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Multisoliton solutions and integrability aspects of coupled higher-order nonlinear
Schrodinger equations
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Using Painlevesingularity structure analysis, we show that coupled higher-order nonlinear diugeo
(CHNLS) equations admit the Painley®operty. Using the results of the Painlearalysis, we succeed in
Hirota bilinearizing the CHNLS equations for the integrable cases. Solving the Hirota bilinear equations, one
soliton and two soliton solutions are explicitly obtained. Lax pairs are explicitly constructed.

PACS numbg(s): 42.81.Dp, 02.30.Jr, 04.30.Nk

[. INTRODUCTION ond pulse propagation be governed by a higher-order NLS
(HNLS) equation. The HNLS equation allows soliton-type
The last three decades witnessed extensive theoretical apdopagation only for certain choices of paramef{é&:$].

experimental studies on optical solitons because of their po- A coupled NLS equation was proposed by Manakov, by
tential applications in long-distance communication. The in-taking into account the fact that the total field comprises two
vention of high-intensity lasers helped Mollenawegral. [1]  fields with left and right polarizations]. The coupled equa-
to verify experimentally the pioneering theoretical work ontion takes the form
optical solitons initiated by Hasegawa and Tapp2it The

solitons, localized-in-time optical pulses, evolve from a non- iUg+CyU,+ (alul®+ Blu[*)u=0,
linear change in the refractive index of the material, known ] ) 5 2
as the Kerr effect, induced by the light intensity distribution. v+ Cov 2+ (BlU|*+ ¥[v|*)v=0.

When the combined effect of the intensity-dependent refrac- . . .
tive index nonlinearity and the frequency-dependent pulse The at_)ove equations are integrable only for the__followmg
dispersion exactly compensate each other, the pulse propBarametric choices:(i) c;=c;, a=B=y and (i) ¢,
gates without any change in its shape, being self-trapped bg —Cy, a=—f=7y. Recently, for USPs, E¢2) was gen-
the wave guide nonlinearity. The propagation of optical soli- rahzgd to a set of COUP'ed higher-order NL@HNLS).
tons in a nonlinear dispersive optical fiber is governed by th&duation which can be derived from the Maxwell's equations

well-known nonlinear Schidinger (NLS) equation of the in order to investigate the effects of birefringence on pulse
form propagation in the femtosecond regirf®9]. The general

form of CHNLS equations are

H 2/ =
et izt Bluu=0, ™ gt 20U+ P u=iN Bz,
whereu is the complex amplitude of the pulse envelope, + Bo(|ul2+ v [P u,+ Ba(|ul2+|v[?),u]=0,
and B are the group velocity dispersioiGVD) and self- &)
phase modulation parameters, respectively, and subseripts v+ v+ 2(|ul2+|v]2)0 = IN[ 810 425
andt represent the spatial and temporal coordinates, respec-
tively. +Ba(|ul?+v[?)v,+ Ba(|u]*+]v]?) w]=0.

When ultrashort pulse$USPs are transmitted through _ )
fibers, higher-order effects such as third-order dispersion, In general, the above equations are not completely inte-
(TOD), Kerr dispersion, and stimulated Raman scatteringgrable. However, if some restrictions are imposed on the
(SRS come into play as experimentally reported by Parametric values, one can obtain several integrable, soliton-
Mitschke and Mollenauef3]. The Kerr dispersion, also Possessing NLS-type equation§) N=0, NLS; (ii)
known as self-steepening, is caused by the intensity deped1: Bz2: B3=0:1:1, derivative NLS [10];  (iii)
dence of the group velocity which results in asymmetricalB1: B2: B3=0:1:0, derivative mixed NLS[10]; (iv)
spectral broadening of the pulse since the peak of the pulséi: B2 B3=1:6:0, the Hirota equation[11]; and (v)
travels slower than the wings. The SRS causes a self81: B2: B3=1:6:3, Sasa-Satsuma equati¢a2]. Along
frequency shift which is a self-induced redshift in the pulsethe lines of Refs[12,13 we chooseB,=1, 8,=6, B3
spectrum as the low-frequency components of the pulse ob=3. For this choice of parameters, E¢8) become
tain Raman gain at the expense of the high-frequency com- | ) ) ) ) )
ponents. With the inclusion of all these effects, Kodama and Ut UzzT 2(Jul*+[v|H)u=iN[uzzz+6(|ul*+[v]*)u,
Hasegawd4| have proposed that the dynamics of femtosec- +3(|ul2+|v[|?),u]=0,

v+ v,,+2(ul?+|v]?v—ix +6(|ul?+|v]?
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The plan of this paper is as follows. In Sec. I, we estab-
lish the Painleveproperty of the above system of equations.
In Sec. lll, we rewrite Eqs(7) in a Hirota bilinear form.
Section IV is devoted to the construction of exact one soliton
and two soliton solutions. In Sec. V, Lax pair for CHNLS
equations are obtained. A conclusion and discussion of the
present calculation are presented in Sec. VI.

Il. PAINLEVE ANALYSIS OF CHNLS EQUATIONS

In this section we study the Painlea@alysis of Eqs(4).
The motivation behind this exercise is that the Painleme-
dition is necessary one for studying the integrability of non-
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ia;+a,,+2(ab+cd)a—i\[a,,;+6(ab+cd)
X a,+3(ab+cd),a]=0,

—ib+b,,+2(ab+cd)b+iA[b,,,+6(ab+cd)
Xb,+3(ab+cd),b]=0,
(7)
icy+c,,+2(ab+cd)c—iA[c,,,+6(ab+cd)
X c,+3(ab+cd),c]=0,

—id;+d,,+2(ab+cd)d+iA[d,,,+6(ab+cd)
X d,+3(ab+cd),d]=0.

linear partial differential equationsl4—-19 and helps con-
struct solutions. The method for applying the Painltsst to
partial differential equations were introduced by Weiss, Ta- The Painleveanalysis essentially consists of four main
bor, and Carnaval€l5] with simplification due to Kruskal stages{i) determination of leading-order behavi@i, iden-
[16] involves seeking a solution of a given partial differential tifying the resonance valueSii) verifying that at resonance
equation in the form values sufficient number of arbitrary functions exist without
the introduction of movable critical manifold, ariy) iden-
tifies connection with the integrability properties such as Lax
pair and BT.
Looking at the leading order behavior, we substitate
(5) 2ao(,ll)a/l, bzbod)az, C:C0¢a3, d:d0¢a4 in Eqs(?) and
balancing the different terms, we obtain the following re-
sults:

u(z,t>:¢a20 U (1) l(z,1),Up#0,
<

v(z,t)= ¢ﬂ20 vi(1) B (z,1),00%0
=

a=ar=az=a,=—1,
with 1 (8)
aghg+codo=— >
$(z,t)=z+4(1)=0, (6)

For finding the powers at which the arbitrary functions can
where y(t) is an arbitrary analytic function of y;(t), and  enter into the series, we substitute the expressions
vi(t) (j=0,1,2...,), in theneighborhood of a noncharac-
teristic movable sing_ularity _manifolq _defined ley=0. . a=agp '+ a &L b=byp 1+ b; HL

Apart from providing the integrability property of a given 9
nonlinear partial differential equations, the Painlevelysis et i di-ld=d.d-tid b1
also provides information about "Bldund transformation C=Cop "HCj¢l T d=dod "+d;d
(BT), Lax pair, Hirota’s bilinear representation, special and )
rational solutions, etc[15—17. Many of these results are N0 EQs.(7), and comparing the lowest-order terms we ob-

obtained by truncating the Laurent series at a constant lev&fin @ system of four linear algebraic equations an, (b,
term[18,19. C;, d;). In matrix form it may be conveniently written as

In order to investigate the integrability properties of Eqgs.
(4), we rewrite it in terms of four complex functiorss b, c,
and d by definingu=a, u*=b, v=c, v*=d. Conse-
guently, we have the following equations:

[A(DIIX]=0, (10

where[X]=(a;b;c;d;)" and

B —6a2+3a2(j—2)  —6agdy+3agd(j—2) —6ayCo+3asCo(j—2)

—6bZ+3b3(j—2) B —6bgdg+3bydg(j—2) —6byCo+3boCo(j —2)

[A(D]=

—6byCo+3boCo(j —2) —6ayCo+3a0Co(j —2) C —6c3+3c3(j—2)

—6b0d0+ 3b0d0(] —2) _630d0+ Baodo(j —2) _6d3+ Bdg(] —2) C
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where

Z T
u(z,t)= ZTexpg —i| =—— ,
B=(—1)(j—2)(j—3)—3(j—1)—6asbo+3(j—2)+3 20~z D) p_ 3N 272
e (z,1)=Qx(Z,T) i| 2 ! (19
. . . . . v(z,t)= Texpg —i| =—— ,
C=(j—1)(j=2)(j—3)—3(j —1)—6Cody+3(j —2) +3. ? (e
To have a nontrivial solution foa;, b;, ¢;, andd;, we t
demand that t=T, Z=z+ﬁ,

detA(j)=0. (11 . . .
Using the above transformations in Edd), the resultant

On solving Eq.(11), we get the resonance values as ~ CMK-dV equation is obtained in the form
-1,0,0,0,2,2,2,3,4,4,4,4. The resonance at—jl corre-

sponds to the arbitrariness ¢{z,t). On equating the coef- Q11— M Q227+ 6(1Q1|*+|Q2|*) Q12
ficients of 4y~ 4, we get a unique equation definirag, by, +3 24 2y 1=0
Co, andd, which is given by Qu(|Qe*+1Q29z1=0, (16
Q21— M Q2222+ 6(|Q1/*+[Q2%)Q,2
aghg+Ccodg=— . 12
070 T =0%o 2 (12 +3Q2(]Q41/*+]Q,l%)2]=0.
This shows that any three of the four functicas, by, Co, In order to construct Hirota’s bilinear form, we consider Hi-
andd, are arbitrary which corresponds je&-0,0,0. rota bilinear transformations in the form
Proceeding further and equating the coefficients of
(3,473,473 4%, we obtain G H
Q=g Q=% 17
a1_3i)\' where G(Z,T) and H(Z,T) are complex functions and
F(Z,T) is a real function. Now using the transformations
b 17), (16) can be rewritten as
bl__ﬁ, (13 (17, (16
F2[(Dr—\D3)(G-F)]-M[{-3D(F-F)D;
cl=%, +12(|G|>+|H|?)D(G-F)+3GFD4(G-G*)
+3H*FDy(H-G)—3HFD,(G-H*)]=0,
do . ) (18
di=—73v- FZL(Dy=D3)(H-F)]-A[{-~3D(F-F)D;

2 2 . CH*

On the other hand, the coefficients af (2,4 2,4 2,47 2) 12| G|*+|HI%)Dz(H-F)+3HFDZ(H-H*)

in Egs.(7) reduce to a single equation —3G*FD4(H-G)+3GFD,(H-G*)=0,

where the Hirota bilinear operatos, andD, are defined as

4
b0a2+ a0b2+ d0C2+ C0d2 =

t
5% (14

n

so that three of the four functiors,, b,, ¢,, andd, are D7DIG(Z, T)F(Z',T")=
arbitrary which corresponds fo=2,2,2. Similarly from the

a\" o o
9z sz) \ 9T g1

powers of ¢,y ¢~y h) and (b %y %y 0y 70, XG(Z,T)F(Z" T yezr 11
we find that Eqs(4) admit the sufficient number of arbitrary '
functions and hence Eqé7) possess the Painleyeoperty (19)

and hence they are expected to be integrable. and the centered dot stands for ordered multiplication by the

preceding operators.
I1l. HIROTA BILINEARIZATION

Hirota’s bilinear methodl20] is one of the most direct and IV. EXACT SOLITON SOLUTIONS
elegant methods available to generate multisoliton solutions
of nonlinear partial differential equations. To avoid math-
ematical complexities, it is rather convenient to transform
Egs.(4) to a simpler form, so that we may be able to obtain 3 3
multisoliton solutions. We make the following transforma- (Dr=ADZ)(G-F)=0, (D7=ADZ)(H-F)=0,
tions to convert CHNLS to a complex modified K-dV ) (20
(CMK-dV) equation: DZ(F-F)=4(|G|*+|H[?),

Equations(18) can be decoupled into a set of bilinear
equations as
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D,(G-G*)=0,D,(H-H*)=0,D,(G-H*) and ¢ andk are real constants. Using Eq27) and(28) in
. Eqg. (22) and then in Eq(17), after absorbings the one-
=0,Dz(H-G*)=0,D(G-H)=0. soliton solution can easily be worked out to be

In order to obtain soliton solutions, we are applying a per-
turbative technique by writing the variablés G, H as a k ) 3
series in an arbitrary parameter Q= N cos¢ expli 0)seclikZ+Nk*T+ 7o),

F:1+82f2+84f4+"'1 k
Q,= ( —) sin¢ exp(—i 8)seclikZ+ Nk3T + 7,),

V2
G:891+83g3+8595+"', (21) (29)
. . where 7, is a real constant. Using Eg¢l5), one-soliton
H=eh;+e hz+e’hs+ - . solutions of Eqs(4) are found to be
A. One-soliton solutions k |z T
i ) ] ) u=|-—=|cos¢exp —i| o~ -0
For one-soliton solutiorilS9, we assume solutions in a \/5 3N 27!\

series form ine such that
x seclikZ+ k3T + 7o),

(30)
F=1+¢&%f,, G=eg;, H=eh,. (22
k. |z T
Substituting Eq(22) in Eqgs.(20) and then collecting coeffi- v=|-—=|singexp —i| -~ 5| T0
. : . . J2 3N 2\
cients of terms with same powers én we obtain fore
x sechikZ+ANK3T+ 7).
(Dr=AD3)(g:-1)=0 (Dy—AD3)(hy-1)=0, (23)
for &2
B. Two-soliton solutions
D2(1-fo+fy 1)=4(gy-g* +hy-h?), The two-soliton solutions can be obtained by terminating
the series expansion fét, G, H as
(24)
DZ(glgI):O’DZ(hlhi):O’DZ(glhI) F:1+82f2+84f4, G:891+83921 H:8h1+83h33
=0,Dz(h;-97)=0,Dz(g;-h;)=0, (31)
3 and proceeding as before to obtain
for e
gi=exp(ny) +exp(nz), hi=igy,
(Dr=AD3)(g1-f2)=0,(Dr=AD3) (hy-fy), (25
and fore? — (kyky)? exp(2n,+ 7,) . exp( 71+ 27,)
BT  dar0? T Akt |
D3(f,-f,)=0. 26 :
2(f2-12) (26 ha=igs, 32

One can easily check that the solution, which is consistent

with the system(23)—(26), is
ysterm23)—(26) eXp27ny) _expimit )  exp27y)
f2:4 > +2 2 + > y
) ) . 4k3 (ki tky) 4k;
gi=cosgexp np+if), hy=singpexpn—ib),
(27) ,
1 4(ky—Ky)"exp(2m,+27,)
f2: _2 quZ’)]), f4: 2,2 4 ’
2k 16k7k5(kyt+Ky)
where where

n=KZ+\KT (29) 7 =KZ+HNET, j=1.2. (33)
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FIG. 1. (a) 3D profile of|u(z,t)| for the two-soliton solution of
Eq. (34) with the parameter valuek;=0.034, k,=0.04, X
=0.005. (b) 2D profile of |u(z,t)| for the two-soliton solution of
Eqg. (34) with the parameter valuels;=2, k,=3, A=0.002. (c)
Contour plot of|u(z,t)| with respect to z and t for the parameter
valuesk;=0.034,k,=0.04, A =0.005.

Herek; is a real constant. Using Eq&2) and (33) in Eq.
(31) and then in Eq(17), the two-soliton solutions of Eg.
(16) are obtained. Using Eg¢l5), the two-soliton solutions
of Eqgs.(4) are found to be

U—EGX —1

i_L)

(b)

= 10 -5 0 5] 10

(©) .

FIG. 2. (a) 3D profile of|v(z,t)| for the two-soliton solution of
Eq. (34) with the parameter valuek;=0.04, k,=0.045, X\
=0.005. (b) 2D profile of |v(z,t)| for the two-soliton solution of
Eq. (34) with the parameter valugs; =2, k,=3, A=0.005. (c)
Contour plot of|u(z,t)| with respect to z and t for the parameter
valuesk;=0.04, k,=0.045,\ =0.005.

H .
v=Eex —1

Both 1SS and 2SS are in exact agreement with Edjs.
Two-dimensional, three-dimensional, and contour plots of
2SS are given in Figs. 1 and 2.

Y4 T

o) | (34)
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V. LAX PAIR FOR CHNLS SYSTEM

The linear eigenvalue problem associated with Efj§) are[21,22]

2=Ug, =V, =), (35

where

—ix Q Q’f Q2 Qg
-Q7 ix O 0 0
u=l -Q 0 ix O o 1, (36)
-Q; O 0O ix O
-Q, O 0 0 iy

-4 0 0 0 O 0 Q QFf Q Q3

_ 0 100 0 -Q* 0 0 0 O
—8iny® )

V= —g 0 0 1 0 0|-4y? -@. o0 0o o0 o0

0 00 10 -Qt 0 0 0 0

0 00 0 1 -Q, 0 0 0 O

—2A -Qiz —QI; -Qiz —-Qf
-Qiz 1QJ* (Q1)* QiQ, QIQ}
+2iny| —Qiz % |Q1|2 Q:Q, Q;Q3 (37)
—-Q3; QuQ; QIQ3 [Q* (Q3)?
—Qz QQ; QIQ; Qi Q)

+A| as1 0 @z az ass|,
as; asp asz3 0  ass

where a;;=4 A Q+Qiz7,815=4 A Q1 +Q177, a1.=4 A Q+Quzz, a;s=4 A Q;+Q3,7, an=-4 A Qf
—Qlzz, a2=0Q1Q1;— QT Q1z, a,=Q,Q1;—QIQyz, ax;=Q3Q7,—Q7 Q’z‘z, ag=—4 A Q—Qiz7, a33=QIQ;7
—Q1Q37, a3=Q2Q12—Q1Qz7, a35=Q3Q12—Q1Q%;, an=—-4 A Q;—Q%;, a,=0Q:Q5;,—Q3Q1z, a;=Q7Q3;
—Q3Q%z, a4=Q,Q3,-Q3Qzz, a51=—4 A Q—Quzz, a5,=Q1Q27—Q2Q17, a53=Q7Qpz—Q2Q77, as5=Q3 Q7
—Q,Q3; with A=]Qy[*+[Q,|?.

The compatibility conditionlU—V,+[U,V]=0 gives rise to Eqs(16). The construction of Lax pair confirms that Egs.
(16) and thereby the CHNLS Eq#4) are indeed completely integrable.

VI. CONCLUSION

In this paper, we have considered a set of coupled NLS equations with higher-order linear and nonlinear dispersion terms
included. Then, by choosing the parameters as in the case of the corresponding integrable uncoupled case, we applied the
Painlevesingularity structure analysis and established that for this particular choice of parameter$4)Eusssess the
Painleveproperty. We have explicitly obtained one-soliton and two-soliton solutions for the integrable cases of CHNLS
equations using Hirota bilinearization technique and solutions are plotted. We have also constructed Lax pairs using AKNS
formalism. Hence, with these results, we have proved that the CHNLS equations which describe the wave propagation of two
fields in fiber systems with all higher-order effects such as TOD, Kerr dispersion, and stimulated Raman effect, will allow
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soliton-type propagation. From the soliton solutions, one can obtain information about the shape, width, and intensity of the
propagation pulse.
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