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Bragg-grating solitons in a semilinear dual-core system

Javid Atai1 and Boris A. Malomed2
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We investigate the existence and stability of gap solitons in a double-core optical fiber, where one core has
the Kerr nonlinearity and the other one is linear, with the Bragg grating~BG! written on the nonlinear core,
while the linear one may or may not have a BG. The model considerably extends the previously studied
families of BG solitons. For zero-velocity solitons, we find exact solutions in a limiting case when the
group-velocity terms are absent in the equation for the linear core. In the general case, solitons are found
numerically. Stability borders for the solitons are found in terms of an internal parameter of the soliton family.
Depending on the frequencyv, the solitons may remain stable for large values of the group velocity in the
linear core. Stable moving solitons are also found. They are produced by interaction of initially separated
solitons, which shows a considerable spontaneous symmetry breaking in the case when the solitons attract each
other.

PACS number~s!: 42.81.Dp, 42.65.Tg, 42.81.Qb, 61.20.Ja
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I. INTRODUCTION AND FORMULATION
OF THE MODEL

It is well known that the combination of the Kerr nonlin
earity with a strong effective dispersion induced by the re
nant reflection of light on the Bragg grating~BG! gives rise
to a vast family of gap solitons, frequently called BG solito
@1# ~in this work, we use the term ‘‘soliton’’ in the loos
sense, without implying integrability of the model where
appears; in particular, it will be shown that interactions b
tween ‘‘solitons’’ in a model to be introduced below may b
essentially inelastic!. A generally accepted mathematic
model of the nonlinear fiber equipped with a BG is the s
called generalized massive Thirring model~GMTM! @2#.
Thorough theoretical investigation of BG solitons, an imp
tant step in which was the discovery of a class of ex
single-soliton solutions to the GMTM@2#, was followed by
observation of BG solitons created by a very strong la
pulse launched into a short segment~;6 cm! of a nonlinear
optical fiber with the resonant BG written on it@3#. Experi-
mental studies of BG solitons were further developed~in-
cluding, in particular, formation of multiple BG solitons! in
Refs.@4#.

Observation of solitons in such a short fiber paves the w
for many potential applications, as well as for further expe
ments aimed at the study of fundamental properties of opt
solitons. This also makes it relevant to consider more sop
ticated nonlinear systems based on fiber gratings, where
properties of solitons might be still more promising. In pa
ticular, one can look for solitons in adual-coresystem with
linear coupling between the cores, a BG being written
both cores or a single one. The case of two identical B
carrying cores was considered in Ref.@5#, where it was found
that the model gave rise to abifurcationat a critical value of
the soliton’s energy. The bifurcation destabilizes a symm
ric two-component solution, simultaneously generating
nontrivial asymmetric soliton. A dual-fiber system with u
like cores is easier to fabricate and may offer other possib
ties. One of the most interesting dual systems with differ
PRE 621063-651X/2000/62~6!/8713~6!/$15.00
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cores is asemilinearone, where one core is linear. Semilin
ear dual-core models without BG’s were introduced earl
both continuous-wave and soliton states in them have b
studied in various contexts@6,7#.

The objective of this work is to introduce a semiline
dual-core model in which the BG is written either on th
nonlinear core only or on both cores, and to search for s
tons in it ~which makes it necessary, first of all, to explo
the system’s linear spectrum!. Following the derivation of
the GMTM @1# and of the standard equations for a dual-co
fiber ~see, e.g., Ref.@8#! from Maxwell’s equations, a genera
model for the semilinear dual-core BG-equipped system
be written as the following set of normalized equations:

iut1 iux1@ uvu21~1/2!uuu2#u1v1kf50, ~1!

iv t2 ivx1@ uuu21~1/2!uvu2#v1u1kc50, ~2!

if t1 icfx1ku1~l1 im!c50, ~3!

ic t2 iccx1kv1~l2 im!f50. ~4!

Here, u and v represent the forward- and backwar
propagating waves in the nonlinear core,f and c are their
counterparts in the linear one,k is the coefficient of linear
coupling between the cores, whilel andm are the real and
imaginary parts of the BG coupling coefficient in the line
core @which is, generally, complex if its counterpart in th
nonlinear core is normalized to be 1, as is the case in Eqs~1!
and ~2!#. Lastly, the group velocity in the nonlinear core
set equal to 1, andc is the relative group velocity in the
linear core.

The simplest case isl5m50 ~corresponding to the linea
core without BG!, while cross-core couplingk is nonzero.
Below, we will always setm50; in most cases,l will also
be zero, but effects oflÞ0 on the solitons’ stability will be
investigated too. Note that, although the present model fi
its most natural formulation in the temporal domain, it c
also be readily interpreted in terms of thespatial-domain
8713 ©2000 The American Physical Society
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8714 PRE 62JAVID ATAI AND BORIS A. MALOMED
evolution of the fields in a two-core planar waveguide, t
BG being realized as a system of parallel scores written
the waveguide~s! @9#.

It may also be quite interesting to consider a syst
where the Kerr nonlinearity and BG are separated, i.e., w
the grating written only on thelinear core. The correspond
ing model is obtained from the above equations, dropp
the linear termsv and u in Eqs. ~1! and ~2! and settingl
51 andm50 in Eqs.~3! and ~4!. This model, which also
seems quite promising, will be considered elsewhere.

Before looking for solitons, it is necessary to analyze
spectrum of the linearized system, in order to identify a sp
tral gap in which BG solitons may reside@1#. For a linear
wave ;exp(ikx2ivt) and settingm50, a dispersion equa
tion for v(k) can be obtained:

v42@112k21l21~11c2!k2#v21~l2k2!2

1~c222ck21l2!k21c2k4

50.

Analyzing this equation, it is easy to conclude that the g
does not exist in the present model ifl,k2 and c22l
1l2,(2c21)k2, or if (112c)21(c1c21l2),k2,l. In
all other cases, a finite gap is present, and BG solitons
exist. In the particular case when the linear properties of
two cores are identical, i.e.,c51 andl51, which physically
corresponds to having identical BGs written on them, the
existence condition takes a very simple form,k2,1 @5#.

A remarkable property of the above-mentioned GMT
equations, to which Eqs.~1!–~4! reduce if the additional core
is dropped, is the availability of exact single-soliton so
tions, both quiescent and moving with an arbitrary veloc
v, limited by uvu,1, despite the fact that the model is n
integrable ~except for the unphysical case when the se
phase-modulation terms are omitted! @2#. Here, we aim to
find soliton solutions to the full system~1!–~4! and investi-
gate their stability and interactions. Solitons with zero velo
ity will be studied in detail, and moving solitons will also b
presented. In fact, the existence of solitons with zero velo
~which have not yet been observed experimentally in sing
core fiber gratings! is a most intriguing possibility, as thi
implies a possibility of ‘‘full stoppage of light’’ through its
dynamical trapping, which is especially interesting in vie
of the recent discovery of ‘‘ultraslow light’’ in ultracold
gases@10#.

As for the physical parameters of the system and its s
ton solutions, a crucial factor is the ratio of the lengthzcoupl
of the coupling between the cores and a characteristic pr
gation distance~the soliton’sdispersion length! zsol neces-
sary for the formation of a soliton in a single-core fiber w
BG. As is well known, the former length in available dua
core fibers is, normally,;1 cm, and, according to the exper
mental data@3,4#, zsol is on the same order of magnitude~it is
so short, despite the fact that the solitons are relatively br
in the temporal domain, because a BG gives rise to an
tremely strong effective dispersion!. This circumstance
zcoupl;zsol, is quite favorable, as it suggests that the int
play between the resonant light reflection on the BG,
Kerr nonlinearity, and the linear coupling between the co
may give rise to solitons with fairly unusual properties,
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comparison with both the usual~single-core! BG solitons@1#
and solitons in dual-core fibers without a BG@7#.

In line with the above arguments, other basic characte
tics of these solitons are expected to be of the same orde
magnitude as those for the recently observed BG soliton
a single-core fiber. In particular, the soliton can be genera
by a laser pulse of duration;100 ps, having a fairly high
peak power;5 W ~which is, however, still sufficiently far
from the optical-breakdown threshold in silica glass!, and,
accordingly, energy;500 pJ. The soliton to be created wi
keep essentially all this energy, self-compressing to the t
poral width&50 ps@3,4#.

Another crucial ingredient of a possible experiment is t
necessary length of the BG-equipped dual-core fiber.
mentioned above, for successful generation and detectio
the gap soliton in a single-core BG fiber, a 6 cmfiber was
sufficient. In fact, present-day techniques make it quite e
to fabricate a homogeneous dual-core fiber of length;1 m,
as well as to write a uniform BG on it. Therefore, an expe
ment may be quite feasible in a fiber whose length is of
order of 100 characteristic soliton and coupling lengths~both
being;1 cm; see above!, which will be more than enough
for the most precise experiments.

Thus, experimental generation of the solitons to be th
retically studied in the present work is not going to be mu
harder than the recent experiments reported in Refs.@3# and
@4#. The only essentially different issue in the experime
may be the question of whether to focus the input laser pu
on the entrance face of one core only, as usual, or it is n
essary to split it, in a special fashion, between the two co
Although it may be premature here to discuss experime
technicalities in such detail, we note that having the fib
length much longer thanzcoupl;1 cm ~see above! will pro-
vide enough room for the proper redistribution of power b
tween the cores, so that the experiment will not be critica
sensitive to details of launching the input pulse.

The rest of the paper is organized as follows. In Sec. II
displayexact analyticalsoliton solutions that can be found i
the present model withc50, and results of simulations o
their stability, which show that they are stable in a bro
parametric region. In the casecÞ0, soliton solutions can be
found only numerically, which is done in Sec. III, togeth
with systematic simulations of their stability. It is found tha
depending on the value of the frequencyv, the solitons may
remain stable up to a large valuec5cmax. At c.cmax, the
soliton becomes unstable. This instability, however, does
destroy it; after shedding some radiation, it evolves into
other member of the soliton family. In Sec. IV we direct
simulate interactions between two solitons placed initially
some distance from each other. It is found that the resul
the interaction strongly depends on the relative phase of
two solitons. In particular, the interaction can easily gener
moving solitons and leads to spontaneous symmetry bre
ing.

II. EXACT SOLITON SOLUTIONS AND THEIR
STABILITY

Exact zero-velocity soliton solutions to Eqs.~1!–~4! can
be found only in the particular casec50. Starting with the
usual ansatz,
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PRE 62 8715BRAGG-GRATING SOLITONS IN A SEMILINEAR . . .
u5U~x!exp~2 ivt !, v5V~x!exp~2 ivt !, ~5!

f5F~x!exp~2 ivt !, c5C~x!exp~2 ivt !, ~6!

and following the pattern of the exact GMTM solutions@2#,
we find

U~x![F ~v22l22m21lk2!21m2k4

~v22l22m2!2 G1/4

e1 id/2A~x!,

V~x![F ~v22l22m21lk2!21m2k4

~v22l22m2!2 G1/4

e2 id/2B~x!,

~7!

whered5tan21@k2m/(v22l22m21lk2)#, and

A~x!5A2/3~sinu!sech~hx sinu2 iu/2!,

B~x!52A2/3~sinu!sech~hx sinu1 iu/2!, ~8!

F~x!52
kv

v22l22m2 U1
k~l1 im!

v22l22m2 V,

C~x!5
k~l2 im!

v22l22m2 U2
kv

v22l22m2 V. ~9!

Hereu, which takes values between 0 andp, is an arbitrary
parameter of the soliton family. The frequencyv and inverse
width h of the soliton are determined, in terms ofu, by the
equations

v~v22l22m22k2!

A~v22l22m21lk2!21m2k4
sgn~v22l22m2!5cosu,

~10!

h[F ~v22l22m21lk2!21m2k4

~v22l22m2!2 G1/4

. ~11!

It is relevant to note that these exact solutions resemble th
found earlier in a linearly coupled system of cubic and line
Ginzburg-Landau~GL! equations@13#; however, the exac
solutions to the GL equations exist as isolated ones, ra
than in families, i.e., they do not contain any arbitrary p
rameter.

Before proceeding to a numerical search for solitons
the casecÞ0, it is necessary to address the stability of t
exact analytical solutions obtained above. The first nonrig
ous stability analysis of GMTM solitons was done using t
variational approximation@11#. It was predicted that instabil
ity might occur when an internal parameter of the GMT
solitons,u, similar to that introduced above in Eqs.~8!, ex-
ceeded a certain critical value, which was close top/2. Then
a rigorous treatment of the stability problem for the GMT
system, based on the consideration of its linearized vers
was developed in Refs.@12#. It was demonstrated there th
solitons withu exceeding a critical value, which is slightl
larger thanp/2, are indeed unstable. However, the instabil
is weak; therefore it was hard to observe it in direct simu
tions.

In this connection, it should be noted that, while the
sults for the solitons’ stability in various models obtain
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n
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from the solution of the corresponding eigenvalue probl
for the linearized equations are more rigorous~and usually
are technically more difficult! than those produced by direc
simulations of the nonlinear equations, the latter results m
be more appropriate for physical applications. Indeed, if
soliton is, rigorously speaking, unstable but the instability
weak ~as is the case for the GMTM!, it may happen that
neither direct simulations performed for a limited evolutio
time ~or propagation distance, depending on the particu
system! nor a real experiment in a finite-size sample w
demonstrate the instability, so that, in terms of real phys
the soliton should be regarded as astableobject, in accor-
dance with the prediction of the direct simulations, and d
spite the contradiction with the rigorous results. Solitons i
BG fiber may provide an example of this situation. In th
case, experimental results@3,4#, while being in good agree
ment with direct simulations, have not been able to dem
strate the sophisticated instability predicted on the basis
the linearized equations in Refs.@12#. On the other hand, it is
necessary to mention that, although the physical value of
soliton’s peak power in these experiments was quite hi
the BG solitons actually observed may still be low-intens
ones from the viewpoint of the corresponding theoreti
model. However, the above-mentioned ‘‘sophisticated ins
bility’’ occurs only for high-intensity solitons. Another ex
ample that could be cited regarding the fact that soliton
stability may sometimes be formal is provided b
‘‘spinning’’ (2 11)-dimensional solitons in media with th
cubic-quintic nonlinearity. As the analysis of the correspon
ing linearized problem shows, the solitons with ‘‘spin’’s
51 are, strictly speaking, always unstable against infinite
mal azimuthal perturbations that destroy the cylindrical sy
metry of the solitons. Nevertheless, if the size of the spinn
soliton is large enough, the instability may be so weak t
the soliton may persist as a fairly robust object over seve
diffraction lengths@14#, thus having a fairly good chance o
being observed in an experiment.

To test the stability of the exact soliton solutions given
Eqs.~5!–~11!, we simulated their evolution by means of th
split-step Fourier algorithm, imposing various asymmet
~sometimes nonsmall! initial perturbations. A typical case is
displayed in Fig. 1, showing that after shedding some rad
tion the perturbed pulse readily evolves into a member of
soliton family ~in fact, the final soliton in Fig. 1 acquires
very small velocity, because the asymmetric perturbation
‘‘pushed’’ it; moving solitons will be specially considere
below!. In particular, an important finding is that, whenl
Þ0, Eq.~10! gives rise to three distinct roots forv, of which
only the one with largestuvu is found to produce a stabl
soliton. On the other hand, there are two different roots fov
at l50, both leading to stable solitons.

We have also found that, as for GMTM solitons, a fund
mental property of the soliton family in our extended mod
is that the stable part of the family islimited, u<umax, where
umax depends onk and l. To analyze this in detail, we se
l50, focusing on the simplest and most fundamental c
when a BG is present in the nonlinear core only, and
stability is solely controlled by the coefficient of the line
coupling between the nonlinear and linear cores. The sta
ity border inside the soliton family,umax(k), was then sought
for gradually increasingu at a fixed value ofk. We started
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8716 PRE 62JAVID ATAI AND BORIS A. MALOMED
from u5p/12, where the exact soliton is definitely stab
until we hit a valueumax that gave rise to instability. The
instability, when it sets in, causes straightforward decay
the soliton into radiation. We have thus found thatumax(k
50.01)5p/1.7, umax(k51)5p/2.0, and umax(k5100)
5p/1.8, i.e., the dependence of the stability limit onk is
fairly weak,umax being close to that in the single-core mod
although the shapes of the exact solitons may be quite
ferent.

III. SOLITONS IN THE MODEL WITH cÅ0

The above consideration pertained to the limiting casc
50, when the exact solutions are available. The next ne
sary step is to considercÞ0, when no exact solution for th
zero-velocity solitons could be found. We therefore star
by using the known relaxation algorithm@15# in order, first
of all, to obtain stationary soliton solutions numerically fro
the ordinary differential equations produced by the subst
tion of Eqs.~5! and~6! into Eqs.~1!–~4!. By properly setting
boundary conditions, it was always possible to obtain a s
ton solution for a givenv.

A major objective here is to find out whether at fixe
values of all parameters exceptc there exists a maximum
value of c above which the solitons are unstable. It w
found that, depending on the value ofv, there indeed exists
cmax beyond which solitons become unstable. However,
instability atc.cmax leads not to the disappearance of so
tons, but rather to their self-rearrangement into a sligh
different form.

A typical result is displayed in Fig. 2, withk51, l5m
50, andv51.6. This value ofv was chosen since it lie

FIG. 1. Evolution of an asymmetrically perturbed soliton wh
c50 ~only the u component is shown!. The other parameters ar
l5m50, k51, and the soliton’s internal parameter@see Eqs.~8!#
u5p/3.
,

f

,
if-

s-

d

-

i-

e

y

sufficiently deep inside the stability region atc50. Our
simulations show that the valuecmax is very large,'4.2. As
is seen in Fig. 2~b!, at c.cmax the soliton becomes unstab
and, after shedding some radiation, it evolves into anot
member of the soliton family.

A practically significant consequence of the above res
is that values ofc close to 1~recall that 1 is the group ve

FIG. 2. Evolution of solitons at values ofc slightly below and
abovecmax: ~a! c54.1; ~b! c54.3. The other parameters arek
51, l5m50, andv51.6.
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locity in the nonlinear core! definitely give rise to stable
solitons. This inference is important for experiments, b
cause, in the most realistic case when both cores are ma
the same material, the group velocities in them are neces
ily close.

In the caselÞ0 ~when a BG is written on the linear cor
too!, the relaxation algorithm also successfully generated
tionary solitons. Starting with these, we found that the s
tons are stable in a broad parametric region, again includ
values ofc essentially exceeding 1. However, detailed ana
sis of the interplay ofl with other parameters is very cum
bersome and is left aside.

IV. INTERACTIONS BETWEEN SOLITONS AND
GENERATION OF MOVING SOLITONS

Since the present model is nonintegrable, interactions
tween solitons may be quite complex. The simplest appro
to simulating these interactions is to start from a superp
tion of two identical exact solitons placed initially at a di
tance from each other with some phase differenceDw. Re-
sults of the simulations, typical examples of which a
displayed in Fig. 3, are similar for different values of th
soliton’s internal parameters and initial separation~provided
that the solitons overlap weakly!, but they strongly depend
on Dw. In the caseDw5p, the solitons, quite naturally
repel each other†cf. the well-known fact that non-linea
Schrödinger ~NLS! solitons interact repulsively whenDw
5p @16#‡. Even if the initial separation between the solito
is relatively large, the repulsion is strong enough to lend
two initially quiescent solitons conspicuous velocities@see
Fig. 3~a!#. In this case, the eventual velocities are found to
W6560.03. Thus, these simulations not only shed light
the character of the interaction between the solitons, but
provide a convenient way to generate stablemovingones.

It is also interesting to compare the initialenergy Ei of
each soliton, defined as*2`

1`(uuu21uvu21ufu21ucu2)dx
~which is a dynamical invariant of the model!, and the final
valuesEf of the energy of the moving solitons. In the ca
shown in Fig. 3~a!, Ef /Ei50.986, i.e., about 1.5% of th
initial energy is lost~into emission of radiation! as a result of
the interaction process. It should be stressed that mo
solitons produced by the interaction exhibit some inter
vibrations, i.e., the solitons appear with a weakly exci
internal mode~the existence of internal modes in stab
GMTM solitons is a known fact@11,12#!. It may also happen
that they capture some radiation which will be very slow
radiated away in the course of very long evolution~which is
not relevant for experiments!.

In the opposite caseDw50, the solitons attract eac
other, which is similar to what is known for the NLS sol
tons. As shown in Fig. 3~b!, they temporarily merge into a
single pulse, which later splits into two moving solitons wi
small internal vibrations. In this case, a conspicuous bre
ing of the initial symmetry between the two solitons is o
served~special care has been taken to check that it is no
artifact produced by the numerical scheme!. A plausible ex-
planation is that the lump produced by the strong tempor
overlapping of the initially attracting solitons@see Fig. 3~b!#
is unstable against symmetry-breaking perturbations,
breaking being incomplete since the solitons separate qui
-
of
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FIG. 3. Interaction of two identical solitons withu5p/3, placed
initially at a distance 8 with two different values of the initial pha
difference between the solitons:~a! Dw5p ~repulsion!; ~b! Dw
50 ~attraction!. The other parameters arek51, l5m50, and the
evolution time is 400.
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8718 PRE 62JAVID ATAI AND BORIS A. MALOMED
enough. This conjecture seems natural, as it is well kno
that various multisoliton states in the NLS equation a
strongly unstable in the case of attraction@16#, but, of course,
much more extensive simulations are necessary to check
detail.

This partial symmetry breaking can be characterized
the final/initial energy ratios for the two solitons shown
Fig. 3~b!, which are found to beEf /Ei50.892 and 0.864 for
the left and right solitons, respectively. In this case, a c
siderable share of the initial energy,'12%, is lost into ra-
diation. The final velocities of the solitons areW65
60.22, i.e., there is no tangible symmetry breaking in ter
of the velocities. Note thatuW6u are much larger in this cas
than in the caseDw5p.

In the caseDw50, there is another noteworthy aspect
the symmetry breaking: the final solitons demonstrate anin-
ternal asymmetry, characterized by the ratios of their par
energies,

«25E
2`

1`

uu2u2dxY E
2`

1`

uv2u2dx,

«15E
2`

1`

uv1u2dxY E
2`

1`

uu1u2dx,

where the positive~negative! subscript pertains to the righ
~left! soliton. For the solitons shown in Fig. 3~b!, this ratio
takes values«250.470 and«150.465. In accord with these
values, the final solitons, being intrinsically asymmetric, a
to a good approximation, mirror images of each other.

We have also simulated the interaction of solitons wh
the initial phase difference isDw5p/2. In this case the soli-
tons repel each other, about 0.7% of the energy is lost
radiation, and the symmetry breaking is much more c
spicuous, with the final velocities beingW2520.023 and
W150.019. The stronger symmetry breaking in this ca
can be easily understood, as the symmetry of the initial c
figuration, which was taken asusol(x2 1

2 x0)1 iusol(x
n

o
.

c.

t.
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1 1
2 x0), x0 being the initial separation between the soliton

is not compatible with Eqs.~1!–~4! and is therefore broken
upon propagation in a straightforward way.

V. CONCLUSION

In this paper, we have introduced a model consisting
two linearly coupled cores, one having the Kerr nonlinear
and the other being linear. A Bragg grating is written on t
nonlinear core, while the linear one may or may not
equipped with a grating. The model allows us to consid
ably extend the previously studied family of Bragg-grati
solitons. Exact solutions were found for zero-velocity so
tons in a limiting case when the group-velocity terms a
absent in the equations for the linear core, while in the g
eral case solitons were found numerically. The main issu
their stability. We have found a nontrivial stability limit fo
them in terms of an internal parameter of the soliton fam
Depending on the frequencyv, the solitons may remain
stable up to quite large values of the group velocity in t
linear core. This strongly suggests that stable solitons
indeed be generated experimentally in dual-core syste
with the cores made of the same material. The vast stab
region for the zero-velocity solitons in the dual-core mod
found in this work, suggests the possibility of looking for th
corresponding localized states experimentally with fu
trapped light. Interactions of initially separated solitons we
investigated also, showing a considerable spontaneous s
metry breaking in the case when the solitons attract e
other, which may be the result of a natural instability agai
symmetry-breaking perturbations. The interaction always
sults in the appearance of stable moving solitons.
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