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Multisoliton solutions and integrability aspects of coupled higher-order nonlinear
Schrödinger equations

M. N. Vinoj* and V. C. Kuriakose†

Department of Physics, Cochin University of Science and Technology, Kochi-682 022, India
~Received 15 September 1999; revised manuscript received 20 June 2000!

Using Painleve´ singularity structure analysis, we show that coupled higher-order nonlinear Schro¨dinger
~CHNLS! equations admit the Painleve´ property. Using the results of the Painleve´ analysis, we succeed in
Hirota bilinearizing the CHNLS equations for the integrable cases. Solving the Hirota bilinear equations, one
soliton and two soliton solutions are explicitly obtained. Lax pairs are explicitly constructed.

PACS number~s!: 42.81.Dp, 02.30.Jr, 04.30.Nk
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I. INTRODUCTION

The last three decades witnessed extensive theoretica
experimental studies on optical solitons because of their
tential applications in long-distance communication. The
vention of high-intensity lasers helped Mollenaueret al. @1#
to verify experimentally the pioneering theoretical work
optical solitons initiated by Hasegawa and Tappert@2#. The
solitons, localized-in-time optical pulses, evolve from a no
linear change in the refractive index of the material, kno
as the Kerr effect, induced by the light intensity distributio
When the combined effect of the intensity-dependent refr
tive index nonlinearity and the frequency-dependent pu
dispersion exactly compensate each other, the pulse pr
gates without any change in its shape, being self-trapped
the wave guide nonlinearity. The propagation of optical so
tons in a nonlinear dispersive optical fiber is governed by
well-known nonlinear Schro¨dinger ~NLS! equation of the
form

iut1auzz1buuu2u50, ~1!

whereu is the complex amplitude of the pulse envelope,a
and b are the group velocity dispersion~GVD! and self-
phase modulation parameters, respectively, and subscriz
and t represent the spatial and temporal coordinates, res
tively.

When ultrashort pulses~USPs! are transmitted through
fibers, higher-order effects such as third-order dispers
~TOD!, Kerr dispersion, and stimulated Raman scatter
~SRS! come into play as experimentally reported
Mitschke and Mollenauer@3#. The Kerr dispersion, also
known as self-steepening, is caused by the intensity de
dence of the group velocity which results in asymmetri
spectral broadening of the pulse since the peak of the p
travels slower than the wings. The SRS causes a s
frequency shift which is a self-induced redshift in the pu
spectrum as the low-frequency components of the pulse
tain Raman gain at the expense of the high-frequency c
ponents. With the inclusion of all these effects, Kodama a
Hasegawa@4# have proposed that the dynamics of femtos

*Electronic address: vinojmn@cusat.ac.in
†Electronic address: vck@cusat.ac.in
PRE 621063-651X/2000/62~6!/8719~7!/$15.00
nd
o-
-

-
n
.
c-
e
a-

by
-
e

s
c-

n,
g

n-
l
se
lf-

b-
-

d
-

ond pulse propagation be governed by a higher-order N
~HNLS! equation. The HNLS equation allows soliton-typ
propagation only for certain choices of parameters@5,6#.

A coupled NLS equation was proposed by Manakov,
taking into account the fact that the total field comprises t
fields with left and right polarizations@7#. The coupled equa-
tion takes the form

iut1c1uzz1~auuu21buvu2!u50,
~2!

iv t1c2vzz1~buuu21guvu2!v50.

The above equations are integrable only for the followi
parametric choices:~i! c15c2 , a5b5g and ~ii ! c1
52c2 , a52b5g. Recently, for USPs, Eq.~2! was gen-
eralized to a set of coupled higher-order NLS~CHNLS!
equation which can be derived from the Maxwell’s equatio
in order to investigate the effects of birefringence on pu
propagation in the femtosecond regime@8,9#. The general
form of CHNLS equations are

iut1uzz12~ uuu21uvu2!u2 il@b1uzzz

1b2~ uuu21uvu2!uz1b3~ uuu21uvu2!zu#50,
~3!

iv t1vzz12~ uuu21uvu2!v2 il@b1vzzz

1b2~ uuu21uvu2!vz1b3~ uuu21uvu2!zv#50.

In general, the above equations are not completely in
grable. However, if some restrictions are imposed on
parametric values, one can obtain several integrable, soli
possessing NLS-type equations~i! l50, NLS; ~ii !
b1 : b2 : b350:1:1, derivative NLS @10#; ~iii !
b1 : b2 : b350:1:0, derivative mixed NLS @10#; ~iv!
b1 : b2 : b351:6:0, the Hirota equation @11#; and ~v!
b1 : b2 : b351:6:3, Sasa-Satsuma equation@12#. Along
the lines of Refs.@12,13# we chooseb151, b256, b3
53. For this choice of parameters, Eqs.~3! become

iut1uzz12~ uuu21uvu2!u2 il@uzzz16~ uuu21uvu2!uz

13~ uuu21uvu2!zu#50,
~4!

iv t1vzz12~ uuu21uvu2!v2 il@vzzz16~ uuu21uvu2!vz

13~ uuu21uvu2!zv#50.
8719 ©2000 The American Physical Society
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The plan of this paper is as follows. In Sec. II, we esta
lish the Painleve´ property of the above system of equation
In Sec. III, we rewrite Eqs.~7! in a Hirota bilinear form.
Section IV is devoted to the construction of exact one soli
and two soliton solutions. In Sec. V, Lax pair for CHNL
equations are obtained. A conclusion and discussion of
present calculation are presented in Sec. VI.

II. PAINLEVE´ ANALYSIS OF CHNLS EQUATIONS

In this section we study the Painleve´ analysis of Eqs.~4!.
The motivation behind this exercise is that the Painleve´ con-
dition is necessary one for studying the integrability of no
linear partial differential equations@14–19# and helps con-
struct solutions. The method for applying the Painleve´ test to
partial differential equations were introduced by Weiss, T
bor, and Carnavale@15# with simplification due to Kruskal
@16# involves seeking a solution of a given partial different
equation in the form

u~z,t !5fa(
j 50

`

uj~ t !f j~z,t !,u0Þ0,

~5!

v~z,t !5fb(
j 50

`

v j~ t !f j~z,t !,v0Þ0

with

f~z,t !5z1c~ t !50, ~6!

wherec(t) is an arbitrary analytic function of t,uj (t), and
v j (t) ( j 50,1,2, . . . ,), in theneighborhood of a noncharac
teristic movable singularity manifold defined byf50.

Apart from providing the integrability property of a give
nonlinear partial differential equations, the Painleve´ analysis
also provides information about Ba¨cklund transformation
~BT!, Lax pair, Hirota’s bilinear representation, special a
rational solutions, etc.@15–17#. Many of these results ar
obtained by truncating the Laurent series at a constant l
term @18,19#.

In order to investigate the integrability properties of Eq
~4!, we rewrite it in terms of four complex functionsa, b, c,
and d by defining u5a, u* 5b, v5c, v* 5d. Conse-
quently, we have the following equations:
-
.

n

e

-

-

l

el

.

iat1azz12~ab1cd!a2 il@azzz16~ab1cd!

3az13~ab1cd!za#50,

2 ibt1bzz12~ab1cd!b1 il@bzzz16~ab1cd!

3bz13~ab1cd!zb#50,
~7!

ict1czz12~ab1cd!c2 il@czzz16~ab1cd!

3cz13~ab1cd!zc#50,

2 idt1dzz12~ab1cd!d1 il@dzzz16~ab1cd!

3dz13~ab1cd!zd#50.

The Painleve´ analysis essentially consists of four ma
stages:~i! determination of leading-order behavior,~ii ! iden-
tifying the resonance values,~iii ! verifying that at resonance
values sufficient number of arbitrary functions exist witho
the introduction of movable critical manifold, and~iv! iden-
tifies connection with the integrability properties such as L
pair and BT.

Looking at the leading order behavior, we substitutea
.a0fa1, b.b0fa2, c.c0fa3, d.d0fa4 in Eqs. ~7! and
balancing the different terms, we obtain the following r
sults:

a15a25a35a4521,
~8!

a0b01c0d052
1

2
.

For finding the powers at which the arbitrary functions c
enter into the series, we substitute the expressions

a5a0f211ajf
j 21,b5b0f211bjf

j 21,
~9!

c5c0f211cjf
j 21,d5d0f211djf

j 21

into Eqs.~7!, and comparing the lowest-order terms we o
tain a system of four linear algebraic equations in (aj , bj ,
cj , dj ). In matrix form it may be conveniently written as

@A~ j !#@X#50, ~10!

where@X#5(ajbjcjdj )
T and
@A~ j !#5F B 26a0
213a0

2~ j 22! 26a0d013a0d0~ j 22! 26a0c013a0c0~ j 22!

26b0
213b0

2~ j 22! B 26b0d013b0d0~ j 22! 26b0c013b0c0~ j 22!

26b0c013b0c0~ j 22! 26a0c013a0c0~ j 22! C 26c0
213c0

2~ j 22!

26b0d013b0d0~ j 22! 26a0d013a0d0~ j 22! 26d0
213d0

2~ j 22! C

G
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where

B5~ j 21!~ j 22!~ j 23!23~ j 21!26a0b013~ j 22!13

and

C5~ j 21!~ j 22!~ j 23!23~ j 21!26c0d013~ j 22!13.

To have a nontrivial solution foraj , bj , cj , and dj , we
demand that

detA~ j !50. ~11!

On solving Eq.~11!, we get the resonance values asj 5
21,0,0,0,2,2,2,3,4,4,4,4. The resonance at j521 corre-
sponds to the arbitrariness ofc(z,t). On equating the coef
ficients of c24, we get a unique equation defininga0 , b0 ,
c0, andd0 which is given by

a0b01c0d052
1

2
. ~12!

This shows that any three of the four functionsa0 , b0 , c0,
andd0 are arbitrary which corresponds toj 50,0,0.

Proceeding further and equating the coefficients
(c23,c23,c23,c23), we obtain

a15
a0

3il
,

b152
b0

3il
, ~13!

c15
c0

3il
,

d152
d0

3il
.

On the other hand, the coefficients of (c22,c22,c22,c22)
in Eqs.~7! reduce to a single equation

b0a21a0b21d0c21c0d25
c t

6l
~14!

so that three of the four functionsa2 , b2 , c2, and d2 are
arbitrary which corresponds toj 52,2,2. Similarly from the
powers of (c21,c21,c21,c21) and (c20,c20,c20,c20),
we find that Eqs.~4! admit the sufficient number of arbitrar
functions and hence Eqs.~7! possess the Painleve´ property
and hence they are expected to be integrable.

III. HIROTA BILINEARIZATION

Hirota’s bilinear method@20# is one of the most direct an
elegant methods available to generate multisoliton soluti
of nonlinear partial differential equations. To avoid mat
ematical complexities, it is rather convenient to transfo
Eqs.~4! to a simpler form, so that we may be able to obta
multisoliton solutions. We make the following transform
tions to convert CHNLS to a complex modified K-d
~CMK-dV! equation:
f

s
-

u~z,t !5Q1~Z,T!expF2 i S Z

3l
2

T

27l2D G ,

v~z,t !5Q2~Z,T!expF2 i S Z

3l
2

T

27l2D G , ~15!

t5T, Z5z1
t

3l
.

Using the above transformations in Eqs.~4!, the resultant
CMK-dV equation is obtained in the form

Q1T2l@Q1ZZZ16~ uQ1u21uQ2u2!Q1Z

13Q1~ uQ1u21uQ2u2!Z#50,
~16!

Q2T2l@Q2ZZZ16~ uQ1u21uQ2u2!Q2Z

13Q2~ uQ1u21uQ2u2!Z#50.

In order to construct Hirota’s bilinear form, we consider H
rota bilinear transformations in the form

Q15
G

F
Q25

H

F
, ~17!

where G(Z,T) and H(Z,T) are complex functions and
F(Z,T) is a real function. Now using the transformation
~17!, ~16! can be rewritten as

F2@~DT2lDZ
3!~G•F !#2l@$23Dz

2~F•F !DZ

112~ uGu21uHu2!DZ~G•F !13GFDZ~G•G* !

13H* FDZ~H•G!23HFDZ~G•H* !#50,
~18!

F2@~DT2DZ
3!~H•F !#2l@$23Dz

2~F•F !DZ

112~ uGu21uHu2!DZ~H•F !13HFDZ~H•H* !

23G* FDZ~H•G!13GFDZ~H•G* !50,

where the Hirota bilinear operatorsDz andDt are defined as

DZ
mDT

nG~Z,T!F~Z8,T8!5S ]

]Z
2

]

]Z8
D mS ]

]T
2

]

]T8
D n

3G~Z,T!F~Z8,T8!uZ5Z8,T5T8

~19!

and the centered dot stands for ordered multiplication by
preceding operators.

IV. EXACT SOLITON SOLUTIONS

Equations~18! can be decoupled into a set of biline
equations as

~DT2lDZ
3!~G•F !50, ~DT2lDZ

3!~H•F !50,
~20!

DZ
2~F•F !54~ uGu21uHu2!,
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DZ~G•G* !50,DZ~H•H* !50,DZ~G•H* !

50,DZ~H•G* !50,DZ~G•H !50.

In order to obtain soliton solutions, we are applying a p
turbative technique by writing the variablesF, G, H as a
series in an arbitrary parameter«:

F511«2f 21«4f 41•••,

G5«g11«3g31«5g51•••, ~21!

H5«h11«3h31«5h51••• .

A. One-soliton solutions

For one-soliton solution~1SS!, we assume solutions in
series form in« such that

F511«2f 2 , G5«g1 , H5«h1 . ~22!

Substituting Eq.~22! in Eqs.~20! and then collecting coeffi-
cients of terms with same powers in«, we obtain for«

~DT2lDZ
3!~g1•1!50 ~DT2lDZ

3!~h1•1!50, ~23!

for «2

DZ
2~1• f 21 f 2•1!54~g1•g1* 1h1•h1* !,

~24!

DZ~g1•g1* !50,DZ~h1•h1* !50,DZ~g1•h1* !

50,DZ~h1•g1* !50,DZ~g1•h1!50,

for «3

~DT2lDZ
3!~g1• f 2!50, ~DT2lDZ

3! ~h1• f 2!, ~25!

and for«4

DZ
2~ f 2• f 2!50. ~26!

One can easily check that the solution, which is consis
with the system~23!–~26!, is

g15cosf exp~h1 iu!, h15sinf exp~h2 iu!,
~27!

f 25S 1

2k2D exp~2h!,

where

h5kZ1lk3T ~28!
-

nt

andf andk are real constants. Using Eqs.~27! and ~28! in
Eq. ~22! and then in Eq.~17!, after absorbing« the one-
soliton solution can easily be worked out to be

Q15S k

A2
D cosf exp~ iu!sech~kZ1lk3T1h0!,

Q25S k

A2
D sinf exp~2 iu!sech~kZ1lk3T1h0!,

~29!

where h0 is a real constant. Using Eqs.~15!, one-soliton
solutions of Eqs.~4! are found to be

u5S k

A2
D cosf expF2 i S Z

3l
2

T

27l2
2u D G

3sech~kZ1lk3T1h0!,
~30!

v5S k

A2
D sinf expF2 i S Z

3l
2

T

27l2D 1uG
3sech~kZ1lk3T1h0!.

B. Two-soliton solutions

The two-soliton solutions can be obtained by terminat
the series expansion forF, G, H as

F511«2f 21«4f 4 , G5«g11«3g2 , H5«h11«3h3
~31!

and proceeding as before to obtain

g15exp~h1!1exp~h2!, h15 ig1 ,

g35~k22k1!2Fexp~2h11h2!

4k1
2~k11k2!2

1
exp~h112h2!

4k2
2~k11k2!2 G ,

h35 ig3 , ~32!

f 254Fexp~2h1!

4k1
2

12
exp~h11h2!

~k11k2!2
1

exp~2h2!

4k2
2 G ,

f 45
4~k22k1!4exp~2h112h2!

16k1
2k2

2~k11k2!4
,

where

h j5kjZ1lkj
3T, j 51,2. ~33!
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Here kj is a real constant. Using Eqs.~32! and ~33! in Eq.
~31! and then in Eq.~17!, the two-soliton solutions of Eq
~16! are obtained. Using Eqs.~15!, the two-soliton solutions
of Eqs.~4! are found to be

u5
G

F
expF2 i S Z

3l
2

T

27l2D G ,

FIG. 1. ~a! 3D profile of uu(z,t)u for the two-soliton solution of
Eq. ~34! with the parameter valuesk150.034, k250.04, l
50.005. ~b! 2D profile of uu(z,t)u for the two-soliton solution of
Eq. ~34! with the parameter valuesk152, k253, l50.002. ~c!
Contour plot ofuu(z,t)u with respect to z and t for the paramet
valuesk150.034,k250.04, l50.005.
v5
H

F
expF2 i S Z

3l
2

T

27l2D G . ~34!

Both 1SS and 2SS are in exact agreement with Eqs.~4!.
Two-dimensional, three-dimensional, and contour plots
2SS are given in Figs. 1 and 2.

FIG. 2. ~a! 3D profile of uv(z,t)u for the two-soliton solution of
Eq. ~34! with the parameter valuesk150.04, k250.045, l
50.005. ~b! 2D profile of uv(z,t)u for the two-soliton solution of
Eq. ~34! with the parameter valuesk152, k253, l50.005. ~c!
Contour plot ofuu(z,t)u with respect to z and t for the paramet
valuesk150.04, k250.045,l50.005.
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V. LAX PAIR FOR CHNLS SYSTEM

The linear eigenvalue problem associated with Eqs.~16! are @21,22#

cZ5Uc, cT5Vc, c5~c1c2!T, ~35!

where

U5S 2 ix Q1 Q1* Q2 Q2*

2Q1* ix 0 0 0

2Q1 0 ix 0 0

2Q2* 0 0 ix 0

2Q2 0 0 0 ix

D , ~36!

V5
28ilx3

5 S 24 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

D 24lx2S 0 Q1 Q1* Q2 Q2*

2Q1* 0 0 0 0

2Q1 0 0 0 0

2Q2* 0 0 0 0

2Q2 0 0 0 0

D
12ilxS 22A 2Q1Z 2Q1Z* 2Q2Z 2Q2Z*

2Q1Z* uQ1u2 ~Q1* !2 Q1* Q2 Q1* Q2*

2Q1Z Q1
2 uQ1u2 Q1Q2 Q1Q2*

2Q2Z* Q1Q2* Q1* Q2* uQ2u2 ~Q2* !2

2Q2Z Q1Q2 Q1* Q2 Q2
2 uQ2u2

D ~37!

1lS 0 a12 a13 a14 a15

a21 a22 0 a24 a25

a31 0 a33 a34 a35

a41 a42 a43 a44 0

a51 a52 a53 0 a55

D ,

where a1254 A Q11Q1ZZ ,a1354 A Q1* 1Q1ZZ* , a1454 A Q21Q2ZZ , a1554 A Q2* 1Q2ZZ* , a21524 A Q1*
2Q1ZZ* , a225Q1Q1Z* 2Q1* Q1Z , a245Q2Q1Z* 2Q1* Q2Z , a255Q2* Q1Z* 2Q1* Q2Z,* a31524 A Q12Q1ZZ , a335Q1* Q1Z

2Q1Q1Z* , a345Q2Q1Z2Q1Q2Z , a355Q2* Q1Z2Q1Q2Z* , a41524 A Q2* 2Q2ZZ* , a425Q1Q2Z* 2Q2* Q1Z , a435Q1* Q2Z*
2Q2* Q1Z* , a445Q2Q2Z* 2Q2* Q2Z , a51524 A Q22Q2ZZ , a525Q1Q2Z2Q2Q1Z , a535Q1* Q2Z2Q2Q1Z* , a555Q2* Q2Z

2Q2Q2Z* with A5uQ1u21uQ2u2.
The compatibility conditionUT2VZ1@U,V#50 gives rise to Eqs.~16!. The construction of Lax pair confirms that Eq

~16! and thereby the CHNLS Eqs.~4! are indeed completely integrable.

VI. CONCLUSION

In this paper, we have considered a set of coupled NLS equations with higher-order linear and nonlinear dispersi
included. Then, by choosing the parameters as in the case of the corresponding integrable uncoupled case, we a
Painlevésingularity structure analysis and established that for this particular choice of parameters, Eqs.~4! possess the
Painlevéproperty. We have explicitly obtained one-soliton and two-soliton solutions for the integrable cases of C
equations using Hirota bilinearization technique and solutions are plotted. We have also constructed Lax pairs usin
formalism. Hence, with these results, we have proved that the CHNLS equations which describe the wave propagatio
fields in fiber systems with all higher-order effects such as TOD, Kerr dispersion, and stimulated Raman effect, wi
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soliton-type propagation. From the soliton solutions, one can obtain information about the shape, width, and intensi
propagation pulse.
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