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The present study contains high-precision variational results for a number of bound states in various Cou-
lomb three-body systems. In particular, we discuss the bound-state properties foiStsta of the”He
atom, the boun®(L=0) andP(L=1) states in symmetric muonic molecular ions, and ground states in the
SHe e and*He? " e atoms. The accuracy achieved for the total energies in these systems is signifi-
cantly higher than known from the previous works. These results have been obtained by using a package of
FORTRAN programs and a pretranslator written by D.H. Bailey from NAEAH. Bailey, ACM Trans. Math.
Softw. 21, 379(1995]. This multiprecisiorFORTRAN package can completely eliminate all problems related to
numerical instabilities at large dimensions, which are crucial for high-precision, bound-state calculations in
few-body systems. In fact, the multiprecisieoRTRAN programs open another avenue in the study of bound
states in few-body systems.

PACS numbds): 02.70—c, 36.10.Dr

In this paper we present the advanced, high-precision restate properties for th§(L=0) states in muonic molecular
sults of bound-state, variational calculations for some Couions have been computed recently with very high accuracy
lomb three-body systems. In particular, we consider thé2]. The comparison between the results frih and those
bound-state properties for théR®state of the”He atom, the  calculated presently using NASA-Fortran is of great interest.
boundS(L =0) andP(L =1) states in the symmetric muonic This is also the case for the helium-muonic atoms
molecular ionsppu,ddu,ttu, and the ground states in the (*He?*n"e™ and *He?*u"e™) in their groundS(L=0)
3He2+,u*e* and 4He2+,u*e* atoms. The accuracy States. For such systems, it is very interesting to recalculate
achieved for the total energies in these systems is signifithe corresponding hyperfine splittingee, e.g[3-5]) for
cantly higher than known from previous works. Our presentoth atoms and compare results wiéij. Note that the mul-
results have been obtained by applying a recently developéiprecisionFORTRAN has already been used in calculations of
FORTRAN translator with extended numerical accuracy. Thisthe boundS(L=0) states for the nonsymmetric muonic mo-
powerful, multiprecision FORTRAN translator was written lecular ionspdu, ptu, anddtu [7].
by Bailey from NASA[1]. This translator(called NASA- Note that the methods discussed below can be used for
FORTRAN, for shor) allows one to perform calculations, in arbitrary three-body systems, but presently, we restrict our-
principle, with arbitrary accuracgfor more details, sefl]).  selves to a consideration of the Coulomb three-body systems.
Moreover, any program written iIFORTRAN-90can automati- To determine the bound states in such systems the exponen-
cally be transformed to an arbitrary precision version by ustial variational expansion in relative coordinates is ugied
ing a pretranslator, which was also written by Bai[dy. In  more details see, e.g2] and references thergirin the gen-
our present study we have used the numerical accuracgral case, the trial wave function for the,(M) bound state
which corresponds to the 48 and 64 exact decimal figures pé$ represented in the form
computer word. It should be mentioned here that the pack-
ages developed by Bailey open another avenue in the study 1 Nt L
of bound states in few-body systems. Viw=5(1+ kPo) Y X GV L 2(ra,rs))

In fact, for the physics of few-body systems the invention i=171=¢
of _such a translator means a re_vo_lutlonary turn. Indeed, by X expl — a;U; — BUs— YiUs)
using this translator one can eliminate all problems related
with numerical instabilities for the finite-dimension eigen- Xexp(18;us+1eus+1fius) (h)
value problemgat large dimensions This means that now

we can use practically nonlimited sets of basis functions iRyhere C. are the linear (or variationa) parameters
| ’

few-body, bound-state calculations. As a result, one can ob&_ . Bi, v, 6., e, andf; are the nonlinear parameters. The

tain the energies and other properties for such systems Wi%lnctionsy'/l'/z(rgl r5,) are the so-called Schwarf8] or
LM ’

an arbitrary number of corre¢or stable decimal figures. To lar h . i< the total | ¢ i
illustrate this in the present study we consider the heliun{)IIOO ar harmonicsl. is the total angular momentum, a

atom (“He) in its 2S (triplet) state, the symmetric muonic IS the eigenvalue of thé, operator. The three perimetric
molecular ionsppu,ddu, andttu in their S(L=0)— and coordinatesl;, U,, andus are simply related with the three
P(L=1) states, and the helium-muonic atomsrelative coordinatesu;=3z(ry+r—ry) and rij=r;=u;
*He?"w e and *He" e in their ground S(L=0)  +u;, where {,j,k)=(1,2,3). The operatoP,; is the per-
states. The bound-state properties of the triplet stat€ddef =~ mutation of the identical particles in symmetric systems,
atoms have never been determined to high accuracy. In comvherex= £ 1, otherwisex=0. In fact, in the present study
trast with this, the energies and a number of other boundll three possible values &f are usedx= —1 for the triplet
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state of the helium atom and for tHgL=1) states in the relatively short, booster function cannot significantly im-
muonic molecular ionsx=0 for the ground states in the prove results for the total wave function which includes a
muonic-helium atoms; ana=1 for the S(L=0) states in Very large number of basis functions. This means that even a

the muonic molecular ions. careful optimization of the very compact, booster wave func-
The use of perimetric coordinates in the exponents of Egtions cannot improve drastically the final accuracy if the total
(1) instead of the relative coordinatésee, e.g.[2]) signifi-  number of basis functions uséice., N) is significantly larger

cantly simplifies partial(or complet¢ optimization of the than the number of terms in the booster functibe., No). In
nonlinear parameters in E¢l) (see, e.g.[6]). Indeed, the other words, the final result is determined primarily by bhe
parametersy;, B;, andy, (i=1,...N) in Eq. (1) can be (for very largeN), rather than by a combination dfandN,
arbitrary positive numbers, while the parametérse;, and  (whenNy<N, e.g.,N~10No).

f, (i=1,... N) can be arbitrary real numbers. The simple Now, let us briefly discuss the advantages which are pro-
conditionsa;>0, 3,>0, andy;>0 (i=1,... N) must be Vided by the invention of theaPFUN package OfFORTRAN
obeyed to guarantee convergence of all integrals needed programs and the pretranslator written by Bailey. It is known
the computations. In fact, such a choice for the nonlineathat the central problem of all few-body, variational, highly
parameters means that one can now use very effective op@ccurate computations is the stability of matrix diagonaliza-
mization procedures, and therefore, perform significantition routines(partial or complete diagonalizatiprat large
better optimization of these parameters than was possible i@mensions(see, e.g.[2]). For instance, in the case of Eq.
our previous work9]. In the last case, we could not use the (1), the solution of the original Schdinger equatiorHW¥
negative values for some of these parameters, since the threeE ¥ is reduced to the following matrix form:H{—ES)C

relative coordinatess,, rs;, andrp; are not completely in-  —§ \yherefl andS are the matrices of the Hamiltonian and

dependent. Negative values of the nonlinear parameters a(r)%erlap.é is the vector of the variationdlinear coefficients

crltlcall_y Important in many cases o represent accurate IXfrom Eqg. (1). In fact, at large dimensions all three matrices
some interparticle correlations. In particular, the negative.

nonlinear parameters are really needed in highly accurate H, @ndH—ESare ill-conditioned. Formally, a matrik is
calculations of weakly bound, excited, and cluster stategll-conditioned if its corresponding condition numbhi(A)
Complex values for some of the nonlinear parameters in Ec=100:o(| Amax/|Amin|) i very large(see, e.g[11,12). Here,
(1) are needed to provide high accuracy also for the adiabatit\ max and|\ i designate the maximal and minimal eigen-

systems, where, e.g., min{,my)>mz and g;0,>0 (for  values(absolute valugsof the A matrix. In actual computa-
more detail see, e.g[2]). Note that our method does not g any of theS, A, and A—ES matrices can be ill-

malkef use of the Born-Opp%nheirlne[igfgroxma_ﬁ]fh]. conditioned. But the most serious problems are related, as a
n fact, in our present study only t andL.=2 cases rule, with the ill-conditioned overlap matri%. In this case,

are considered. Furthermore, all nonlinear parameter, . X . X !
S;, €, andf; in the basis functions have been chosen to bet'Sne basis vectorgi.e., the basis functions in Ed1)] are

equal to zero for=1, ... N. This means that all basis func- almost linearly depende{t3]. In this case, for the two close

tions are real functions, and therefore, all matrix elements ofNit-norm vectorsC andC+C (where|| 5C||<[[C]|), the

the Hamiltonian and overlap matrices are also real. This caffifference between the corresponding scalar products
be done, since all considered systems are certainly not adi4C,SC) and (C+ 8C,S(C+ 6C)) can be ~1089(>1).
batic. Indeed, even for thgu ion the numerical value of the This implies numerical instability in the diagonalization pro-
so-called adiabatic parameter[10] T=(mM/mt)1’4 cess. In fact, the accuracy of tledetermination decreases
~0.440 39, i.e./>0. The use of the complex exponents in rapidly when the condition numbeﬁ(é) grows. By using

Eg. (1) does not accelerate convergence significantly evetthe new NASAFORTRAN with extended numerical precision,
for the ttw ion, but instead it makes all calculations much one can avoid all problems related with the presence of ill-
more complicated. Moreover, in our present calculations weonditioned matrices. Indeed, the new NASA-Fortran allows
have used the two following methods to construct basis funcus to keep as many significant figures as needed to stabilize
tions in Eq. (1). First, we used the two-stage procedurethe diagonalization process. Finally, we can now concentrate
which is based on the optimization of the nonlinear paramon the physics of few-body systems, rather than apply very
eters in the firsiNg trial wave functions Ng<<N), while the  specific tricks to solve the mentioned problem of numerical
nonlinear parameters in the rast- Ny basis functions are instability.

chosen quasirandomly. The second method is the quasiran- To illustrate how the new NASAORTRAN works for real
dom choice for all (Bl) nonlinear parameters in Eql). systems, we consider the bounéS2state of the*He atom,
Presently, the first approach has been used for the helium atlde boundS(L=0) and P(L=1) states in the symmetric
helium-muonic atoms and also for tl¢L =0) states of the muonic molecular ions, and the ground states in the
muonic molecular iongfor more details, seg2] and[6]). In  3He?* e and*He?" e atoms. All constants, conver-
all these cases, a partial optimization has been performed f@ion factors, and particle masses used in our present calcula-
the boost wave function consisting bf;=200 basis func- tions have been taken frofii4]. In particular, the particle
tions. The seconéquasi- randomchoice is applied only for masses are

the P(L=1) states in the muonic molecular ions. It was

foun_d that both choices of nonlinear parameters in #y. . m, =1836.152 70, my=3670.483 01,

provide a very comparable accuracy in computations with P

Nmax= 2500 basis functions. This is obvious, since even a

very detailed optimization of the nonlinear parameters in the m;=5496.921 58, m,=206.768 26,
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TABLE I. The expectation valuesX;;) in atomic units (n,=14=1,e=1) of some properties for the®3 state of the helium atom with

infinitely heavy nucleusN designates the number of basis functions used. The notations 1 and 2 designate the two electrons, while 3 stands

for the nucleus.

(Xi;) N=1800 N=2200 N=2500
E ~2.175229378236791291621  —2.175229378236791299265  —2.175229378236791301794
(ryh 0.268197855414848 0.268197855414848 0.268197855414848
(rat 1.15466415297211 1.15466415297211 1.15466415297211
(1) 4.44753521696268 4.44753521696268 4.44753521696268
(ran) 2.55046267687692 2.55046267687692 2.55046267687692
(r2) 23.04619747997229 23.04619747997229 23.04619747997229
(r2) 11.46432162228457 11.46432162228457 11.46432162228457
(r3) 136.742510330358 136.742510330358 136.742510330358
(r3) 65.2150926304579 65.2150926304579 65.2150926304579
(rd) 916.389433776757 916.389433776757 916.389433776757
(rd) 428.402273125949 428.402273125949 428.402273125949
((rars) ™ 0.560729635682927 0.560729635682927 0.560729635682927
((raaf20) ™Y 0.322696221719855 0.322696221719855 0.322696221719855

((rarara) ™) 0.186586074203096

0.186586074203094

0.186586074203093

T3 0.562788947402921 0.562788947402921 0.562788947402921
™ —1.5839217088250810 2 —1.5839217088250810 2 —1.5839217088250810 2
(f) 2.7434669429397810 2 2.7434669429397810 2 2.7434669429397810 2
(Fap-T32) —5.87771177015738102 —5.8777117701573810 2 —5.8777117701573810 2
(Fag-Ton) 17.314036668301 17.314036668301 17.314036668301
(—3V3) 1.08761468911840 1.08761468911840 1.08761468911840
(—3V3 2.18267150894282 0.218267150894282 2.18267150894282
(V,V,) 7.4421307060241210°° 7.4421307060241810° 3 7.4421307060241410°3
(V,V3) —2.18267150894282 —2.18267150894282 —2.18267150894282
(831 1.32035508284857 1.32035508305351 1.3203550829745
(821 0.0 0.0 0.0
(8301 0.0 0.0 0.0
v —1.99999999894905 —2.00000000452699 —2.00000000167468
va @ -20 -2.0 -2.0
7 3.8699% 10 7 1.77976x 107 1.08525¢ 10 %7
& —4.768236019558047429 -4.768236019558047637 —4.768236019558046682
#The exact two-particle cusp valligg. (3)].
Mape=5495.885,, Maye=7294.299 &n,. < o 9 >
|
For the helium atom and helium-muonic atoms :ﬂ' 2
(PHe?* " e™ and “He?* . ~e™) only atomic units §=1, (a(rij))

e=1, andm,=1) are used. For the muonic molecular ions

all results are given in muon-atomic units€1, e=1, and Where &;=45(r;;) is the appropriate Dira@ function and

m,=1). (ij)=(21) and (31). The exact value of; equals
The numerical values for some of the properiies., ex-
pectation valuesfor the 23S state of the”He atom can be - _ m;m;
found in Table I. In this table all such values are presented in Vij=aiq; m;+m;’ )

atomic units. The physical meaning for all of the expectation

values in Table | is quite clear from the notations used. Sovvhereqi andg; are the charges and, andm; the masses of

here we wish to make only the few following remarks. In {he particles. However, the expected value of the electron-
Table | the notations 1 and 2 mean negatively charged eleGsiectron cusp(or v,, cusp is not determined uniformly,
trons, while the notation 3 designates the infinitely heavysince(5 )=0. It is also assumed that, =0 identically
nucleus. The notationss,, d;;, and ds, stand for the two- This forlgnally follows from the Fermi holzé effe¢i 5] .
and three-particle Diraé functions, respectively. In fact, the The expectation values of the two interparticﬁesine
expected values fofd,;) and(ds,,) for the 2°S state of the functions are determined traditionally
“He atom equal zero identically. This is the so-called Fermi '
hole effect(see, e.g.[15]).

The two-body cusp ratios are determined in a traditional

manner[16,17,

Tij:<cos(rik/\rjk)>:<rik.rjk>7 4

Fik Tk
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TABLE II. The total energiedE) in muon-atomic units fi,=1/=1e=1) for the groundS(L=0)
states of symmetric muonic molecular iomsdesignates the number of basis functions used.

N E(ppu) E(ddu) E(ttu)
1400 —0.49438682024891802 —0.53111113540238425 —0.54637422561381507
1600 —0.49438682024892353 —0.53111113540238336 —0.54637422561381615
1800 —0.49438682024892639 —0.53111113540238425 —0.54637422561381655
2000 —0.49438682024892849 —0.53111113540238486 —0.54637422561381664
2200 —0.49438682024893003 —0.53111113540238539 —0.54637422561381668
2500 —0.49438682024893169 —0.5311111540238575 —0.5467422561381371
where (,j,k)=(1,2,3). The quantity(f) is expressed in Note that some expectation values in Table | can be ex-

terms of the relative coordinatess(,r3,,r»;) or perimetric  pressed as linear combinations of other properties. For in-

coordinates (;,U,,us) [where uj=3(rjj+ry—ry) and stance, for the three relative vectars,, rs;, andry we
(i,j,k)=(1,2,3)] as follows: have

=l 2 ) oy Fart T1=0. ®

Therefore, the three following equalitigéi, j,k) =(1,2,3)]:
:f f f |¢(uy,Up,U3)|?UsUsuzdurduydus.  (5) 1
' . rik-rjk=§(ri2k+r]-2k—ri2]- 9
The value(f) can be calculated directly or by applying .
Their coincidence indicates thab,, 735,73, and (f) have

been computed correctly. The equalities finds (see Table I

7'21+ T32+ T31= 1+ 4<f> (6)
F V= T (12 (12— (12
hold for an arbitrary three-body system. For symmetric sys- (T 1) = 2 ((rig +(rid ={ri)). (10
tems we haverg,= 73;.
The virial factor» is determined as follows: Analogously, sincep; + p,+ps=0, we write
22 > L. 1
7=t @ (Pi-Pi)= 5 (Pk—p{—p}) (11)

where(T) and(V) are the expectation values of the kinetic

and potential energy, respectively. The deviation of the fac-

tor » from zero indicates, in principle, the quality of the o 1

wave function used. The appropriate binding energiese (pi-pj)= E((pﬁ)—(p?)—(pf)) (12
given in eV (the conversion factor is 1 a&27.2113961

eV). Note, however, that even an exact coincidence of the

factor » with 0 does not indicate a high quality of the wave L(1:1,K)=(1,2,3)]. Moreover, if the thregp; are determined
function. In fact, such a coincidence can be significantly im-by the relationsp;=(—1)V; in Cartesian coordinates, then
proved artificially, as well as the corresponding coincidenceone finds

for two-particle cusp values, by varying some of the linear .

and nonlinear parameters in the wave function. However, in 2 2 2

our present study such an “advanced, scientific method” <V |V )={= ViV, )= < _V"> < 2Vi > < Evj '
improving wave functions has not been used. (13

TABLE lll. The total energiegE) in muon atomic units iy, =12=1,e=1) for the groundP(L=1)
—states of symmetric muonic molecular iodsdesignates the number of basis functions used.

N E(ppu) E(ddu) E(ttu)
1400 —0.46845843630337135 —0.51362395679262942 —0.53326344981910582
1600 —0.46845843630337626 —0.51362395679266100 —0.53326344982010159
1800 —0.46845843630338003 —0.51362395679267359 —0.53326344982023228
2000 —0.46845843630338143 —0.51362395679267741 —0.53326344982031475
2200 —0.46845843630338226 —0.51362395679267890 —0.53326344982035642

2500 —0.46845843630338344 —0.51362395679268025 —0.53326344982037656

hold in any case. For the appropriate expectation values one
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TABLE IV. The expectation valuegX;;) in atomic units m.=14=1,e=1) of some properties for the
ground states of théHe? " u e~ and “He? " w e~ helium-muonic atoms, respectivel) designates the
number of basis functions used. The notations 1 and 2 designate the electron and muon, respectively, while
3 stands for the nucleus.

(Xi) N= 2000 N=2200 N=2500
E —399.04233683286251593 —399.04233683286251960 —399.04233683286252384
(851) 0.3136819444 0.3136819823 0.3136820042
(831 0.3206115479 0.3206115304 0.3206115091
(83 2.01499388439 10 2.01499388438 10 2.01499388448 10
7 1.803651 10716 1.452855 10 16 1.29153% 1016
E —402.63726303513543127 —402.63726303513543620 —402.63726303513544403
(851 0.3137604521 0.3137604246 0.3137604273
(831 0.3206314979 0.3206315214 0.3206315471
(832 2.07001373528 10 2.07001373518 10 2.0700137352% 10
7 2.148075¢10 16 1.68369< 10 16 1.04044< 10 16

where (,j,k)=(1,2,3). The expectation values from both are quite well known. Presently, by using the new NASA-
sides of this equality can be found in Table |. Note, howeverfortran we have determined the bound-state energies for the
that the last three equalities are obeyed only in Cartesianymmetric muonic molecular ionspu, ddu, andttu with
coordinates and only if;=(—1)V,. In the present study at least two more correct decimal figurés comp_arison to
such a choice is used, and therefafe,V;-V;) can be ex- [2]). Furthermore, the other bound-state properies, geo-
pressed througlﬁ—%Vf} and vice versa. Moreover, in the metrical and dynamical propertiefor these ions have also

: NN been computed presently more accurately than their values
symmetric systems we havép?)=(p3) and (rg;-ry) Sen i :
1 2 31 l2 given in[2] (they are not presented in Tables Il and.llh

=(r 3y T,1). This simplifies some of the equations presentediact, by using the new NASAORTRAN it is straightforward
above. Moreover, for the symmetric systefiis-2) one eas- to determine as many decimal figures as needed. In other
ily finds that —(V,-V,) is always negative, sinc&V,|V,) words, now the accuracy of few-body bound state computa-
= —(V,-V,)=—(—1v2)<0. tions can be arbitrarily high.

The variational eznegrgies for th§(L=0) and P(L=1) Based on the results given in Table IV, one can evaluate
bound states in the symmetric muonic molecui@s:, ddu the ground-state energies of the helium-muonic atoms with

J J ; —15 ;

andttu are presented in Tables Il and Ill. All energies in maximal error _Iess tha&2>_<10 a.u. This means that our
Tables Il and IIl are given in muon-atomic units=1.e present energies are’50 times more accurate than those
=14=1). The variational energies an@;;) expectation computed only one year ag®]. Note also that for the

values[ (i])=(21), (31), and32)] for the grounds(L =0) helium-muonic atoms the hyperfine splittings are of signifi-
states in the3He2+, _e_’ and *He?* - e~ helium-muonic cant interest, since it can be easily measured experimentally.
atoms can be founlfj in Table IV K The theoretical expressions for the hyperfine splittings takes

A convergence of the computed properties for thé& 2 the form(see, e.g.[6])

state of the helium atorfsee Table )l indicates clearly that Av(*He)=14229.180 061 05(r,,)) MHz,

our present method can produce extremely accurate wave .

functions. Briefly, the accuracy of the obtained wave func- Av(3He)=10671.885079 54D(r,)) (14)
tions is far beyond the accuracy of the wave functions pre-

viously known for the considered systems. Moreover, by us- +2553.907 751 447@5(rn)) MHz,

ing such high-precision wave functions one can make
significant progress in the study of bound states in variousvhereA v(*He) andA »(*He) are the hyperfine splittings for
few-body systems. In particular, a number of bound-statehe *He?* .~ e~ and *He?" u e~ helium-muonic atoms,
properties for the 2S state in the”He atom have presently respectively. In these equatiofis(r.,)) and(5(rey)) are
been determined with extremely high accuracy. Furthermorehe expectation values for the electron-muoiggl) and
such a very high accuracy is observed not only for the reguelectron-nucleug31) & functions, respectively. From these
lar properties(e.qg., for<r{}>,<rij~rik>, etog, but also for the formulas and our expectation values in Table IV we find
55, delta-function expectation value and for thg, two-  Awv(*He)~4464.554 MHz andAv(*He)~4166.390 MHz.
particle cusp. They are very close to the values computed previo{8ly
The variational energies and some other properties for thand to the experimentally known valuesA v(*He)
symmetric muonic molecular ionspu, ddu, andtty have  ~4464.95 MHz andAv(®He)~4166.41 MHz[6]. Thus,
recently been computed to high accur&2y, In fact, bound- based on the results frof] and the results of the present
state computations for such systems have been performed fetudy(see Table I one can say that the total relativistic and
years(see, e.g.[18-2( and references theréinand now QED corrections are=20 kHz for the 3He?* e~ atom,
many of the bound-state properties of muonic molecular ionsind~400 kHz for the*He?* u e~ atom. It is still not quite
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clear why the hyperfine splitting for théHe? " .~ e~ atom  computations. All bound-state properties for the three-, four-,
agrees with the known experimental value~20 times bet- and more-body systems can now be determined, in principle,
ter than in the case of thtHe? " e~ atom. Also, it should to arbitrarily high accuracy. This is a very important step for
be mentioned that despite a significant progress made ifuture progress in few-body physics. However, it is easy to
bound-state computations for the considered Coulomb thregredict some possible complications. One of them is related
body systems some problems still remain. For instance, thaith an extensive use @ priori nonoptimal, few-body basis
observed(almost perfegt convergence for the variational sets with very slow convergence. However, such a slow con-
bound-state energies does not mean a similar improvemegergence can be compensated for by using very large num-
in coincidence of the computed and predicted two-particlepers of basis functions in computations. In general, an im-
cusp values. In fact, the determined internuclei cusp valuegrovement of relatively short variational wave functions will
(i.e. thev,; cusps for all symmetric muonic molecular ions pe replaced by the use of very large basis sets. Obviously,
have almost the same quality as[RI. Such a problem has his will require significantly more powerful computers, but
also been detected for some other bound-state properties, principle, such calculations can be performed already. In

Obviously, this problem requires a separate investigation. fact, this means a fundamental change for the whole of few-
In conclusion, it should be mentioned that the invention Ofbody physics

the powerful multiprecisio®ORTRAN (i.e., NASAFORTRAN,
developed by D.H. Baileyhas created a completely new It is a pleasure to thank Mark M. Cassar for his valuable
situation for the whole of few-body physics. In fact, one canhelp and the Natural Sciences and Engineering Research
now use extremely large basis sets in bound-state, variation&louncil of Canada for financial support.
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