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Numerical solution of the time-dependent Maxwell’'s equations for random dielectric media
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We discuss how a spectral-domain method in combination with a split-operator technique can be used to
calculate exact solutions of the time-dependent Maxwell’s equations. We apply this technique to study the
tunneling signal of an evanescent wave occurring due to frustrated total internal reflection and the propagation
of a light pulse through an inhomogeneous medium consisting of multiple random scatterers.

PACS numbg(s): 41.20.Jb, 42.25.Dd, 42.25.Bs

[. INTRODUCTION technique over the FDTD methods. The FDTD method typi-

cally requires at least 10—20 grid points per wavelength,

Modeling of temporal evolution of light in highly scatter- Whereas the spectral-domain method can be applied with
ing media has potential applications in a wide range of fieldsféwer grid points, as permitted by the Nyquist sampling
such as medical imaging and therapy, radar detection, adheorem. Spectral methods can be efficiently implemented on

tronomy, electronic technology, photonic devices, and so o arallel computers. Moreover, the electric- and' magnetic-
fileld components are located at the same spatial location.

In recent times, there has been an explosion of interest ig, . .. studie$10] have claimed that the spectral-domain

such modeling due to the development of solution techniqueﬁgchmque in comparison with the FDTD method can require

for partial differential equationPDE’s) as well as the avail- |oqg computation time and associated memory.
ability of large-scale computational resources. In a complex o the other hand, the proposed algorithm also has sev-
scattering medium, classical Monte Carlo simulations argya| drawbacks. In its present form, dispersive effects due to
sufficient to obtain diffusion effects as confirmed by experi-frequency-dependent materials are not taken into account in
ments[1-3]. Other classes of experimental data suggest thenis algorithm, while other FDTD models da1]. Although
importance of phase information which is lacking in the an integration in frequency space requires fewer grid points
above approach. Dominant features at the near field arise dygan a method based on the finite-difference approximation
to the interplay of phases, which calls for the exact solutiong the first- and second-order derivatives for comparable ac-
of the Maxwell's equations beyond the Boltzmann equationcyracy, the required Fourier transformation is slower than the
The time-domain PDE Maxwell's equations solvers provideassociated tridiagonal matrix manipulations in the FD mod-
a poWerfUl tool to understand the Iight'matter interaction aTe|3_ The present mode| Cou|d be advantageous for Computa_
submicron resolution and with the capability of temporal fi- tional situations, in which memory constraints require a re-
nesse of the order of subpicoseconds. stricted number of grid points, and CPU time is of no
Some of the most widely used methods for simulatingconcern. Another disadvantage of the split-operator FFT
transient electromagnetic wave propagation are the finitescheme is the fact that a change from Cartesian to more
difference-time-domaiFDTD) methods. These methods in- general nonuniform grid coordinates is nontrivial. An addi-
volve approximating the derivatives in the Maxwell's equa-tional disadvantage of the spectral-domain technique is the
tions by finite differences. Yepd] described the first space \rap-around effect, which we have overcome by the choice
grid-based time integration. In the Yee algorithm, theof appropriate boundary conditions; the details are provided
electric- and magnetic-field components are located at differj, Secs. 11 B and Il C. The past decade has shown that in
ent positions in astaggeredgrid. This algorithm has a atomic ionization physics, numerical wave-function solu-
second-order accuracy in both space and time. To increasgns to the time-dependent ScHinger and Dirac equations
accuracy in the FDTD methods, typically one would have tocan be calculated from FDTD as well as split-operator FFT
increase the grid density and/or use higher-order differencmethods with comparable computational efficiency.
ing. Since this early demonstration, the FDTD teChnique has In Sec. Il, we describe the details of the numerical
matured and has been adopted by researchers in diverthod, how the electromagnetic radiation pulse is evolved
fields. Taflove coined the acronym FDTD and demonstrategj space and time, and how the initial and boundary values
the first three-dimensional grid-based computational modehre incorporated on the spatiotemporal grid. In Sec. IlI, we
of electromagnetic wave absorption in complex, inhomogetest our method for simple geometries for which analytical
neous biological tissue$]. Reference$6] and[7] contain  spjutions are available. Finally, we give an example of a
detailed references and reviews on the FDTD methods. Agdiation pulse interacting with an inhomogeneous medium
nice survey of FDTD literature that includes almost 500 ref-comprised of random dielectric scatterers. We finish this pa-

erences has been provided by Shlager and Schnddler  per with a short conclusion and an outlook on future work.
In this paper, we introduce another technique which ex-

ploits the simplicity of evolution of the field components in Il. NUMERICAL ALGORITHM
the spectral domain to obtain the time-dependent solutions of
the Maxwell’s equations. In this method, efficient fast Fou-

rier transformgFFT) are used to represent the spatial deriva- We describe in this section the details of the numerical
tives. We point out a few advantages of the spectral-domaialgorithm used to obtain the solution of the Maxwell's equa-

A. The temporal and spatial evolution

1063-651X/2000/6@)/87058)/$15.00 PRE 62 8705 ©2000 The American Physical Society



8706 W. HARSHAWARDHAN, Q. SU, AND R. GROBE PRE 62

tions. A combination of the spectral-domain method and the E(F,t+At) E(F,1)
split-operator technique is used to calculate the evolution of ( ~ ' =exp{At[H“(ﬁ)+Hm(ﬁ,F)]}( _ ' ) )
the electromagnetic fields in inhomogeneous media. In the \ B(F,t+At) B(r,t)

absence of any free charges and currents, the electromagnetic 2.7

fields satisfy the following Maxwell's equatioris Sl units: . ) ) )
It can be approximated using the split-operator technique

V.e(F)E=0, 2.0 [12,13 with
Lo U=exp{At[H’(V)+H™(V,F)]}=UT,UlUT.+O(At3),
V.-B=0, (2.2 2.9

JE 2 where

—=—_VXB, (2.3 R

t () I=exg AtH"(V)],

9B o m=exd AtH™(V,F)]. (2.9

=~ VXE (2.4)

These operators do not commute and this decomposition
) ) leads to a local error proportional tot® for each time step.

where E and B are the electric and magnetic fields, re- It should be noted that due to the formal structure of these
spectively. The velocity of light in vacuum & The relative  operators, the first two Maxwell's equatiof®.1) and (2.2
permeability u/ ., is assumed to be unity. The relative di- are automatically satisfied at all times if the initial fields
electric permittivity e() characterizes the medium and satisfy them[9].
could vary arbitrarily in space depending on the choice of The operatorg2.9) may be computed exactly as shown
the material configuration. It is clear that E¢R.3) can below. The evaluation for the differential operator
describe only those situations for which the die|eCtriC€_dependent part is most convenient in the Fourier space,
constante() depends weakly on the frequency of the light. and for thef-dependent part in the regular configuration
In other words, we require the index of refractiafe(f)  space. We transform the field components into the Fourier
to vary on a frequency scale larger than the spectral width o§pace, wherek( ky k) represent spatial frequencies along
the thex,y,z directions. The field components evolve in the Fou-
laser pulse. Note that this problem has been overcome ifler space as shown below,
FDTD methods as described, e.g., in Rdfl]. The spatial
variables §,y,z) and the time(t) are discretized intdN,, }_(E(F,HAt)

N,, andN, space points andl, time steps. The respective = Ul F truyF U, F

step sizes ardx, Ay, Az, andAt. The fields are numeri- B(,t+At)

cally represented as a vector in Cartesian coordinates E(F 0
(E,B)=(E4,E,,E,,Bx,By,B,). The use of these coordi- <A )
nates can greatly simplify the study of dynamics with sym- B(r,t)

metries such that the spatial dimensions can be reduced. For .
the situations discussed below, we used a two-dimensional SO 1 =((f19)

grid with at mostN,=N,=1024 spatial points and roughly =UyU U ' (2.10
N;=5000 time intervals. For this choice of parameters, the

equivalent three-dimensional system would be a medium}vhere}‘,}‘*

with infinite extension along the direction. _ transform, respectively. The tilde refers to the operators in
This time evolution for the state vectoE(B) according  Fourier space given by

to Egs. (2.3 and (2.4) is connected with two differential

! denote the Fourier transform and the inverse

operatorsH?(V) andH™(V,F), the first of which generates UY=exg AtFHY (V) F 1], (2.1
the evolution of the field through the vacuum and the second

one contains the effect of the medium. They are explicitl ~ =

written as y PACTY UT=exd s AtZH™(V,7)F 1] (2.12

The operator$2.5) and(2.6) in the Fourier space are diago-
nalized and the resulting diagonal matrix is easily exponen-
: (2.5 tiated leading to

0
VH [ ¢ S} (2.13
2 0 v 17| _ , .
mV,F)= ) ( VX). (2.6) s ¢
e(F) 0 0

The time evolution for a single time steyt is given by
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where(, S, andD are 3<x3 matrices corresponding to the three field components,Zaisda 6<6 unit matrix. It should be

noted that the application of the operaﬁb@2 involves going back and forth between the coordinate and the Fourier space. The
matrix elements in Eq€2.13 and(2.14) are

(KZ+K2) (KE+K2)[KE+ (K + k) coskAt] kyky(coskAt—1) kyk,(COSkAt—1)
k2(kZk?+kZk2) k? k2
kyky(coskAt—1) (KE+K2) (KZ+K2)[KG+ (Ki+K2)coskAt] kyk,(coskAt—1)

“ K K2(K2K2+ K2K2) K2 ’
kK, (coskAt—1) kyk,(coskAt—1) K2+ (kZ+ k) coskAt
k? k? k?
(2.15
0 B ik SinkAt  ikysinkAt
k k
ik,sinkAt ikysinkAt
S=| —— 0 -— | (2.1
B ikysinkAt  ik,sinkAt 0
k k
0 —ik, ik,
D=| ik, 0 —iky]|. (2.17)
—ik, ik, O

Here k= /k2+ ky2+ k2. In vacuum[e(F)=1] the operator Wave front that is contained by a Gaussian profile. It is im-
UM, reduces to the unit operator. The transformation of théPortant to have the field components approaching zero near
field components between coordinate and Fourier spac@e boundaries bgcguse of the built-in periodicity of the fre-
(%,Y,2) < (Ky Ky ,k;) is performed via efficient fast Fourier duency space. This is also known as the wrap-around effect,
transform routines. We next discuss the initial and boundaryvhich results from a large contribution at one boundary be-

conditions used to simulate diverse applications. ing carried over to the opposite boundary. We ensure that
even in the longitudinal direction, all the field components
B. Initial conditions are negligible at the boundaries. Usually the physical extent

(in the longitudinal direction of a quasi-cw input field is
strongly limited by the spatial extent of the domain of inte-
gration. To overcome this limitation, we update the tail end
of the field at precise times and spatial locations in our spa-

lqorithm. We h the flexibility of either | hi | Sial integration domain, such that we can simulate a pulse of
algorithm. Ve have the tiexibriity of either faunching a pulse any desired length. The choice of these times and location is

Iocallz.ed In space anq time or feeding in a contmuous.wav%uite critical, which if not undertaken carefully would result
(.CW) field. .We describe bglow thg dgtalls (.)f these_ Inputy introducing unwanted frequency components in the input
_flelds, par'ucularly t_he cw f|_eld, V.Vh'Ch IS achieved without field. We also implement absorbing boundary conditions and
increasing the spatial domain of integration. discuss the details in Sec. Il C. We show below how one can
obtain any desired pulse length without increasing the spatial
domain of integration.

We have developed a method of efficiently producing a  For simplicity, we discuss the formation of the cw field in
quasimonochromatic wave which is localized in the trans-a reduced dimensional configuration and freezextikrec-
verse spatial direction, has a constant amplitude in the lonton. The procedure described below applies, of course, to
gitudinal direction, and any desired pulse length. In prin-three dimensions. Our spatial domain is now Ly, Ly)
ciple, a plane wave of the form exp(lZ-F—iaat) is the exact along they direction and (L,,L,) in the z direction. At
solution of the Maxwell's equations. In practice, there aretime t=0, the initial field contains a finite wave located,
technical limitations of simulating such a plane-wave cwalong thez axis, aty=0 and left of the origin. We choose the
field with infinite extent in all directions, as this would re- z direction as the direction of propagation, so the field in
quire an infinite spatial domain of integration. In the trans-vacuum would travel from left to right along tteaxis. The
verse directions, we choose a broad spatial extent of thaitial field is

We specify the initial field distribution and the functional
form of (r). We will discuss in this section the variety of
initial field distributions, representing a nearly ideal plane
wave and a typical laser beam, used in conjunction with th

1. Input plane-wave field
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E(F,t=0)=e,E;(y,z)exdiko,z], II B 1. For A=1, the field in thez direction about the point
(2.19  z=z would vary as~1/z such that az— z = z, the waist of

L . Eiy,2) the beamw(zo) =wg+/2. It should be noted that foh=1,

B(r,t=0)=e,— —exriko.zZ], the field in Eq.(2.19 satisfies exactly the paraxial wave

equation which assumes a slowly varying envelope along the

wherekg, is the wave number of the field, aeg ande, are ~ Propagation directiop15]. For the choice of a Gaussian en-
the unit vectors. HereE;(y,z) contains the spatial extent Velope forA, if the pulse widthz, >\, the paraxial approxi-
along they direction as well as the finite profile of the field Mation is still quite valid and the field would be a solution of
along thez direction. In thez direction, we choose a smooth the paraxial wave equation. While Eq@.18 and (2.19
turn-on and turn-off for the finite wave. This ensures thatState the conditions of a field with finite extension at the
there are no high-frequency contributions to the Fouriednitial moment, after repeated application of the time-
Spectra due to a Sharp cutoff of the input wave train. Th@volu“on Operators the field cannot be contained in the Spa-
field components are transformed into the Fourier space ariéfl computational domain. Hence, we next discuss the com-
evolve in accordance with Eq2.10). After a finite-time du- putational boundary conditions imposed in our algorithm that
ration, sayr, the wave travels a distance of/n, (c being  regulate the size of the spatial domain of integration.

the speed of light associated with refractive inag) from _ N

left to right. We now update the tail end of the field after C. Computational boundary conditions

times 7=mAt in which the field travels a distanceAz, We use absorbing boundary conditions to achieve long
wherem and p are the smallest possible integersmip  jntegration times in a relatively small spatial integration do-
=n;Az/(cAt). The advantage is twofold. Firsh andp be-  main. Any field in the region close to the boundary is mul-
ing integers results in the field having moved an integrakipjied by a function which approaches zero smoothly around
number of spatial grid points along tkelirection, thus mini-  tne poundary and is unity away from(itke the square of the
mizing the Gibbs overshoot effeld4]. Second, small values cosine function This method works sufficiently and does
of mandp minimize the expansion of the wave in the trans- ot result in reflections greater than 0 from these re-
versey direction, which invariably occurs due to the finite gions near the boundary. This operation is carried out at the
extent of the wave front in the transverse direction. ThisfmesmAt, and the region of variation of this smooth func-
updating of the tail end of the field is undertaken in thetjon near the boundary is dictated by the distance traveled by
coordinate space and subsequently the field components &igs field in this time. This region is chosen to be larger than
transformed back into the Fourier space for further evolutio Ai, fori=x,y,z to ensure that even partial fragments of the
under Eq.(2.10. This process can be applied repeatedly tofie|q do not contribute to any wrap-around effect along both
obtain a wave of a desired longitudinal extent. the transverse and the longitudinal directions. The integers
m,p are the same as described in Sec. Il B 1. We apply these
absorbing boundary conditions in the coordinate space
To model an incident Gaussian beam propagating irethe (x,y,z), and then transform the electromagnetic field back

2. Input Gaussian beam

direction and polarized in the direction, the following ini-  into the Fourier domaink,k, ,k,) for further evolution. In
tial state is used: the case of a quasi-cw incident field, the boundary conditions
are applied along all but one boundary. This boundary is the
- eAe ¢® one from which the cw field emanates; the formation of the
E(r,t=0)= cw field itself replaces any outgoing field in this region by an

—7)2 —7)2
V1+(z-2)"(20-2) incoming cw field. We now discuss a few applications of this

Xeik(x2+y2)/[2R(z)]ef(x2+y2)/w2(z) (2.19 algorithm.

and similarly for B where for a finite pulseA=exd —(z IIl. APPLICATIONS

2 . . . .
—2)%/(27,)], which gives the extensiom, of the pulse in In this section we calculate the spatiotemporal field evo-
the propagation direction, which is centered &tz. |ytion for three different configurations. We make compari-
R(2),¢(2),w(z) are of the following form: sons of our numerical results for simple geometries for

which analytical expressions can be derived to demonstrate

— (7> —2)2((7—7.
R(2)=(z2=2)+(20=2)"(z=2), the accuracy of the numerical code.

d(z)=tan {(z-2)/(z0-2), (2.20 A. Simple interface

W(z) =wo\1+(z2—2)% (20— z)?, We consider first a monochromatic plane wave incident
on an air-glass interface and compare the Fresnel coefficients

where wi=\z,/m. Equation (2.20 shows that the wave for various incident angles. The geometry of the interface is
front is purely planar az=z asR—o, and the pulse waist depicted in Fig. 1 where the air-glass interface is along the
atz=z; in the (x,y) direction isw, from Eq.(2.20. Along  z=y plane, withz andy being the horizontal and vertical
the z direction, the intensity profile is Gaussiény choice of  directions, respectively. The refractive indices for the two
the functionA). As discussed earlier, we can also simulate amedia aren, for z<y andn, for z=y. We also display in
quasi-cw field by choosing an appropriate form foin Eq.  the figure the reflected and refracted beams. The refracted
(2.19 and proper updating of the field as outlined in Sec.beam travels with a velocitg/n, and has a wavelength of
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FIG. 3. The amplitude transmission coefficient for the tunneling
FIG. 1. A plane wave incident on an air-glass € 2) interface  phenomenon associated with the evanescent field as a function of
with §,=45°. The arrows denote the incident, reflection, and thethe barrier thicknesd. The analytical result shown by the solid line
refraction direction, which are in agreement with Snell’s laws. The[from Eq.(3.2)] is compared with numerical values. The inset con-
refracted field in the glass propagates with a velocity, and  tains the schematic of the geometry for tunneling of the electromag-
wavelength\/n,, as can be clearly seen by comparing with the netic field from layer | into layer Ili(both of the refractive index
reflected beam. n;), where layer Il with indexn, acts as a dielectric barriefN,
=N,=512 (solid circleg, N,=N,=256 (open triangles N,=N,
N n,, with n,=2. For the TE mode, the polarization of the =128 (solid triangle$, andAt=0.0195./c. ]
incident field is along the direction. The incident field is ) o
given by Eq.(2.18 in our simulations. In the present calcu- '€ngth, where it drops to 98.64%. Similar results were con-
lations, 512512 grid points were sufficient. In order to firmed for the reflected waves as well as the TM modes. We

change the angle of incidence, we merely rotate the imerfacéhould note that, at least in principle, infinitely large frequen-

The Fresnel coefficient of the transmitted field for the TE'efraction. However, our results demonstrate that errors as-

modes is given by16] sociated with the sharpness of the interface are quite small.
E, _ 2n,coséq (3.1 B. Tunneling in multilayered media

Ei njcosé;+n,cosb,’ ' In this section, we study the propagation of a plane wave

in multilayered media, particularly the dynamics of an eva-
whereE; is the incident wave amplitude ari} is the am-  npescent wave tunneling through a dielectric barrier. The
plitude of the transmitted wave. The angle of incidencéiis  similarity between tunneling of electrons and the propagation
and the angle of refraction i8,. We observed in our time- of evanescent waves across a dielectric barrier has been dis-
resolved wave simulation that the resulting angle of refraccussed in Refs[17,18. The barrier results from a low-
tion ¢, is in accordance with Snell's law, i.en;siné;  dielectric region that is sandwiched between two high-
=nysin 6. In Fig. 2, the circles represent the numerical val-dielectric regions. For an appropriate incident anglef the
ues of the transmission coefficient obtained for a grid withinput field from the high-dielectric region, the region of low
12 grid points per wavelength, which are in good agreemengielectricity acts like a barrier. The phenomenon of tunneling
with the known results of Eq3.1), shown as a solid line. As  itself has always attracted a great deal of attention as well as
an example of the accuracy, féf=24° the numerical value a |ot of controversie$19]. There has been no consensus on
obtained was 0.636 03 compared to the analytical result ofhe issue of the amount of time a phot6n general any
0.636 23; an agreement of 99.97% is obtained. This agregrarticle spends inside the barrier, but there are other non-
ment is still quite good for only three grid points per wave- controversial aspects of tunneling such as the transmission/
reflection coefficient. We simulate the process of optical tun-
0.7 L LB neling and obtain the transmission coefficient for comparison
0.6 with the analytical results and leave out the other aspects for
future investigation.
. The three layers are, as shown in the inset of Fig. 3, the
semi-infinite layer I(refractive indexn,), the barrier layer Il
of thicknessd (refractive indexn,), and the semi-infinite
. layer 1l (refractive indexn,), and s denotes the Goos-
Hanchen shiff16]. An incident plane wave polarized in the
022020 60 30 x direction(TE mode and incident on the layer I-1I dielectric
0, interface at an anglé experiences total internal reflection for

6#>arcsinf,/n;). The amplitude transmission coefficient is
FIG. 2. Comparison of the Fresnel coefficients for an air-glasggiven by[20]

interface for various incident angléim degrees The circles repre-

sent the obtained numerical value of the FC for the transmitted E, 2k, K/sinh(Kd)

field. The corresponding analytical results, E8.1), are shown by E = > Vi — , (3.2
the solid line. (\,=N,=512, At=0.0195\/c, andAx=0.0781..) i V(KE,— K?)?+4kT,K2cottP(Kd)

0.5
04

0.3
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E(2) incident of an incident Gaussian pulg2.19 on a large collection of

0.6 tunneled | scatterers of random shape, sizes, refractive indices, and lo-
il cations. To be able to simulate with full time resolution the
0 1 propagation of an electromagnetic radiation pulse through a
medium consisting of random scatterers is the main motiva-
06 tion for the development of the simulation code.
As is apparent, there are no analytical solutions for such a
O ] T E B complex problem. Most of the current knowledge about the
105 0 5 z/h optical properties of highly scattering inhomogeneous ran-

FIG. 4. The turn-on segment of the transmitted field in thedom mgdla.ls based on the transport theory and the d|f_fu3|on
multilayer interaction described in Fig. 3. The stretching of the frontAPProximation. F_or a review, see the two books by Ishimaru
end in comparison to the input field is shown on the left. Also note[21]-_These the'orles 'dO not Incorporate any wave character of
the overshoot of the tunneled field before it settles into a stead{l€ field, and diffractive and interference effects such as mul-
state. (N,=N,=512, d/\ =0.3535, andAt=0.0195./c.) tiple reflection inside each scatterer cannot be predicted ac-

curately. It has been show22,23 that the diffusion ap-

where kq,=k;cos6, kiy=k;siné, and K=\/k21y—k22, with  proximation can model the light propagation in thick
k; andk, being the wave numbers in the region of refrac-samples, which are thicker than seven times the extinction
tive indexn, andn,, respectively. An incident plane-wave length due to scattering and absorption of the field. This
(2.18 field propagating along the direction is incident at  approximation, however, is incapable of obtaining field dis-
thez=y interface(again assuming andy to be the horizon-  tribution near surfaces on the order of the wavelength. One
tal and vertical directions, respectivglat an angleé=  nas to resort to numerical simulation to obtain space and
ml4~0.785 rad and experiences total internal reflection at thgme-resolved distributions of the field.

layer I-1l interface, asf is greater than the critical angle of  1pgre are, of course, a wide variety of questions that can

0.524 rad for the choice ai; =2 andn,=1. Only a small  pq raised for this kind of random medium. s there an effec-
fraction of the incident field enters the layer Il and this eva- o “average” index of refraction that describes its optical

cifisient of exiincion, and acts a5 the Soufoe of the ieid thalcSPONSE? How do the scattering properties of the medium
’ epend on the distribution of sizes of the scatterers, on their

tunnels through into layer IlI. S R . ) .
We obtained numerically the amplitude transmission co distribution of indices of refraction, and on their density~

efficient of the field in the steady-stafew) limit and find How does the average penetration depth depend on the ma-

that it matches quite well with the analytical result as showrierial constants? How do the effects of scattering and refrac-

in Fig. 3. The analytical expression for the transmission collon interplay in the inhomogeneous random media and how

efficient Eq. (3.2 assumes a cw input wave, whereas anydoes the roughness of the surface affect the quality of the
realistic field would have an initial turn-on. In our simula- reflected field? The precise relation between miscroscopic
tion, we have a semi-infinite pulse with a smooth turn-onand macroscopic properties of random media is still an open
over two to three optical cyclesuch as the square of the question.
cosine functiop After an initial transient period, which de- A detailed discussion of the exact Maxwell's equation
pends on the thickness of the barrigyer 1l), the transmit-  approach in the context of the diffusion approximation—its
ted field settles into a steady state. For exampled/at  limitations and regime of validity—will be presented else-
=0.177 the agreement is 99.2% for a X212 grid. where. The focus of the present work is the algorithm of the
Our fully time-resolved study of the tunneling processcomputional method. We will present here a concrete but
reveals two interesting features that become apparent at thsmple example to illustrate certain near-field effects result-
turn-on of the pulse. First, one observes stretching of théng from such highly scattering media. The physics of these
turn-on segment by 4% of the tunneled field in comparisoreffects will be investigated in future studies.
with the incident field, as shown in Fig. 4. The stretching of We model a collection of 400 ellipsoidal dielectric scat-
the pulse is not present in the constant-amplitude cw segerers of random radifvarying from 0.3 to 0.7\), having
ment. We also observe a slight difference0.17% in this  random refractive indices (1<In<1.5) and located ran-
casg between the positive and negative peak amplitudes ofiomly in the y-z plane; the system is assumed to have
the transmitted electric field. This results in alternating inten4nfinite extension in thex direction for simplicity. The fea-
sity maxima at early times. This feature disappears at latefures of the incoming electromagnetic pulse such
times as the field settles into a steady state. as the frequency, the temporal, and the spatial width along
The second interesting feature is observed at the leadingye transverse and longitudinal directions can be easily
edge of the cw segment. The negative pétke/\=6.0) in  controlled in our simulation. To model a laser pulse, we
Fig. 4 is 0.8% larger than the steady-state value. The relativgse a Gaussian beam of E§.19 as the initial input field.
strength of this peak increases with increasing barrier widtiThe parametergin units of A\) used in our calculation are
or equivalently with decreasing Wavelength. For Obtainingbeam Waiswozg_ The pu|se is centered a|0ng thaxis at
the transmission coefficient in Fig. 3, we used the steadyz,= — 18 with a Gaussian profile overlaid along thelirec-
state average peak value. tion of width z,,=5.

In Fig. 5, we display four snapshots of the radiation pulse
in the z,y plane k=0) as it enters the inhomogeneous me-
In this section, we demonstrate the flexibility and powerdium with the interface along the=y plane. The upper left

of our numerical approach, wherein we deal with scatterindigure shows the contour plot of the intensity definedEds

C. Light propagation through random media
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If one compares the intensity profiles inside the small square
areas 6<z<2 and—10<y<—38 fort=16 and 24, one sees

a very similar pattern that is reminiscent of standing waves

between specific scatterers. The pattern may be an indication
of coherent backscattering.

5y
_ ﬁgq@’? "@%gf@g IV. CONCLUSION
off & % Ofl_g}o 2, ol We presented a numerical algorithm that is capable of
e producing exact spatio-temporal solutions of the Maxwell
] equations. The method is easy to program and includes all
phase and near-field effects. It may serve as a good tool to
test the validity of the Boltzmann theory in random scatter-

ing media. As the core part of the program involves the

0
P

‘ngz repeated operation of the fast Fourier transformation, the

_103_ % %1_ code is easily implemented on parallel supercomputers.
i @t el i We point out that our approach is quite different from the
- of & e aEop %] conventional approach, wherein to solve the Maxwell's
‘202(') = 'm'i(')'q PP equations traditionally requires the expansion onto basis

states. The coefficients in this expansion are dictated by care-
z/N ful matching of the scattering states satisfying certain bound-
ary conditions. In contrast, we view Maxwell's equations as
gset of differential equations that govern the time evolution
of the fields, similar in spirit to the wave-function solutions
of the time-dependent Schtimger or Dirac equatioh24].

The proposed algorithm of simulating the interaction of
pulses with inhomogeneous random media will face several
challenges in the future. A key problem is the restricted spa-
for the incoming laser pulse just as it enters the “interface”tial domain that is accessible due to finite computer memory.
with the medium at an angle of 45°. The wavelengthefl  jith respect to storage, the method has advantages over the
and the turn-on segment of the pulse overi$ clearly vis-  grid methods that are based on finite differences, as the sam-
ible in this plot. pling rate can be chosen much smaller and thus fewer grid

The appearance of small “jets” that penetrate into thepoints are required per wavelength. In a typical three-
medium is apparent. This feature arises as the scatterers fgimensional calculation, a resolution of about 64 to 512 spa-
cus part of the incoming wave due to their curvature. An-tja| grid points per spatial direction might not be sufficient to
other interesting aspect of the interaction that cannot be danestigate a real material such as a biological tissue. An-
scribed by the transport theory is the interference intensitysther question concerns the generality of each simulation.
pattern close to the interface between incoming and partiallgyen though each medium is based on random numbers, it
reflected waves. Some of the outgoing waves are reflecteghuld well be that in order to model a real medium, one
directly at the interface, whereas other waves are diﬁUSivel)heedS to average the results of several simulations to get
scattered after the interaction with several scatterers insidgatistically significant data, which are characterized by mac-
the medium. This effect leads to a temporal and spatial widroscopic quantities such as the scatter density and do not

ening of the reflected beam and corresponding interferencgepend on the details of the random number distributions.
effects that appear as dark sp@isaks of intensity maxima

The lower two figures show the intensity distribution at
!ater times when most of the i_ncomi_ng be_am has cross_ed the ACKNOWLEDGMENTS
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face as discussed in Sec. Il A, a precise angle for the re- We acknowledge helpful discussions with Dr. T. Foster,
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FIG. 5. Contour plots of a laser pulse interacting with a random
medium consisting of a large number of dielectric scatterers a
timest=4, 8, 24, and 4{in units of \/c). Note the various near-
field effects which are dominantly coherent in naturbl, €N,
=512, At=0.0195/c, andAx=2\/12.8)
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