy operator are given by

Ti j 5
2

N3 i j (
n51

N21
1

@ j l 11~qn!#2
j l S qn

i

ND j l S qn

j

NDTS qn
2

R2D
with i , j 51, . . . ,N21. ~40!

Actually, Eq. ~40! is equivalent to Eq.~18! of Ref. @3#
only when l 50. Indeed, forlÞ0, we haveqnÞnp and
1/@ j l 11(np)#2Þ(np)2. In Ref. @3#, the discretization of the
eigenvalue equation was performed on the basis of phys
arguments, which led to a form different from the one fou
here. Surprisingly, the results from the two forms are n
very different. In Table II, binding energies of two hydroge
atom states obtained with Eq.~40! are compared with the
ones obtained with Eq.~18! of Ref. @3#. Differences between
values given by both equations are small with respect to
gaps from the exact value. These differences tend to va
when the number of points increases. As there is no ana
cal form known for the zeros of spherical Bessel functions
is preferable to use the simplest form of Ref.@3#. With Table
II, it can be seen that the exact values can be reached f
above (l 52) or from below (l 51), which clearly shows
that the method is not variational.

It could be interesting to have an estimation of the co
vergence speed of eigenvalues as a function of the numb
grid points. Unfortunately, this speed depends strongly
the potential. For instance, 50 grid points are sufficient
obtain five exact digits for the ground state of a Schro¨dinger
equation with a linear potential. The same accuracy is
tained with about 1000 grid points for the Coulomb pote
tial. Some extrapolation methods to compute an estima
of the exact eigenvalues knowing some successive appr

TABLE I. Error on d i j for formula ~39! as a function ofN and
K in the casel 51.

N K i j Error ond i j i j Error ond i j

100 N 1 1 0.020 1 2 0.020
50 50 0.0099 50 51 0.0097

N21 1 1 3.631026 1 2 3.631026

50 50 2.931026 1 2 2.931026

10 N21 1 1 3.631024 1 2 3.531024

100 1 1 3.631026 1 2 3.631026

1000 1 1 3.631028 1 2 3.631028
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mations have been tested~see Ref.@10# for instance!. But
they cannot give reliable results. A good procedure to re
a high precision is to calculate the optimal value of the in
gration radiusR with a small number of grid points. Then
with R fixed, the number of grid points can be increased u
the required accuracy is reached. It is worth noting that
calculation time increases, in good approximation, with
cube of the numbers of grid points.

IV. CONCLUDING REMARKS

In this paper, we have shown that the Fourier grid Ham
tonian method is equivalent to a Lagrange-mesh calcula
in which the matrix elements of the kinetic energy opera
are computed by a discrete Fourier transformation. Con
quently, any kinetic energy operator that depends only on
square relative impulsion can be considered. Moreover,
Hamiltonian matrix is always symmetrical, which makes
agonalizations easier.

The FGH method is reinterpreted in terms of firm the
retical bases. As a first result, it appears that this metho
not fully variational. Secondly, the eigenfunctions stemm
from FGH computations can be obtained in an analyti
form and not only as a set of values at grid points, since e
eigenvector can be considered as the set of coefficients o
expansion in a basis. Any operation on the eigenfuncti

TABLE II. Binding energies in eV for theP andD ground states
of the hydrogen atom calculated with the FGH method, as a fu
tion of the numberN of mesh intervals, using formula~40! or for-
mula ~18! of Ref. @3#. The exact binding energy is the value o
tained with the analytical expression for the energy with
parameters of the Hamiltonian used.

l N Formula~40! Ref. @3#

1 25 23.4056204 23.4062227
50 23.4003916 23.4004032
100 23.3996396 23.3996398
200 23.3995777 23.3995777

Exact 23.3995731

2 25 21.5029362 21.5030474
50 21.5107195 21.5107219
100 21.5109177 21.5109177
200 21.5109213 21.5109213

Exact 21.5109214
s

y

h
-

il
e
e

-
n
r
e-
e
e

-

-
is

l
ch
an
s

~derivation, integration! can then be performed more rel
ably.
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APPENDIX: SINE BASIS

The N21 basis functionsf i(x) suitable for the FGH
method are built with theN21 dimensionless functions
gi(y) defined on the interval@0,1# by the following relation
@8#:

gi~y!5
1

2N F sinNp~y2yi !

sin~p/2!~y2yi !
2

sinNp~y1yi !

sin~p/2!~y1yi !
G .

~A1!

They satisfy conditions~1! with

l i5
1

N
and yi5

i

N
for i 51, . . . ,N21. ~A2!

Their boundary values are

gi~0!5gi~1!50 ⇒ f i~a!5 f i~b!50

for i 51, . . . ,N21. ~A3!

The four functionsgi(y) are represented in Fig. 1 in the ca
N55.

c-

FIG. 1. The four sine basis functions~A1! for N55 are given
between 0 and 1.
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