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Higher-order force gradient symplectic algorithms
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We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of
force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms
that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm.
We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated
with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric
Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factdr @b4.0L0",
and 16 better.

PACS numbsd(s): 02.60.Ch, 95.10.Ce

|. INTRODUCTION If the Hamiltonian is of the form

Symplectic algorithm$1,2] for solving classical dynami- 1 5
cal problems exactly conserve all Poincaneariants. For H(p,q)—z 2,: P+ V(Hai), &)
periodic orbits, the errors in energy conservation are
bounded and periodic. This is in sharp contrast to Rungethe evolution equatior(1) can be written as an operator
Kutta type algorithms, whose energy error increases linearlgquation
with integration time, even for periodic orbif8,4]. Thus,
symplectic algorithms are ideal for long time integration of dw d d
equations of motion in problems of astrophysical intefB§t at Z ( Er 0. | W &)
For long time integrations, higher order algorithms are desir-
able because they permit the use of larger time steps. Synith formal solution
plectic algorithms are also advantageous in that higher order
algorithms can be systematically generated from any low, W(t)=eT*VIW(0), (4)
even order algorithnj6—8J. In this work, we will show that
higher order algorithms generated by a fourth order forcavhereT andV are first order differential operators defined by
gradient symplectic algorithii®], have energy errors that are
several orders of magnitude smaller than existing symplectic d d
algorithms of the same order. For completeness, we will TEZ pi&_qi’ VEZ Fi(;_pi' ®)
briefly summarize the operator derivation of symplectic al-
the materials in this section are not new, we believe that Weyhich displacey; andp; forward in time via
have restated Creutz’ and Gockach@ triplet construction
of higher order algorithms in its most transparent setting. In gi—qi+ep; and p;—p;+eF;. (6)
Secs. lll and IV we recall force gradient algorithms and dis-
cuss two distinct ways of gauging the errors of an algorithmThus, if e"*V) can be factorized into products of the dis-
when solving the Kepler problem. We present our results an@glacement operators€’ and eV, each such factorization
conclusions in Secs. V and VI. gives rise to an algorithm for evolving the system forward in
time. For example, the second order factorization
Il. OPERATOR FACTORIZATION AND HIGHER-ORDER
CONSTRUCTIONS

After a tortuous starf10,11], symplectic algorithms can =exd e(T+V)+e’C+0(e)-- -], (7)
be derived most simply on the basis of operator decomposi- .
tion or factorization. For any dynamical variablé(q; ,p;),  cCrresponds to the second order algorithm
its time evolution is given by the Poisson bracket

7~2( 6) = e(l/2)ETeeVe(1/2)ET

1
= + — ,
d WG o= (WHI =S IW dH W oH W 41~ G0 5 €Po
ST 4 \oq app apy aai)
P1=Po+ €F(q1),
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whereqp, pg andd,, p; are the initial and final states of the triplet construction was also independently published by Su-
algorithm, respectively. This second order symplectic algozuki [7] and Yoshidd 8] in 1990.

rithm only requires one evaluation of the force. Higher order algorithms can be obtained by repeating this
The bilaterally symmetric form of7;(€) automatically construction. Starting with anyth order symmetric algo-
guarantees that it is time reversible, rithm
T(—e)Ty(e)=1, €) To(e)=exd e(T+V)+ e DD +.. ], (15

and implies that In{;) can only be an odd function af, as  the triplet product
indicated in Eq.(7). The explicit form of the operato€ is

not needed for our present discussion. To(6)To(—36)Ty(6)
Consider now the symmetric triple product —ex(2—8)8(T+V)+(2—s""1) 5" 1D
TH(0)To(—s6)Ty(5) +O(6" 3+ ], (16)
=exd (2—9)8(T+V)+(2—s%8°C+0(8%+---].

will be of order (h+2) if we choose

(10) s= 21/(n+l) (17)
This algorithm evolves the system forward for timigback-
ward for timesé and forward again for timeb. Since it is and renormalized= €/(2—s) as before.
manifestly time-reversible, its error terms must be odd pow-
ers of § only. Morever, its leading first and third order terms [ll. FORCE GRADIENT ALGORITHMS
can only be the sum of the first and third order terms of each o .
constituent algorithm as indicated. This is because nonaddi- The _method of operator fact_onzatlon can be applied to
tive terms must come from commutators of operators and thg1any different C"'?‘Sses (.)f eVO'““O'? equations. However, the
lowest order nonvanishing commutator has to have two firs&”plet cor.lcaten_atlonS W't.h a negatlvg t|rr_19 step are a special
order terms and one third order term, which is fifth order construction with more limited applicability. For example,

The form of Eq.(10) naturally suggests that the third order ©N€ cannot use it to derive similar Diffusion Monte Carlo or
error term can Be made to vanish by choosing finite temperature path integral algorithms, because one can-

not simulate diffusion backward in time nor sample configu-
s=213 (1D rations with negative temperatures. The triplet construction
is a special example of Suzukild4] general proof that,
Thus if we now rescalé back to the standard step size by beyond second order, it is impossible to factoreé& )

setting e=(2—15) 8, the resulting triplet product would be only into products ofe”’s and e€"’s without introducing
correct to fourth order, negative time steps. For symplectic algorithms this means
that one can never develop a purely positive time step fourth
T =T, € T —Se T € order algorithm by evaluating only the force. For many years
4772 2—-5) "% 2—5) % 2-5 the Forest-RutiFR) algorithm was the only known fourth

5 order symplectic algorithm. Recently, a deeper understand-
=exde(T+V)+0(e)+---]. (12)  ing of the operator factorization process has yielded three
new symplectic algorithmf9] all with purely positive time

Expanding out thef,’s gives the explicit form steps. These new algorithms circumvented Suzuki’s no-go

T,=e21Tgb1eVgareTboeVgareTghreVgaseT, (13) theorem by evalygting ths fprce and its gradient. This corre-
sponds to factorizings"*V) in terms of operatorg, V, and
where, by inspection the commutatofV,[ T,V]]. The latter corresponds to
11 1s-1 aF; 9 d
==  a,=—=— V,[T,V]]=2F;— — =V,|F|>—, (18)
=555 2T 20" VLTV 199; ap; F
1 s which is the gradient of the squared magnitude of the force.
bl:sz’ and b,=— P (14)  Of the three algorithms derived by Chji@], algorithm C is

particularly outstanding and corresponds to the factorization

This fourth order symplectic algorithm was apparently ob- e€(T+V) — oe(UB)T oe(3/8)V ge(1/3)T (LA g e(1/3)T g e(3/8)V ge(1/6)T
tained by Forest in 1987. However, its original derivation

was very complicated and was not published with Ruth] +0(€%, (19
until 1990. During this period many groups, including Cam-
postrini and Rosdi12] in 1990, Candy and Rozmo($3]in  where
1991, independently published the same algorithm. Our dis-
cussion followed the earliest published derivation of this al-
gorithm by Creutz and Gocks¢h] in 1989. After they were
informed of this algorithm by Campostrini, they provided the

triplet construction and generalized it to higher order. TheThe algorithm itself can be read off directly as

- 1
V=V+ 4—862[V,[T,V]]. (20)
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1 Denoting E(t)=H[p(t),q(t)] and H,(t)=H,[p(t),a(t)],
d1=0o g €Po. we therefore have
3 o1
P1=Po+ 5 eF(ay), Hn(t)—_lm?[E(t)_Eo]- (25
1 Energy conservation does not directly measure how well
0,=Qqq+ §epl, the orbit is determined. When the time step is not too small,

a very noticeable error is that the orbit precesses. One can,
1 1 but it is tedious, directly monitor this orbital precessian.
P,=p1+ - € F(0,) +-=€2V|F(a.)|?], (21)  Itis more expedient to follow the rotation of the Laplace-
2T g 248 IF(@)| Runge-LenzLRL) vector

1 A=pxL—r1 26
d3=02+ 5 €P2, P - (26)
When the orbit is exact the LRL vector is constant, pointing
along the semimajor axis of the orbit. When the orbit pre-
P3=pP2 T gEF(%)’ cesses the LRL vector rotates correspondingly.
For annth order algorithm
1
Q4ZQ3+ gépg. dd_li\zenz (9A (?Hn_ (9A (9Hn

 \oai api  ap; 9q; )

(27)

In Ref. [9] it was shown that the maximum energy error
for this algorithm, when used to solve Kepler's problem, isThus, the rate of change of each component of the LRL
smaller than that of the FR algorithm by a factor of 80. Atvector is of order". The components themselves, which are
the moment there is no general method for constructingime integrals of the above modulo a constant term, must
higher order algorithms with only positive time steps. It is also be of ordee". Let the LRL vector initially be of length
not even known whether a positive time step sixth order, and lie along the axis, then we have
algorithm exists. Thus, beyond fourth order the triplet con-

truction is still the only systematic way of generating higher Ax()=Ag+ e"An (1) +O(e"?), (28

order algorithms. In this work we show that intrinsic error

functions associated with higher order algorithms generated Ay(t)=€"An, () +O(e""2). (29)

from Chin’s algorithm C are far smaller than those generated

from the FR algorithm. Since the square of the LRL vector is related to the energy
by

IV. THE ENERGY AND THE LRL VECTOR 2 2
A2=2| 2E+1, (30)

We gauge the numerical effectiveness of each algorithm
by solving the two-dimensional Kepler problem the longitudinal deviation coefficiem,,(t) is related to the
energy error coefficient by

dq_ g
W:_ag, (22) 1 L2 L2

Anx(t):?_O[E(t)_EO]:_A_OHn(t)v (32)

with initial conditionsgy=(10,0) andpy=(0,1/10). The re-

sulting highly eccentric ¢=0.9) orbit provides a nontrivial which gives no new information. The perpendicular devia-
testing ground for trajectory integration. tion coefficientA,(t) is best measured in terms of the rota-

A symmetricnth order symplectic algorithm evolves this tion angle

system forward in time with Hamiltonian

Ay(t)
A1)

Any(D)
Ao

— N

H(p,a)=Ho(p,q) + €"Hy(p,q) +O(e"*?), (23 o(t)=tan ! (32

. . . . _ l 2

VXTEW dbev';‘rﬁe:r:g?r?e:xnﬁxad Hzrg'l.tnodmcgpég’?o_ 2; e To compare algorithms we again extract and compare their
al by, _ n(P,q) as indi - 10 9aUge " iation error coefficient functiod,(t) = A, (t)/A, via

the intrinsic merit of each algorithm we compare their step- y

size independent error coefficieRt,(p,q). This can be ex- 1
tracted numerically as follows. Let us start the system with O,(t)=lim— 6(t). (33
total energy Eq=H,[p(0),q(0)]. Since the Hamiltonian e—0€

(23) is conserved by the algorithm, we have
Since this rotational angle is related to some integral of the

Eo=Holp(t),q(t) ]+ €"H(p(1),q(t)) + O(e"?). energy error function, it is a better measure of the overall
(24)  error of the algorithm.
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FIG. 1. The normalized energy deviation of a particle in a FIG. 2. The step-size independent error coefficient of the rota-
Keplerian orbit, which measures the step-size independent energjon angle of the Laplace-Runge-Lenz vector for fourth order algo-
error coefficient—H,[p(t),q(t)1/Eq. P is the period of the ellipti- rithms. The LRL vector rotates substantial only when the particle is
cal orbit ande is the time step size. RK4, FR, and C denote resultsnear mid period, closest to the attractive center. The inset makes
for the fourth order Runge-Kutta, Forest-Ruth, and Chin’s C algo-visible the fine structure produced by algorithm C.
rithm, respectively. The maximum deviations for algorithm FR and

C are 21 and 0.27, respectively. still. While the energy error integral can be done, the same
goal can be achieved by monitoring the rotation of the LRL

V. RESULTS OF COMPARING HIGHER-ORDER vector.
ALGORITHMS Figure 2 shows the corresponding error coefficient func-

tions of the rotational angle of the LRL vector. After each
eriod, the algorithms rotate the LRL vector by a definite
mount. The error coefficient provides an intrinsic, step-size
ndependent way of comparing this rotation. In Fig. 2 the
Totated angle produced by algorithm C is too small to be
visible when plotted on the same scale as the other algo-
rithms. The inset gives an enlargement of the details. The
1| E(t) H,(t) rotational angle of the LRL vector appears to be related to
E, = Eo B4 some integral of energy error function. Although we have
not been able to demonstrate this analytically, numerical in-
tegration of the energy error function does give a function
Smaller and smaller time stepsare used until the extracted similiar in shape to the angle coefficient function, having the
coefficient function is stablized independent of the time stepame numbers of maxima and minima. For the Runge-Kutta,
size. This typically occurs in the neighborhood ef Forest-Ruth, and Chin’s C fourth order algorithms, the mag-
=P/5000, whereP is the period of the orbit. nitudes of this rotation coefficient after one period are 2.666,
Figure 1 compares th@egative normalized error coeffi- 10.860, and 0.004, respectively. On this basis, algorithm C is
cient functions for the fourth order Runge-Kutta, Forest-better than FR by a factor of3000. When the orbit is
Ruth, and Chin’s C algorithms over one period of the orbit.integrated over many periods the rotational angle from sym-
The error function for the two symplectic algorithms are sub-plectic algorithms increases linearly in a staircaselike manner
stantial only near mid period when the particle is at its clos-with time. In contrast, the rotational angle of the Runge-
est approach to the attractive center. For symplectic algoKutta algorithm shows a quadratic increase over long times,
rithms energy is conserved over one period, or itssuch as a few thousand periods. This result is easy to under-
nonconservation is periodic. Its average energy error istand if the rotational angle is related to some integral of the
bounded and constant as a function of time. In contrast, thenergy error. This quadratic increase in the rotation angle of
fourth order Runge-Kutta energy error function is an irre-the LRL vector clearly mirrors the quadratic increase in
versible, steplike function over one period. Each successivphase error of the Runge-Kutta algorithm, as discussed by
period will increase the error by the same amount resultingsladman, Duncan, and Cang4|.
in a linearly rising, staircaselike error function in time. As  Running on a Hewlett Packard 710 workstation using
noted earlier, the maximum error in Chin’s algorithm C is HP's FORTRAN 9000 compiler, the CPU time required for
smaller than that of the FR algorithm by a factor of 80.integrating 100 periods, with 5000 executions of the algo-
However, this error height comparison at one point is notrithm per period, are 4.52, 4.94, and 4.48 sec, respectively,
meaningful. It is better to compare the energy error averagetbr algorithms FR, C, and RK4. Using the FR time
over one period. This would require the integral of the en-=4.52 sec as a unit of comparison, the respective CPU time
ergy error function. On this basis algorithm C will be betterfor FR, C, and RK4 are, 1.09r, and 0.99. As expected, the

By use of the triplet construction, we generated 6th, 8th
10th, and 12th order algorithms from both the Forest-Rut
and Chin’s C algorithm. We computed the fractional energy;
deviation, which is just the negative of the energy error co
efficient normalized by the initial energy

lim—
n
o€

€—
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FIG. 3. The normalized energy deviation for sixth order algo- k1 5. The normalized energy deviations for eighth order algo-

rithms. RF and C denote sixth order algorithms generated by @ihms as generated by a triplet product of sixth order algorithm

triplet product of corresponding fourth algorithms in Fig. 1. The yegcribed in Fig. 3. The inset makes visible the minute energy de-
inset makes visible the energy deviation of algorithm C, which isi5tion of algorithm C.

not visible in the bigger graph. The maximum deviations for algo-

rithms FR, Y, and C are 513, 13.6, and 0.74, respectively. ) ) )
3000 better. Note that if the energy error function is related

go the differential of the the angle error function, the zeros of
the former would correspond to the extrema of the latter. The

where the force is rather simple, despite the fact that the Fl-ff)ur zlerol cro?lsmgz (_)f ar:gonthm C,.S energdy error _fu_nct|or}

algorithm only evalutates the force three times, it is not fastefir€ clearly re epte In the two maxima an two minima o

than RKA4. thg correspond!ng angle error functlon. The CPU time re-
Figures 3 and 4 show the results when both the Forestqu'red for algorithms FR, C, and Y to integrate 100 periods

Ruth and Chin’s C algorithms are iterated to sixth order byare 2.99, 3.27r, and _2'72’ respectively. Since the sixth
the triplet product construction. Inserts in both detail algo—Order FR and C algorithms are just products of three fourth

rithm C’s intricate structure. As an added comparison Weorder algorithms, the required time simply triples. Yoshida’'s

also included results for Yoshidal8] sixth order algorithm ~Oth order algorithm is a bit faster because it uses fewer op-

o : tors.
A, which is a product of seven second order algoritig)s "3 _ . .
some with negative time steps. For Yoshida’s algorithm Figures 5 and 6 give results for the eighth order iterated

Forest-Ruth and Chin’s C algorithm in sixth order, the mag_’algorithms _based on the Forest-Ruth and C_hi_n’s C algorithm.
nitudes of the rotation coefficients after one period are 11.441N€_magnitudes of the angle error coefficients are 1.386
335.1, and 0.1156, respectively. Yoshida’s algorithm is a* 10" and 0.4532, respectively, giving a ratio of approxi-
factor of 30 better than FR, but algorithm C is a factor of mately 3x 10%. Algorithm C retains its characteristic shape

force gradient algorithm C is slower than the standard F
algorithm, but only on the order of 10%. For this problem,
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FIG. 4. The step-size independent error coefficient of the rota- FIG. 6. The step-size independent error coefficient of the rota-
tion angle of the LRL vector for sixth order algorithms as describedtion angle of the LRL vector for eighth order algorithms as de-
in Fig. 3. The inset makes visible the minute rotation coefficientscribed in Fig. 5. In this order, the algorithm C based algorithm
produced by algorithm C. begins to rotate in the same sense as the FR base algorithm.
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FIG. 7. The normalized energy deviations for tenth order algo- FIG. 9. The normalized energy deviations for 12th order algo-
rithms, as generated by a triplet product of eighth order algorithnrithms, as generated by a triplet product of tenth order algorithm
described in Fig. 5. The inset shows that the characteristic oscilladescribed in Fig. 7. The inset shows that there is no longer any
tions of algorithm C are beginning to disappear. distinctive structure produced by algorithm C.

in both the energy and the angle error function. The time 1N iteration of algorithms A and B of Chii$] also pro-
required for algorithm FR and C are now 8:94nd 9.7% duced results that are better than FR based algorithms. How-
respectively, exactly as expected. Algorithm C remains 10()/(§avaesr£ (\)’\:]ee ((j)? tr\:\?c: gredtglrlstgfe%;eiﬁgasdg?gieggf?g21? tohr(iet%rirg at
slower. This pattern is very predictable and holds for all 9 9 :
higher order algorithms. The factors are 27 and 81, respec-

tively, for 10th and 12th order algorithms. V1. CONCLUSIONS

. Figures 7 and 8 give_ the corresponc_iing results for th_e In this work we have shown that higher order force gra-
iterated tenth order algorithms. Here the intricate structure iRy symplectic algorithms appear to be superior to nongra-
the C algorithm is beg'”?"”g to _b_e washed out. At this high ey symplectic alogorithms as measured by eneregy con-
order, q“a‘?'mp'e humeric precision Is necessary to extrallyation and the rotation of the LRL vector. While it has
these coefficient fu_nctlons smoothly. The magnitudes of thg .., shown earlier that fourth order force gradient algo-
angle_ erlror gqefflment; ar? n0\6\2 7'].>410LS and 5'89 e rithms have smaller energy error coefficief®, it was not
spectively, giving a ratio of X10". Figures 9 and 10 give 6y that this advantage would mulitply dramatically when
similar results for the 12th order algorithms. At this point all 514 ithms are iterated to higher orders. The conclusion that
structures in the C _algonthm are gone. Tr71e magnitudes of th§e should draw may not be that force gradient algorithms
angle_ error c_o_eff|C|ent$ are now 35.4%30 and 427.5, re- are better, but that higher order nongradient algorithms are
spectively, giving a ratio of 1.0810". far from optimal. Second, we suggested that the rotation of
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FIG. 8. The step-size independent error coefficient of the rota- FIG. 10. The step-size independent error coefficient of the rota-
tion angle of the LRL vector for tenth order algorithms as describedion angle of the LRL vector for 12th order algorithms as described

in Fig. 7. The inset shows that the error coefficient of algorithm Cin Fig. 9. The inset shows that both algorithms have converged to a
begins to look similar to that of the FR algorithm. similar steplike error function.
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the LRL vector gives an intergrated measure of an algoerder algorithm with all positive time steps, gives further

rithm’s merit when tested on the Kepler problem. impetus to search for an all positive time step sixth order
The high accuracy of this class of algorithms seemedsymplectic algorithm.

ideal for long time integration of few-body problems, such as

that of t_he solar systef®]. For su_ch few-body _proble_m_s;, the ACKNOWLEDGMENTS
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