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High-precision, variational, bound-state calculations in Coulomb three-body systems
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~Received 25 April 2000!

The present study contains high-precision variational results for a number of bound states in various Cou-
lomb three-body systems. In particular, we discuss the bound-state properties for the 23S state of the`He
atom, the boundS(L50) andP(L51) states in symmetric muonic molecular ions, and ground states in the
3He21m2e2 and 4He21m2e2 atoms. The accuracy achieved for the total energies in these systems is signifi-
cantly higher than known from the previous works. These results have been obtained by using a package of
FORTRAN programs and a pretranslator written by D.H. Bailey from NASA@D.H. Bailey, ACM Trans. Math.
Softw.21, 379~1995!#. This multiprecisionFORTRAN package can completely eliminate all problems related to
numerical instabilities at large dimensions, which are crucial for high-precision, bound-state calculations in
few-body systems. In fact, the multiprecisionFORTRAN programs open another avenue in the study of bound
states in few-body systems.

PACS number~s!: 02.70.2c, 36.10.Dr
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In this paper we present the advanced, high-precision
sults of bound-state, variational calculations for some C
lomb three-body systems. In particular, we consider
bound-state properties for the 23S state of the`He atom, the
boundS(L50) andP(L51) states in the symmetric muon
molecular ionsppm,ddm,ttm, and the ground states in th
3He21m2e2 and 4He21m2e2 atoms. The accuracy
achieved for the total energies in these systems is sig
cantly higher than known from previous works. Our pres
results have been obtained by applying a recently develo
FORTRAN translator with extended numerical accuracy. T
powerful, multiprecision FORTRAN translator was writte
by Bailey from NASA @1#. This translator~called NASA-
FORTRAN, for short! allows one to perform calculations, i
principle, with arbitrary accuracy~for more details, see@1#!.
Moreover, any program written inFORTRAN-90can automati-
cally be transformed to an arbitrary precision version by
ing a pretranslator, which was also written by Bailey@1#. In
our present study we have used the numerical accu
which corresponds to the 48 and 64 exact decimal figures
computer word. It should be mentioned here that the pa
ages developed by Bailey open another avenue in the s
of bound states in few-body systems.

In fact, for the physics of few-body systems the inventi
of such a translator means a revolutionary turn. Indeed
using this translator one can eliminate all problems rela
with numerical instabilities for the finite-dimension eige
value problems~at large dimensions!. This means that now
we can use practically nonlimited sets of basis functions
few-body, bound-state calculations. As a result, one can
tain the energies and other properties for such systems
an arbitrary number of correct~or stable! decimal figures. To
illustrate this in the present study we consider the heli
atom (`He) in its 23S ~triplet! state, the symmetric muoni
molecular ionsppm,ddm, and ttm in their S(L50)2 and
P(L51) states, and the helium-muonic atom
3He21m2e2and 4He21m2e2 in their ground S(L50)
states. The bound-state properties of the triplet states of`He
atoms have never been determined to high accuracy. In
trast with this, the energies and a number of other bo
PRE 621063-651X/2000/62~6!/8740~6!/$15.00
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state properties for theS(L50) states in muonic molecula
ions have been computed recently with very high accur
@2#. The comparison between the results from@2# and those
calculated presently using NASA-Fortran is of great intere
This is also the case for the helium-muonic atom
(3He21m2e2 and 4He21m2e2) in their groundS(L50)
states. For such systems, it is very interesting to recalcu
the corresponding hyperfine splitting~see, e.g.@3–5#! for
both atoms and compare results with@6#. Note that the mul-
tiprecisionFORTRAN has already been used in calculations
the boundS(L50) states for the nonsymmetric muonic m
lecular ionspdm, ptm, anddtm @7#.

Note that the methods discussed below can be used
arbitrary three-body systems, but presently, we restrict o
selves to a consideration of the Coulomb three-body syste
To determine the bound states in such systems the expo
tial variational expansion in relative coordinates is used~for
more details see, e.g.,@2# and references therein!. In the gen-
eral case, the trial wave function for the (L,M ) bound state
is represented in the form

CLM5
1

2
~11k P̂21!(

i 51

N

(
l 15e

L

CiY LM
l 1 ,l 2~r31,r32!

3exp~2a iu12b iu22g iu3!

3exp~ ıd iu11ıeiu21ı f iu3! ~1!

where Ci are the linear ~or variational! parameters,
a i , b i , g i , d i , ei , andf i are the nonlinear parameters. Th
functionsY LM

l 1 ,l 2(r31,r32) are the so-called Schwartz@8# or
bipolar harmonics,L is the total angular momentum, andM

is the eigenvalue of theL̂z operator. The three perimetri
coordinatesu1 , u2, andu3 are simply related with the thre
relative coordinates:ui5

1
2 (r ik1r i j 2r jk) and r i j 5r j i 5ui

1uj , where (i , j ,k)5(1,2,3). The operatorP̂21 is the per-
mutation of the identical particles in symmetric system
wherek561, otherwisek50. In fact, in the present stud
all three possible values ofk are used:k521 for the triplet
8740 ©2000 The American Physical Society
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state of the helium atom and for theP(L51) states in the
muonic molecular ions;k50 for the ground states in th
muonic-helium atoms; andk51 for the S(L50) states in
the muonic molecular ions.

The use of perimetric coordinates in the exponents of
~1! instead of the relative coordinates~see, e.g.,@2#! signifi-
cantly simplifies partial~or complete! optimization of the
nonlinear parameters in Eq.~1! ~see, e.g.,@6#!. Indeed, the
parametersa i , b i , andg i ( i 51, . . . ,N) in Eq. ~1! can be
arbitrary positive numbers, while the parametersd i , ei , and
f i ( i 51, . . . ,N) can be arbitrary real numbers. The simp
conditionsa i.0, b i.0, andg i.0 (i 51, . . . ,N) must be
obeyed to guarantee convergence of all integrals neede
the computations. In fact, such a choice for the nonlin
parameters means that one can now use very effective
mization procedures, and therefore, perform significan
better optimization of these parameters than was possib
our previous work@9#. In the last case, we could not use t
negative values for some of these parameters, since the
relative coordinatesr 32, r 31, andr 21 are not completely in-
dependent. Negative values of the nonlinear parameters
critically important in many cases to represent accura
some interparticle correlations. In particular, the negat
nonlinear parameters are really needed in highly accu
calculations of weakly bound, excited, and cluster sta
Complex values for some of the nonlinear parameters in
~1! are needed to provide high accuracy also for the adiab
systems, where, e.g., min(m1,m2)@m3 and q1q2.0 ~for
more detail see, e.g.,@2#!. Note that our method does no
make use of the Born-Oppenheimer approximation@10#.

In fact, in our present study only theL50 andL51 cases
are considered. Furthermore, all nonlinear parame
d i , ei , and f i in the basis functions have been chosen to
equal to zero fori 51, . . . ,N. This means that all basis func
tions are real functions, and therefore, all matrix element
the Hamiltonian and overlap matrices are also real. This
be done, since all considered systems are certainly not a
batic. Indeed, even for thettm ion the numerical value of the
so-called adiabatic parameter@10# t5(mm /mt)

1/4

'0.440 39, i.e.,t@0. The use of the complex exponents
Eq. ~1! does not accelerate convergence significantly e
for the ttm ion, but instead it makes all calculations mu
more complicated. Moreover, in our present calculations
have used the two following methods to construct basis fu
tions in Eq. ~1!. First, we used the two-stage procedu
which is based on the optimization of the nonlinear para
eters in the firstN0 trial wave functions (N0,N), while the
nonlinear parameters in the restN2N0 basis functions are
chosen quasirandomly. The second method is the quas
dom choice for all (3N) nonlinear parameters in Eq.~1!.
Presently, the first approach has been used for the helium
helium-muonic atoms and also for theS(L50) states of the
muonic molecular ions~for more details, see@2# and@6#!. In
all these cases, a partial optimization has been performed
the boost wave function consisting ofN05200 basis func-
tions. The second~quasi- random! choice is applied only for
the P(L51) states in the muonic molecular ions. It w
found that both choices of nonlinear parameters in Eq.~1!
provide a very comparable accuracy in computations w
Nmax52500 basis functions. This is obvious, since even
very detailed optimization of the nonlinear parameters in
q.
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relatively short, booster function cannot significantly im
prove results for the total wave function which includes
very large number of basis functions. This means that eve
careful optimization of the very compact, booster wave fun
tions cannot improve drastically the final accuracy if the to
number of basis functions used~i.e.,N) is significantly larger
than the number of terms in the booster function~i.e.,N0). In
other words, the final result is determined primarily by theN
~for very largeN), rather than by a combination ofN andN0
~whenN0!N, e.g.,N'10N0).

Now, let us briefly discuss the advantages which are p
vided by the invention of theMPFUN package ofFORTRAN

programs and the pretranslator written by Bailey. It is kno
that the central problem of all few-body, variational, high
accurate computations is the stability of matrix diagonali
tion routines~partial or complete diagonalization! at large
dimensions~see, e.g.,@2#!. For instance, in the case of Eq
~1!, the solution of the original Schro¨dinger equationHC

5EC is reduced to the following matrix form: (Ĥ2EŜ)CW

50W , whereĤ andŜ are the matrices of the Hamiltonian an
overlap.CW is the vector of the variational~linear! coefficients
from Eq. ~1!. In fact, at large dimensions all three matric
Ŝ, Ĥ, andĤ2EŜare ill-conditioned. Formally, a matrixÂ is
ill-conditioned if its corresponding condition numberN(Â)
5 log10(ulmaxu/ulminu) is very large~see, e.g.,@11,12#!. Here,
ulmaxu andulminu designate the maximal and minimal eige
values~absolute values! of the Â matrix. In actual computa-
tions any of theŜ, Ĥ, and Ĥ2EŜ matrices can be ill-
conditioned. But the most serious problems are related,
rule, with the ill-conditioned overlap matrixŜ. In this case,
the basis vectors@i.e., the basis functions in Eq.~1!# are
almost linearly dependent@13#. In this case, for the two close
unit-norm vectorsCW andCW 1dCW ~whereuudCW uu!uuCW uu), the
difference between the corresponding scalar produ

^CW ,ŜCW & and ^CW 1dCW ,Ŝ(CW 1dCW )& can be '10N(Ŝ)(@1).
This implies numerical instability in the diagonalization pr
cess. In fact, the accuracy of theE determination decrease
rapidly when the condition numberN(Ŝ) grows. By using
the new NASA-FORTRAN with extended numerical precision
one can avoid all problems related with the presence of
conditioned matrices. Indeed, the new NASA-Fortran allo
us to keep as many significant figures as needed to stab
the diagonalization process. Finally, we can now concent
on the physics of few-body systems, rather than apply v
specific tricks to solve the mentioned problem of numeri
instability.

To illustrate how the new NASA-FORTRAN works for real
systems, we consider the bound 23S state of the`He atom,
the boundS(L50) and P(L51) states in the symmetric
muonic molecular ions, and the ground states in
3He21m2e2 and 4He21m2e2 atoms. All constants, conver
sion factors, and particle masses used in our present calc
tions have been taken from@14#. In particular, the particle
masses are

mp51836.152 701me , md53670.483 014me,

mt55496.921 58me , mm5206.768 262me,
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TABLE I. The expectation valueŝXi j & in atomic units (me51,\51,e51) of some properties for the 23S state of the helium atom with
infinitely heavy nucleus.N designates the number of basis functions used. The notations 1 and 2 designate the two electrons, while
for the nucleus.

^Xi j & N51800 N52200 N52500

E 22.175229378236791291621 22.175229378236791299265 22.175229378236791301794

^r 21
21& 0.268197855414848 0.268197855414848 0.268197855414848

^r 31
21& 1.15466415297211 1.15466415297211 1.15466415297211

^r 21& 4.44753521696268 4.44753521696268 4.44753521696268
^r 31& 2.55046267687692 2.55046267687692 2.55046267687692

^r 21
2 & 23.04619747997229 23.04619747997229 23.04619747997229

^r 31
2 & 11.46432162228457 11.46432162228457 11.46432162228457

^r 21
3 & 136.742510330358 136.742510330358 136.742510330358

^r 31
3 & 65.2150926304579 65.2150926304579 65.2150926304579

^r 21
4 & 916.389433776757 916.389433776757 916.389433776757

^r 31
4 & 428.402273125949 428.402273125949 428.402273125949

^(r 31r 32)
21& 0.560729635682927 0.560729635682927 0.560729635682927

^(r 31r 21)
21& 0.322696221719855 0.322696221719855 0.322696221719855

^(r 31r 21r 32)
21& 0.186586074203096 0.186586074203094 0.186586074203093

t31 0.562788947402921 0.562788947402921 0.562788947402921
t21 21.5839217088250331022 21.5839217088250331022 21.5839217088250331022

^ f & 2.7434669429397831022 2.7434669429397831022 2.7434669429397831022

^r31•r32& 25.8777117701573831022 25.8777117701573831022 25.8777117701573831022

^r31•r21& 17.314036668301 17.314036668301 17.314036668301

^2
1
2 ¹1

2& 1.08761468911840 1.08761468911840 1.08761468911840

^2
1
2 ¹3

2& 2.18267150894282 0.218267150894282 2.18267150894282

^¹1¹2& 7.4421307060241231023 7.4421307060241331023 7.4421307060241431023

^¹1¹3& 22.18267150894282 22.18267150894282 22.18267150894282
^d31& 1.32035508284857 1.32035508305351 1.3203550829745
^d21& 0.0 0.0 0.0
^d321& 0.0 0.0 0.0

n31 21.99999999894905 22.00000000452699 22.00000000167468
n31

a 22.0 22.0 22.0
h 3.86992310217 1.77976310217 1.08525310217

« 24.768236019558047429 -4.768236019558047637 24.768236019558046682

aThe exact two-particle cusp value@Eq. ~3!#.
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m3He55495.885 2me , m3He57294.299 6me .

For the helium atom and helium-muonic atom
(3He21m2e2 and 4He21m2e2) only atomic units (\51,
e51, andme51) are used. For the muonic molecular io
all results are given in muon-atomic units (\51, e51, and
mm51).

The numerical values for some of the properties~i.e., ex-
pectation values! for the 23S state of the`He atom can be
found in Table I. In this table all such values are presente
atomic units. The physical meaning for all of the expectat
values in Table I is quite clear from the notations used.
here we wish to make only the few following remarks.
Table I the notations 1 and 2 mean negatively charged e
trons, while the notation 3 designates the infinitely hea
nucleus. The notationsd31, d21, andd321 stand for the two-
and three-particle Diracd functions, respectively. In fact, th
expected values for̂d21& and^d321& for the 23S state of the
`He atom equal zero identically. This is the so-called Fe
hole effect~see, e.g.,@15#!.

The two-body cusp ratios are determined in a traditio
manner@16,17#,
in
n
,

c-
y

i

l

n i j 5

K d~r i j !•
]

]r i j
L

^d~r i j !&
, ~2!

where d i j 5d(r i j ) is the appropriate Diracd function and
( i j )5(21) and (31). The exact value ofn i j equals

n̄ i j 5qiqj

mimj

mj1mj
, ~3!

whereqi andqj are the charges andmi andmj the masses of
the particles. However, the expected value of the electr
electron cusp~or n21 cusp! is not determined uniformly,
since ^d21&50. It is also assumed thatn̄2150 identically.
This formally follows from the Fermi hole effect@15#.

The expectation values of the two interparticlecosine
functions are determined traditionally,

t i j 5^cos~r ik
`r jk!&5 K r ik•r jk

r ik•r jk
L , ~4!
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TABLE II. The total energies~E! in muon-atomic units (mm51,\51,e51) for the groundS(L50)
states of symmetric muonic molecular ions.N designates the number of basis functions used.

N E(ppm) E(ddm) E(ttm)

1400 20.49438682024891802 20.53111113540238425 20.54637422561381507
1600 20.49438682024892353 20.53111113540238336 20.54637422561381615
1800 20.49438682024892639 20.53111113540238425 20.54637422561381655
2000 20.49438682024892849 20.53111113540238486 20.54637422561381664
2200 20.49438682024893003 20.53111113540238539 20.54637422561381668
2500 20.49438682024893169 20.5311111540238575 20.5467422561381371
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where (i , j ,k)5(1,2,3). The quantitŷ f & is expressed in
terms of the relative coordinates (r 31,r 32,r 21) or perimetric
coordinates (u1 ,u2 ,u3) @where ui5

1
2 (r i j 1r ik2r jk) and

( i , j ,k)5(1,2,3)] as follows:

^ f &5^cu
u1

r 32

u2

r 31

u3

r 21
uc&

5E E E uc~u1 ,u2 ,u3!u2u1u2u3du1du2du3 . ~5!

The value^ f & can be calculated directly or by applyingt i j .
Their coincidence indicates thatt21,t32,t31 and ^ f & have
been computed correctly. The equalities

t211t321t315114^ f & ~6!

hold for an arbitrary three-body system. For symmetric s
tems we havet325t31.

The virial factorh is determined as follows:

h5U11
^V&
2^T&

U, ~7!

where^T& and ^V& are the expectation values of the kine
and potential energy, respectively. The deviation of the f
tor h from zero indicates, in principle, the quality of th
wave function used. The appropriate binding energies« are
given in eV ~the conversion factor is 1 a.u.527.211 396 1
eV!. Note, however, that even an exact coincidence of
factor h with 0 does not indicate a high quality of the wav
function. In fact, such a coincidence can be significantly i
proved artificially, as well as the corresponding coinciden
for two-particle cusp values, by varying some of the line
and nonlinear parameters in the wave function. However
our present study such an ‘‘advanced, scientific method’
improving wave functions has not been used.
-

-

e

-
e
r
in
f

Note that some expectation values in Table I can be
pressed as linear combinations of other properties. For
stance, for the three relative vectorsrW32, rW31, and rW21 we
have

rW322rW311rW2150. ~8!

Therefore, the three following equalities@( i , j ,k)5(1,2,3)#:

rW ik•rW jk5
1

2
~r ik

2 1r jk
2 2r i j

2 ! ~9!

hold in any case. For the appropriate expectation values
finds ~see Table II!

^rW ik•rW jk&5
1

2
~^r ik

2 &1^r jk
2 &2^r i j

2 &!. ~10!

Analogously, sincepW 11pW 21pW 350, we write

^pW i•pW j&5
1

2
~pk

22pi
22pj

2! ~11!

and

^pW i•pW j&5
1

2
~^pk

2&2^pi
2&2^pj

2&! ~12!

@( i , j ,k)5(1,2,3)#. Moreover, if the threepW i are determined
by the relationspW i5(2ı)¹W i in Cartesian coordinates, the
one finds

^¹W i u¹W j&5^2¹W i•¹W j&5 K 2
1

2
¹k

2L 2 K 2
1

2
¹ i

2L 2 K 2
1

2
¹ j

2L ,

~13!
TABLE III. The total energies~E! in muon atomic units (mm51,\51,e51) for the groundP(L51)
2states of symmetric muonic molecular ions.N designates the number of basis functions used.

N E(ppm) E(ddm) E(ttm)

1400 20.46845843630337135 20.51362395679262942 20.53326344981910582
1600 20.46845843630337626 20.51362395679266100 20.53326344982010159
1800 20.46845843630338003 20.51362395679267359 20.53326344982023228
2000 20.46845843630338143 20.51362395679267741 20.53326344982031475
2200 20.46845843630338226 20.51362395679267890 20.53326344982035642
2500 20.46845843630338344 20.51362395679268025 20.53326344982037656
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TABLE IV. The expectation valueŝXi j & in atomic units (me51,\51,e51) of some properties for the
ground states of the3He21m2e2 and 4He21m2e2 helium-muonic atoms, respectively.N designates the
number of basis functions used. The notations 1 and 2 designate the electron and muon, respective
3 stands for the nucleus.

^Xi j & N52000 N52200 N52500

E 2399.04233683286251593 2399.04233683286251960 2399.04233683286252384
^d21& 0.3136819444 0.3136819823 0.3136820042
^d31& 0.3206115479 0.3206115304 0.3206115091
^d32& 2.014993884393107 2.014993884383107 2.014993884403107

h 1.803651310216 1.452855310216 1.291539310216

E 2402.63726303513543127 2402.63726303513543620 2402.63726303513544403
^d21& 0.3137604521 0.3137604246 0.3137604273
^d31& 0.3206314979 0.3206315214 0.3206315471
^d32& 2.070013735203107 2.070013735103107 2.070013735213107

h 2.148075310216 1.68369310216 1.04044310216
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where (i , j ,k)5(1,2,3). The expectation values from bo
sides of this equality can be found in Table I. Note, howev
that the last three equalities are obeyed only in Carte
coordinates and only ifpW i5(2ı)¹W i . In the present study
such a choice is used, and therefore,^2¹W i•¹W j& can be ex-
pressed througĥ2 1

2 ¹ i
2& and vice versa. Moreover, in th

symmetric systems we havêp1
2&5^p2

2& and ^rW31•rW21&
5^rW32•rW21&. This simplifies some of the equations presen
above. Moreover, for the symmetric systems~152! one eas-
ily finds that 2^¹W 1•¹W 2& is always negative, sincê¹W 1u¹W 2&
52^¹W 1•¹W 2&52^2 1

2 ¹3
2&,0.

The variational energies for theS(L50) and P(L51)
bound states in the symmetric muonic moleculesppm, ddm,
and ttm are presented in Tables II and III. All energies
Tables II and III are given in muon-atomic units (mm51,e
51,\51). The variational energies and̂d i j & expectation
values@( i j )5(21), (31), and~32!# for the groundS(L50)
states in the3He21m2e2 and 4He21m2e2 helium-muonic
atoms can be found in Table IV.

A convergence of the computed properties for the 23S
state of the helium atom~see Table I! indicates clearly that
our present method can produce extremely accurate w
functions. Briefly, the accuracy of the obtained wave fun
tions is far beyond the accuracy of the wave functions p
viously known for the considered systems. Moreover, by
ing such high-precision wave functions one can ma
significant progress in the study of bound states in vari
few-body systems. In particular, a number of bound-st
properties for the 23S state in the`He atom have presentl
been determined with extremely high accuracy. Furtherm
such a very high accuracy is observed not only for the re
lar properties~e.g., for ^r i j

n &,^r i j •r ik&, etc!, but also for the
d31 delta-function expectation value and for then31 two-
particle cusp.

The variational energies and some other properties for
symmetric muonic molecular ionsppm, ddm, andttm have
recently been computed to high accuracy@2#. In fact, bound-
state computations for such systems have been performe
years ~see, e.g.,@18–20# and references therein!, and now
many of the bound-state properties of muonic molecular i
r,
n

d

ve
-
-
-
e
s
e

e,
-

e

for

s

are quite well known. Presently, by using the new NAS
Fortran we have determined the bound-state energies fo
symmetric muonic molecular ionsppm, ddm, andttm with
at least two more correct decimal figures~in comparison to
@2#!. Furthermore, the other bound-state properties~i.e., geo-
metrical and dynamical properties! for these ions have also
been computed presently more accurately than their va
given in @2# ~they are not presented in Tables II and III!. In
fact, by using the new NASA-FORTRAN it is straightforward
to determine as many decimal figures as needed. In o
words, now the accuracy of few-body bound state compu
tions can be arbitrarily high.

Based on the results given in Table IV, one can evalu
the ground-state energies of the helium-muonic atoms w
maximal error less than62310215 a.u. This means that ou
present energies are'50 times more accurate than tho
computed only one year ago@6#. Note also that for the
helium-muonic atoms the hyperfine splittings are of sign
cant interest, since it can be easily measured experiment
The theoretical expressions for the hyperfine splittings ta
the form ~see, e.g.,@6#!

Dn~4He!514 229.180 061 055^d~rem!& MHz,

Dn~3He!510 671.885 079 542^d~rem!& ~14!

12553.907 751 447 6̂d~reN!& MHz,

whereDn(3He) andDn(4He) are the hyperfine splittings fo
the 3He21m2e2 and 4He21m2e2 helium-muonic atoms,
respectively. In these equations^d(rem)& and ^d(reN)& are
the expectation values for the electron-muonic~21! and
electron-nucleus~31! d functions, respectively. From thes
formulas and our expectation values in Table IV we fi
Dn(4He)'4464.554 MHz andDn(3He)'4166.390 MHz.
They are very close to the values computed previously@6#
and to the experimentally known values:Dn(4He)
'4464.95 MHz andDn(3He)'4166.41 MHz @6#. Thus,
based on the results from@6# and the results of the presen
study~see Table IV! one can say that the total relativistic an
QED corrections are'20 kHz for the 3He21m2e2 atom,
and'400 kHz for the4He21m2e2 atom. It is still not quite
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clear why the hyperfine splitting for the3He21m2e2 atom
agrees with the known experimental value in'20 times bet-
ter than in the case of the4He21m2e2 atom. Also, it should
be mentioned that despite a significant progress mad
bound-state computations for the considered Coulomb th
body systems some problems still remain. For instance,
observed~almost perfect! convergence for the variationa
bound-state energies does not mean a similar improvem
in coincidence of the computed and predicted two-part
cusp values. In fact, the determined internuclei cusp va
~i.e. then21 cusps! for all symmetric muonic molecular ion
have almost the same quality as in@2#. Such a problem has
also been detected for some other bound-state prope
Obviously, this problem requires a separate investigation

In conclusion, it should be mentioned that the invention
the powerful multiprecisionFORTRAN ~i.e., NASA-FORTRAN,
developed by D.H. Bailey! has created a completely ne
situation for the whole of few-body physics. In fact, one c
now use extremely large basis sets in bound-state, variati
.
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nt
e
s

es.

f
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computations. All bound-state properties for the three-, fou
and more-body systems can now be determined, in princi
to arbitrarily high accuracy. This is a very important step f
future progress in few-body physics. However, it is easy
predict some possible complications. One of them is rela
with an extensive use ofa priori nonoptimal, few-body basis
sets with very slow convergence. However, such a slow c
vergence can be compensated for by using very large n
bers of basis functions in computations. In general, an
provement of relatively short variational wave functions w
be replaced by the use of very large basis sets. Obviou
this will require significantly more powerful computers, b
in principle, such calculations can be performed already
fact, this means a fundamental change for the whole of fe
body physics.
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