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Bragg-grating solitons in a semilinear dual-core system

Javid Atat and Boris A. Malomefl
school of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia
2Department of Interdisciplinary Studies, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
(Received 4 May 2000

We investigate the existence and stability of gap solitons in a double-core optical fiber, where one core has
the Kerr nonlinearity and the other one is linear, with the Bragg graf3®) written on the nonlinear core,
while the linear one may or may not have a BG. The model considerably extends the previously studied
families of BG solitons. For zero-velocity solitons, we find exact solutions in a limiting case when the
group-velocity terms are absent in the equation for the linear core. In the general case, solitons are found
numerically. Stability borders for the solitons are found in terms of an internal parameter of the soliton family.
Depending on the frequenay, the solitons may remain stable for large values of the group velocity in the
linear core. Stable moving solitons are also found. They are produced by interaction of initially separated
solitons, which shows a considerable spontaneous symmetry breaking in the case when the solitons attract each
other.

PACS numbse(s): 42.81.Dp, 42.65.Tg, 42.81.Qb, 61.20.Ja

I. INTRODUCTION AND FORMULATION cores is asemilinearone, where one core is linear. Semilin-
OF THE MODEL ear dual-core models without BG’s were introduced earlier;
both continuous-wave and soliton states in them have been
It is well known that the combination of the Kerr nonlin- studied in various contex{$,7].
earity with a strong effective dispersion induced by the reso- The objective of this work is to introduce a semilinear
nant reflection of ||ght on the Bragg grat”an) gives rise dual-core model in which the BG is written either on the
to a vast family of gap solitons, frequently called BG solitonsnonlinear core only or on both cores, and to search for soli-
[1] (in this work, we use the term “soliton” in the loose tons in it (which makes it necessary, first of all, to explore
sense, without implying integrability of the model where it the system’s linear spectrymFollowing the derivation of
appears; in particular, it will be shown that interactions be-the GMTM[1] and of the standard equations for a dual-core
tween “solitons” in a model to be introduced below may be fiber (see, e.g., Ref8]) from Maxwell's equations, a general
essentially inelastic A generally accepted mathematical model for the semilinear dual-core BG-equipped system can
model of the nonlinear fiber equipped with a BG is the so-be written as the following set of normalized equations:
called generalized massive Thirring mod&MTM) [2].

Thorough theoretical investigation of BG solitons, an impor- iUt iyt [[v]?+ (12)ul*Ju+v + k=0, @
tant step in which was the discovery of a class of exact

single-soliton solutions to the GMTNR], was followed by v —iv+H[ul?+(1/2)]v]?Jo +u+ kyp=0, (]
observation of BG solitons created by a very strong laser

pulse launched into a short segménts cm) of a nonlinear ipiticeyt ku+(N+iu) =0, ()
optical fiber with the resonant BG written on[B]. Experi-

mental studies of BG solitons were further develoged ip—icyy+rkv+(N—iu)p=0. 4
cluding, in particular, formation of multiple BG solitons

Refs.[4]. Here, u and v represent the forward- and backward-

Observation of solitons in such a short fiber paves the waypropagating waves in the nonlinear coteand i are their
for many potential applications, as well as for further experi-counterparts in the linear ong,is the coefficient of linear
ments aimed at the study of fundamental properties of opticatoupling between the cores, whileand u are the real and
solitons. This also makes it relevant to consider more sophigmaginary parts of the BG coupling coefficient in the linear
ticated nonlinear systems based on fiber gratings, where theore [which is, generally, complex if its counterpart in the
properties of solitons might be still more promising. In par-nonlinear core is normalized to be 1, as is the case in @ys.
ticular, one can look for solitons in @ual-coresystem with ~ and(2)]. Lastly, the group velocity in the nonlinear core is
linear coupling between the cores, a BG being written orset equal to 1, and is the relative group velocity in the
both cores or a single one. The case of two identical BGlinear core.
carrying cores was considered in R, where it was found The simplest case is= u=0 (corresponding to the linear
that the model gave rise toafurcationat a critical value of ~ core without BG, while cross-core coupling is nonzero.
the soliton’s energy. The bifurcation destabilizes a symmetBelow, we will always seju=0; in most cases\ will also
ric two-component solution, simultaneously generating &be zero, but effects of #0 on the solitons’ stability will be
nontrivial asymmetric soliton. A dual-fiber system with un- investigated too. Note that, although the present model finds
like cores is easier to fabricate and may offer other possibiliits most natural formulation in the temporal domain, it can
ties. One of the most interesting dual systems with differentilso be readily interpreted in terms of tspatial-domain
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evolution of the fields in a two-core planar waveguide, thecomparison with both the usu@ingle-coré BG solitons[1]
BG being realized as a system of parallel scores written omand solitons in dual-core fibers without a B@|.
the waveguidés) [9]. In line with the above arguments, other basic characteris-
It may also be quite interesting to consider a systentics of these solitons are expected to be of the same order of
where the Kerr nonlinearity and BG are separated, i.e., wittmagnitude as those for the recently observed BG solitons in
the grating written only on thénear core. The correspond- a single-core fiber. In particular, the soliton can be generated
ing model is obtained from the above equations, droppindy a laser pulse of duratiorr100 ps, having a fairly high
the linear terms andu in Egs. (1) and (2) and setting\ peak power~5 W (which is, however, still sufficiently far
=1 andu=0 in Egs.(3) and(4). This model, which also from the optical-breakdown threshold in silica glasand,
seems quite promising, will be considered elsewhere. accordingly, energy-500 pJ. The soliton to be created will
Before looking for solitons, it is necessary to analyze thekeep essentially all this energy, self-compressing to the tem-
spectrum of the linearized system, in order to identify a specporal width <50 ps[3,4].

tral gap in which BG solitons may residgl]. For a linear Another crucial ingredient of a possible experiment is the
wave ~exp(kx—iot) and settingu=0, a dispersion equa- necessary length of the BG-equipped dual-core fiber. As
tion for w(k) can be obtained: mentioned above, for successful generation and detection of
the gap soliton in a single-core BG fihex 6 cmfiber was
0*—[1+ 2%+ N2+ (1+ kP w?+ (A — k?)? sufficient. In fact, present-day techniques make it quite easy

5 2 L2 s 2Ld to fabricate a homogeneous dual-core fiber of lengfhm,
+(CTm2ekT ATk CK as well as to write a uniform BG on it. Therefore, an experi-
=0. ment may be quite feasible in a fiber whose length is of the

order of 100 characteristic soliton and coupling lendtiath

Analyzing this equation, it is easy to conclude that the gag?€ing~1 cm; see abovewhich will be more than enough
does not exist in the present model Ni x2 and c2—\  for the most precise experiments. _
+N2<(2c—1)k?, orif (1+2¢) " Y(c+ 2+ D) <k?<\. In Thus, exp_erlmental generation of_the sohtpns to be theo-
all other cases, a finite gap is present, and BG solitons makgtically studied in the present work is not going to be much
exist. In the particular case when the linear properties of th arder than the recent experiments reported in R8{sand
two cores are identical, i.ec=1 and\ = 1, which physically [4]. The only ess_entlally different issue in Fhe experiment
corresponds to having identical BGs written on them, the gaf"@Y Pe the question of whether to focus the input laser pulse
existence condition takes a very simple fork3<1 [5]. on the entrance face of one corelonly, as usual, or it is nec-
A remarkable property of the above-mentioned GMTM €SSarY to §p|lt it, in a special fashion, betyveen the twq cores.
equations, to which Eqé1)—(4) reduce if the additional core Although it may be premature here to discuss experimental
is dropped, is the availability of exact single-soliton So|u_techn|calltles in such detail, we note that havmg the fiber
tions, both quiescent and moving with an arbitrary velocity!®Ngth much longer thaag, ,~1 cm (see abovewill pro-
v, limited by |v|<1, despite the fact that the model is not Vide enough room for the proper redistribution of power be-
integrable (except for the unphysical case when the self-tween the cores, so that the experiment will not be critically
phase-modulation terms are omittd@]. Here, we aim to  S€nsitive to details of launching the input pulse.
find soliton solutions to the full systefl)—(4) and investi- 1 Ne restof the paper is organized as follows. In Sec. Il we
gate their stability and interactions. Solitons with zero veloc-diSPlayexact analyticaboliton solutions that can be found in
ity will be studied in detail, and moving solitons will also be the Present model witik=0, and results of simulations of
presented. In fact, the existence of solitons with zero velocitf€ir stability, which show that they are stable in a broad
(which have not yet been observed experimentally in singleParametric region. In the cage= 0, soliton solutions can be
core fiber gratingsis a most intriguing possibility, as this found only numerically, which is done in Sec. lll, together
implies a possibility of “full stoppage of light” through its with systematic simulations of their stability. It is found that,
dynamical trapping, which is especially interesting in view d€Pending on the value of the frequensythe solitons may
of the recent discovery of “ultraslow light” in ultracold "€main stable up to a large valee=Cpay. At C>Crgy, the
gaseqd10]. soliton b_ecomes unsta_ble. This mstgbl_llty, _however, c_joes not
As for the physical parameters of the system and its solidestroy it; after sheddlng_ some rqdlatlon, it evolves into an-
ton solutions, a crucial factor is the ratio of the length other member of the soliton family. In Sec. IV we directly

of the coupling between the cores and a characteristic propg_imulat(_a interactions between two _solitons placed initially at

gation distancethe soliton’sdispersion length z.., neces- some dlstance from each other. It is found that the result of
sary for the formation of a soliton in a single-core fiber with t€ inteéraction strongly depends on the relative phase of the
BG. As is well known, the former length in available dual- two _sohton;. In particular, the interaction can easily generate
core fibers is, normally:-1 cm, and, according to the experi- MoVing solitons and leads to spontaneous symmetry break-

mental datd3,4], zs,is on the same order of magnitutieis M9
so short, despite the fact that the solitons are relatively broad
in the temporal domain, because a BG gives rise to an ex-
tremely strong effective dispersipnThis circumstance,
Zeoup™Zsol» 1S quite favorable, as it suggests that the inter-
play between the resonant light reflection on the BG, the Exact zero-velocity soliton solutions to Eq4)—(4) can
Kerr nonlinearity, and the linear coupling between the corede found only in the particular cage=0. Starting with the
may give rise to solitons with fairly unusual properties, in usual ansatz,

II. EXACT SOLITON SOLUTIONS AND THEIR
STABILITY
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u=UXx)exp—iwt), v=V(X)exp —iwt), (5)

d=Dd(x)exp—iwt), Y=T(x)exp—iot), (6)

and following the pattern of the exact GMTM solutiof$,
we find

2_y2_,2 2\2 2 .471/4
U= LR MO TR sz
(0°=N"—pu9) ’

2_y\2__ 2 2\2 2 411/4
V(x)= Gl 2'“ t)\KZ);FM “ e 192B(x)
(0= A= u%) ’

(7
where §=tan [ e u/(w?—N\2— u?+\k?)], and

A(X) = \2/3(sin 6)secti px sin6—i 6/2),

B(X) = — \/2/3(sin ) sech nx sin 6+i 6/2), (8)

(N +iw)
d(x)=— wz_)\z_luz w';_)\z - 2V,
W(x) k(N—iw) K RV} ©

= wz_)\z_’uz - wz—)\z—,u

Here 6, which takes values between 0 andis an arbitrary
parameter of the soliton family. The frequensyand inverse
width 7 of the soliton are determined, in terms @fby the
equations

(0= \?—u?—K?) s o
\/(wz—)\2—,U«2+)\K2)2+,U~2K4sgr(w ~\ - pt)=coso,
(10)

(wz_)\z_M2+7\K2)2+,LL2K4 1/4
(w2_)\2_lu2)2

n= (11
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from the solution of the corresponding eigenvalue problem
for the linearized equations are more rigordasd usually
are technically more difficultthan those produced by direct
simulations of the nonlinear equations, the latter results may
be more appropriate for physical applications. Indeed, if the
soliton is, rigorously speaking, unstable but the instability is
weak (as is the case for the GMTMit may happen that
neither direct simulations performed for a limited evolution
time (or propagation distance, depending on the particular
system nor a real experiment in a finite-size sample will
demonstrate the instability, so that, in terms of real physics,
the soliton should be regarded astable object, in accor-
dance with the prediction of the direct simulations, and de-
spite the contradiction with the rigorous results. Solitons in a
BG fiber may provide an example of this situation. In this
case, experimental result8,4], while being in good agree-
ment with direct simulations, have not been able to demon-
strate the sophisticated instability predicted on the basis of
the linearized equations in Refd.2]. On the other hand, it is
necessary to mention that, although the physical value of the
soliton’s peak power in these experiments was quite high,
the BG solitons actually observed may still be low-intensity
ones from the viewpoint of the corresponding theoretical
model. However, the above-mentioned “sophisticated insta-
bility” occurs only for high-intensity solitons. Another ex-
ample that could be cited regarding the fact that soliton in-
stability may sometimes be formal is provided by
“spinning” (2 +1)-dimensional solitons in media with the
cubic-quintic nonlinearity. As the analysis of the correspond-
ing linearized problem shows, the solitons with “spirs’
=1 are, strictly speaking, always unstable against infinitesi-
mal azimuthal perturbations that destroy the cylindrical sym-
metry of the solitons. Nevertheless, if the size of the spinning
soliton is large enough, the instability may be so weak that
the soliton may persist as a fairly robust object over several
diffraction lengthg14], thus having a fairly good chance of
being observed in an experiment.

To test the stability of the exact soliton solutions given by

It is relevant to note that these exact solutions resemble thogegs. (5)—(11), we simulated their evolution by means of the
found earlier in a linearly coupled system of cubic and linearsplit-step Fourier algorithm, imposing various asymmetric
Ginzburg-LandauGL) equations[13]; however, the exact (sometimes nonsmalinitial perturbations. A typical case is
solutions to the GL equations exist as isolated ones, rathetisplayed in Fig. 1, showing that after shedding some radia-
than in families, i.e., they do not contain any arbitrary pa-tion the perturbed pulse readily evolves into a member of the
rameter. soliton family (in fact, the final soliton in Fig. 1 acquires a
Before proceeding to a numerical search for solitons irvery small velocity, because the asymmetric perturbation has
the casec#0, it is necessary to address the stability of the“pushed” it; moving solitons will be specially considered
exact analytical solutions obtained above. The first nonrigorbelow). In particular, an important finding is that, whan
ous stability analysis of GMTM solitons was done using the# 0, Eq.(10) gives rise to three distinct roots far, of which
variational approximatiofil 1]. It was predicted that instabil- only the one with largesfw| is found to produce a stable
ity might occur when an internal parameter of the GMTM soliton. On the other hand, there are two different rootsJfor
solitons, #, similar to that introduced above in Eq8), ex- atA=0, bothleading to stable solitons.
ceeded a certain critical value, which was closertd. Then We have also found that, as for GMTM solitons, a funda-
a rigorous treatment of the stability problem for the GMTM mental property of the soliton family in our extended model
system, based on the consideration of its linearized versioris that the stable part of the family lisnited, < 6,5, Where
was developed in Ref$12]. It was demonstrated there that 6,,, depends onc< andA. To analyze this in detail, we set
solitons with 8 exceeding a critical value, which is slightly A=0, focusing on the simplest and most fundamental case
larger thanm/2, are indeed unstable. However, the instabilitywhen a BG is present in the nonlinear core only, and the
is weak; therefore it was hard to observe it in direct simula-stability is solely controlled by the coefficient of the linear
tions. coupling between the nonlinear and linear cores. The stabil-
In this connection, it should be noted that, while the re-ity border inside the soliton familyg,a{x), was then sought
sults for the solitons’ stability in various models obtainedfor gradually increasing at a fixed value ok. We started
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FIG. 1. Evolution of an asymmetrically perturbed soliton when
c=0 (only theu component is shown The other parameters are t

A=u=0, k=1, and the soliton’s internal paramefsee Eqs(8)] N
0= /3. 7000
—___/¥—
from 6= x/12, where the exact soliton is definitely stable, N
until we hit a valuef,,, that gave rise to instability. The SN
instability, when it sets in, causes straightforward decay of
the soliton into radiation. We have thus found thgt,,(« ____,,/m“‘ww.___¥
=0.01)=7/1.7, Opalc=1)=72.0, and Oya{x=100) __.‘/“‘\M"m
=7/1.8, i.e., the dependence of the stability limit anis AN
fairly weak, 6, being close to that in the single-core model,
although the shapes of the exact solitons may be quite dif- N
ferent. /N
Ill. SOLITONS IN THE MODEL WITH c#0 —J;
The above consideration pertained to the limiting case — —
=0, when the exact solutions are available. The next neces- - ~—
sary step is to consider# 0, when no exact solution for the /N

zero-velocity solitons could be found. We therefore started a\
by using the known relaxation algorithfa5] in order, first

of all, to obtain stationary soliton solutions numerically from 0 . /\\ . .
the ordinary differential equations produced by the substitu- —200 -100 0 100 200
tion of Egs.(5) and(6) into Egs.(1)—(4). By properly setting X

boundary conditions, it was always possible to obtain a soli- (b)

ton solution for a givernw.

A major objective here is to find out whether at fixed
values of all parameters exceptthere exists a maximum
value of ¢ above which the solitons are unstable. It was
found that, depending on the value @f there indeed exists sufficiently deep inside the stability region at=0. Our
Cmax beYyond which solitons become unstable. However, th&imulations show that the valug,,, is very large,~4.2. As
instability atc>c,, leads not to the disappearance of soli-is seen in Fig. &), atc>c,,. the soliton becomes unstable
tons, but rather to their self-rearrangement into a slightlyand, after shedding some radiation, it evolves into another
different form. member of the soliton family.

A typical result is displayed in Fig. 2, witk=1, A= A practically significant consequence of the above result
=0, andw=1.6. This value ofw was chosen since it lies is that values ot close to 1(recall that 1 is the group ve-

FIG. 2. Evolution of solitons at values afslightly below and
abovec,: (@ c=4.1; (b) c=4.3. The other parameters are
=1, \=u=0, andw=1.6.
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locity in the nonlinear conedefinitely give rise to stable t
solitons. This inference is important for experiments, be- 400 NN
cause, in the most realistic case when both cores are made of ) A

the same material, the group velocities in them are necessar-
ily close. - A A
In the case\ #0 (when a BG is written on the linear core A A
too), the relaxation algorithm also successfully generated sta-
tionary solitons. Starting with these, we found that the soli-
tons are stable in a broad parametric region, again including
values ofc essentially exceeding 1. However, detailed analy-
sis of the interplay ol with other parameters is very cum-
bersome and is left aside.

IV. INTERACTIONS BETWEEN SOLITONS AND
GENERATION OF MOVING SOLITONS

Since the present model is nonintegrable, interactions be-
tween solitons may be quite complex. The simplest approach
to simulating these interactions is to start from a superposi-
tion of two identical exact solitons placed initially at a dis-
tance from each other with some phase differefnge Re-
sults of the simulations, typical examples of which are
displayed in Fig. 3, are similar for different values of the 0
soliton’s internal parameters and initial separatiprovided
that the solitons overlap weaklybut they strongly depend
on Ag. In the caseA =1, the solitons, quite naturally,
repel each othefcf. the well-known fact that non-linear
Schralinger (NLS) solitons interact repulsively when ¢ t
= [16]]. Even if the initial separation between the solitons 400 —N N
is relatively large, the repulsion is strong enough to lend the A A
two initially quiescent solitons conspicuous velocitiesee
Fig. 3(@]. In this case, the eventual velocities are found to be
W. = *0.03. Thus, these simulations not only shed light on A
the character of the interaction between the solitons, but also
provide a convenient way to generate stafievingones.

It is also interesting to compare the initiehergy E of A
each soliton, defined ag %(|ul?+|v|?+]|#|?+]|¥|?)dx A
(which is a dynamical invariant of the modieand the final
valuesk; of the energy of the moving solitons. In the case
shown in Fig. 8a), E;/E;=0.986, i.e., about 1.5% of the A A
initial energy is losf{into emission of radiationas a result of A A
the interaction process. It should be stressed that moving
solitons produced by the interaction exhibit some internal
vibrations, i.e., the solitons appear with a weakly excited AN
internal mode(the existence of internal modes in stable AL

M
M
AA
0
X

80

peeeccCCrl(]

—
=

GMTM solitons is a known fadt11,12). It may also happen
that they capture some radiation which will be very slowly
radiated away in the course of very long evolutigvhich is
not relevant for experiments

In the opposite caséd ¢=0, the solitons attract each
other, which is similar to what is known for the NLS soli-
tons. As shown in Fig. ®), they temporarily merge into a
single pulse, which later splits into two moving solitons with
small internal vibrations. In this case, a conspicuous break-
ing of the initial symmetry between the two solitons is ob-
served(special care has been taken to check that it is not an
artifact produced by the numerical schem& plausible ex- FIG. 3. Interaction of two identical solitons with= /3, placed
planation is that the lump produced by the strong temporaryhitially at a distance 8 with two different values of the initial phase
overlapping of the initially attracting solitorisee Fig. 80)]  difference between the solitonga) Ae=m (repulsion; (b) Ae
is unstable against symmetry-breaking perturbations, the-0 (attraction. The other parameters ake=1, A= =0, and the
breaking being incomplete since the solitons separate quicklgvolution time is 400.

50 100
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enough. This conjecture seems natural, as it is well knownt 3 X,), X, being the initial separation between the solitons,
that various multisoliton states in the NLS equation areis not compatible with Eqs1)—(4) and is therefore broken
strongly unstable in the case of attract[d®], but, of course, upon propagation in a straightforward way.

much more extensive simulations are necessary to check it in
detail. V. CONCLUSION

This partial symmetry breaking can be characterized by | this paper, we have introduced a model consisting of
the final/initial energy ratios for the two solitons shown in two |inear|y Coup|ed cores, one having the Kerr non”nearity
Fig. 3(b), which are found to b&;/E;=0.892 and 0.864 for and the other being linear. A Bragg grating is written on the
the left and right solitons, respectively. In this case, a connonlinear core, while the linear one may or may not be
siderable share of the initial energy12%, is lost into ra-  equipped with a grating. The model allows us to consider-
diation. The final velocities of the solitons ard/. = ably extend the previously studied family of Bragg-grating
+0.22, i.e., there is no tangible symmetry breaking in termssolitons. Exact solutions were found for zero-velocity soli-
of the velocities. Note thgtV..| are much larger in this case tons in a limiting case when the group-velocity terms are
than in the casd ¢= . absent in the equations for the linear core, while in the gen-

In the caseA ¢ =0, there is another noteworthy aspect of €ral case solitons were found numerically. The main issue is
the symmetry breaking: the final solitons demonstraténan their stability. We have found a nontrivial stability limit for

ternal asymmetry, characterized by the ratios of their partialhem in terms of an internal parameter of the soliton family.
energies, Depending on the frequency, the solitons may remain

stable up to quite large values of the group velocity in the
+ oo + oo . . .
S_ZJ |u_|2dx/ f lv_|2dx, !mear core. This strongly suggests that stable solitons can
—w —w indeed be generated experimentally in dual-core systems,
with the cores made of the same material. The vast stability
e — j*‘”|v |2dx/ f““lu 2dx region for the zero-velocity solitons in the dual-core model,
R e T ’ found in this work, suggests the possibility of looking for the
corresponding localized states experimentally with fully
where the positivénegative subscript pertains to the right trapped light. Interactions of initially separated solitons were
(left) soliton. For the solitons shown in Fig(t8, this ratio  investigated also, showing a considerable spontaneous sym-
takes values _ =0.470 anc . = 0.465. In accord with these Metry breaking in the case when the solitons attract each
values, the final solitons, being intrinsically asymmetric, are 0ther, which may be the result of a natural instability against
We have also simulated the interaction of solitons wherults in the appearance of stable moving solitons.
the initial phase difference i& o= 7/2. In this case the soli-
tons repel each other, about 0.7% of the energy is lost into
radiation, and the symmetry breaking is much more con- J.A. thanks J. M. Soto-Crespo for useful discussions.
spicuous, with the final velocities beifgy_=—0.023 and B.A.M. acknowledges the hospitality of the School of Elec-
W, =0.019. The stronger symmetry breaking in this caserical Engineering and Communications, University of New
can be easily understood, as the symmetry of the initial conSouth WalegSydney, and the School of Physics at the Uni-
figuration, which was taken asug(X—3 Xo)+ilug(X  versity of Sydney.
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