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Numerical solution of the time-dependent Maxwell’s equations for random dielectric media

W. Harshawardhan, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 2 March 2000!

We discuss how a spectral-domain method in combination with a split-operator technique can be used to
calculate exact solutions of the time-dependent Maxwell’s equations. We apply this technique to study the
tunneling signal of an evanescent wave occurring due to frustrated total internal reflection and the propagation
of a light pulse through an inhomogeneous medium consisting of multiple random scatterers.

PACS number~s!: 41.20.Jb, 42.25.Dd, 42.25.Bs
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I. INTRODUCTION

Modeling of temporal evolution of light in highly scatte
ing media has potential applications in a wide range of fie
such as medical imaging and therapy, radar detection,
tronomy, electronic technology, photonic devices, and so
In recent times, there has been an explosion of interes
such modeling due to the development of solution techniq
for partial differential equations~PDE’s! as well as the avail-
ability of large-scale computational resources. In a comp
scattering medium, classical Monte Carlo simulations
sufficient to obtain diffusion effects as confirmed by expe
ments@1–3#. Other classes of experimental data suggest
importance of phase information which is lacking in t
above approach. Dominant features at the near field arise
to the interplay of phases, which calls for the exact solut
of the Maxwell’s equations beyond the Boltzmann equati
The time-domain PDE Maxwell’s equations solvers prov
a powerful tool to understand the light-matter interaction
submicron resolution and with the capability of temporal
nesse of the order of subpicoseconds.

Some of the most widely used methods for simulat
transient electromagnetic wave propagation are the fin
difference-time-domain~FDTD! methods. These methods in
volve approximating the derivatives in the Maxwell’s equ
tions by finite differences. Yee@4# described the first spac
grid-based time integration. In the Yee algorithm, t
electric- and magnetic-field components are located at dif
ent positions in astaggeredgrid. This algorithm has a
second-order accuracy in both space and time. To incre
accuracy in the FDTD methods, typically one would have
increase the grid density and/or use higher-order differe
ing. Since this early demonstration, the FDTD technique
matured and has been adopted by researchers in div
fields. Taflove coined the acronym FDTD and demonstra
the first three-dimensional grid-based computational mo
of electromagnetic wave absorption in complex, inhomo
neous biological tissues@5#. References@6# and @7# contain
detailed references and reviews on the FDTD methods
nice survey of FDTD literature that includes almost 500 r
erences has been provided by Shlager and Schneider@8#.

In this paper, we introduce another technique which
ploits the simplicity of evolution of the field components
the spectral domain to obtain the time-dependent solution
the Maxwell’s equations. In this method, efficient fast Fo
rier transforms~FFT! are used to represent the spatial deriv
tives. We point out a few advantages of the spectral-dom
PRE 621063-651X/2000/62~6!/8705~8!/$15.00
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technique over the FDTD methods. The FDTD method ty
cally requires at least 10–20 grid points per waveleng
whereas the spectral-domain method can be applied
fewer grid points, as permitted by the Nyquist sampli
theorem. Spectral methods can be efficiently implemented
parallel computers. Moreover, the electric- and magne
field components are located at the same spatial locat
Recent studies@10# have claimed that the spectral-doma
technique in comparison with the FDTD method can requ
less computation time and associated memory.

On the other hand, the proposed algorithm also has s
eral drawbacks. In its present form, dispersive effects du
frequency-dependent materials are not taken into accoun
this algorithm, while other FDTD models do@11#. Although
an integration in frequency space requires fewer grid po
than a method based on the finite-difference approxima
to the first- and second-order derivatives for comparable
curacy, the required Fourier transformation is slower than
associated tridiagonal matrix manipulations in the FD mo
els. The present model could be advantageous for comp
tional situations, in which memory constraints require a
stricted number of grid points, and CPU time is of n
concern. Another disadvantage of the split-operator F
scheme is the fact that a change from Cartesian to m
general nonuniform grid coordinates is nontrivial. An add
tional disadvantage of the spectral-domain technique is
wrap-around effect, which we have overcome by the cho
of appropriate boundary conditions; the details are provid
in Secs. II B and II C. The past decade has shown tha
atomic ionization physics, numerical wave-function so
tions to the time-dependent Schro¨dinger and Dirac equation
can be calculated from FDTD as well as split-operator F
methods with comparable computational efficiency.

In Sec. II, we describe the details of the numeric
method, how the electromagnetic radiation pulse is evol
in space and time, and how the initial and boundary val
are incorporated on the spatiotemporal grid. In Sec. III,
test our method for simple geometries for which analyti
solutions are available. Finally, we give an example o
radiation pulse interacting with an inhomogeneous medi
comprised of random dielectric scatterers. We finish this
per with a short conclusion and an outlook on future wor

II. NUMERICAL ALGORITHM

A. The temporal and spatial evolution

We describe in this section the details of the numeri
algorithm used to obtain the solution of the Maxwell’s equ
8705 ©2000 The American Physical Society
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8706 PRE 62W. HARSHAWARDHAN, Q. SU, AND R. GROBE
tions. A combination of the spectral-domain method and
split-operator technique is used to calculate the evolution
the electromagnetic fields in inhomogeneous media. In
absence of any free charges and currents, the electromag
fields satisfy the following Maxwell’s equations~in SI units!:

¹W •e~rW !EW 50, ~2.1!

¹W •BW 50, ~2.2!

]EW

]t
5

c2

e~rW !
¹W 3BW , ~2.3!

]BW

]t
52¹W 3EW , ~2.4!

where EW and BW are the electric and magnetic fields, r
spectively. The velocity of light in vacuum isc. The relative
permeabilitym/mo is assumed to be unity. The relative d
electric permittivity e(rW) characterizes the medium an
could vary arbitrarily in space depending on the choice
the material configuration. It is clear that Eq.~2.3! can
describe only those situations for which the dielect
constante(rW) depends weakly on the frequency of the ligh
In other words, we require the index of refractionAe(rW)
to vary on a frequency scale larger than the spectral widt
the
laser pulse. Note that this problem has been overcom
FDTD methods as described, e.g., in Ref.@11#. The spatial
variables (x,y,z) and the time~t! are discretized intoNx ,
Ny , andNz space points andNt time steps. The respectiv
step sizes areDx, Dy, Dz, andDt. The fields are numeri-
cally represented as a vector in Cartesian coordin
(EW ,BW )5(Ex ,Ey ,Ez ,Bx ,By ,Bz). The use of these coordi
nates can greatly simplify the study of dynamics with sy
metries such that the spatial dimensions can be reduced
the situations discussed below, we used a two-dimensi
grid with at mostNy5Nz51024 spatial points and roughl
Nt55000 time intervals. For this choice of parameters,
equivalent three-dimensional system would be a med
with infinite extension along thex direction.

This time evolution for the state vector (EW ,BW ) according
to Eqs. ~2.3! and ~2.4! is connected with two differentia
operatorsHv(¹W ) andHm(¹W ,rW), the first of which generate
the evolution of the field through the vacuum and the sec
one contains the effect of the medium. They are explic
written as

Hv~¹W ![S 0 ¹W 3

2¹W 3 0
D , ~2.5!

Hm~¹W ,rW ![F c2

e~rW !
21G S 0 ¹W 3

0 0
D . ~2.6!

The time evolution for a single time stepDt is given by
e
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S EW ~rW,t1Dt !

BW ~rW,t1Dt !
D 5exp$Dt@Hv~¹W !1Hm~¹W ,rW !#%S EW ~rW,t !

BW ~rW,t !
D .

~2.7!

It can be approximated using the split-operator techniq
@12,13# with

U5exp$Dt@Hv~¹W !1Hm~¹W ,rW !#%5U1/2
m U1

vU1/2
m 1O~Dt3!,

~2.8!

where

U1
v[exp@DtHv~¹W !#,

U1/2
m [exp@ 1

2 DtHm~¹W ,rW !#. ~2.9!

These operators do not commute and this decompos
leads to a local error proportional toDt3 for each time step.
It should be noted that due to the formal structure of th
operators, the first two Maxwell’s equations~2.1! and ~2.2!
are automatically satisfied at all times if the initial field
satisfy them@9#.

The operators~2.9! may be computed exactly as show
below. The evaluation for the differential operat
¹W -dependent part is most convenient in the Fourier spa
and for the rW-dependent part in the regular configuratio
space. We transform the field components into the Fou
space, where (kx ,ky ,kz) represent spatial frequencies alon
thex,y,z directions. The field components evolve in the Fo
rier space as shown below,

FS EW ~rW,t1Dt !

BW ~rW,t1Dt !
D >FU1/2

m F 21FU1
vF 21FU1/2

m F 21

3FS EW ~rW,t !

BW ~rW,t !
D

5Ũ1/2
m Ũ1

vŨ1/2
m FS EW ~rW,t !

BW ~rW,t !
D , ~2.10!

whereF,F 21 denote the Fourier transform and the inver
transform, respectively. The tilde refers to the operators
Fourier space given by

Ũ1
v[exp@DtFHv~¹W !F 21#, ~2.11!

Ũ1/2
m [exp@ 1

2 DtFHm~¹W ,rW !F 21#. ~2.12!

The operators~2.5! and~2.6! in the Fourier space are diago
nalized and the resulting diagonal matrix is easily expon
tiated leading to

Ũ1
v5F C S

2S CG , ~2.13!

Ũ1/2
m 5S I1

Dt

2
FH c2

e~rW !
21J F 21F0 D

0 0G D , ~2.14!
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whereC, S, andD are 333 matrices corresponding to the three field components, andI is a 636 unit matrix. It should be
noted that the application of the operatorŨ1/2

m involves going back and forth between the coordinate and the Fourier space
matrix elements in Eqs.~2.13! and ~2.14! are

C5S ~kx
21ky

2!~kx
21kz

2!@kx
21~ky

21kz
2!coskDt#

k2~kx
2k21ky

2kz
2!

2
kxky~coskDt21!

k2
2

kxkz~coskDt21!

k2

2
kxky~coskDt21!

k2

~kx
21ky

2!~kx
21kz

2!@ky
21~kx

21kz
2!coskDt#

k2~kx
2k21ky

2kz
2!

2
kykz~coskDt21!

k2

2
kxkz~coskDt21!

k2
2

kykz~coskDt21!

k2

kz
21~kx

21ky
2!coskDt

k2

D ,

~2.15!

S5S 0 2
ikzsinkDt

k

ikysinkDt

k

ikzsinkDt

k
0 2

ikxsinkDt

k

2
ikysinkDt

k

ikxsinkDt

k
0

D , ~2.16!

D5S 0 2 ikz iky

ikz 0 2 ikx

2 iky ikx 0
D . ~2.17!
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21ky

21kz
2. In vacuum @e(rW)[1# the operator

Ũ1/2
m reduces to the unit operator. The transformation of

field components between coordinate and Fourier sp
(x,y,z)↔(kx ,ky ,kz) is performed via efficient fast Fourie
transform routines. We next discuss the initial and bound
conditions used to simulate diverse applications.

B. Initial conditions

We specify the initial field distribution and the function
form of e(rW). We will discuss in this section the variety o
initial field distributions, representing a nearly ideal pla
wave and a typical laser beam, used in conjunction with
algorithm. We have the flexibility of either launching a pul
localized in space and time or feeding in a continuous w
~cw! field. We describe below the details of these inp
fields, particularly the cw field, which is achieved witho
increasing the spatial domain of integration.

1. Input plane-wave field

We have developed a method of efficiently producing
quasimonochromatic wave which is localized in the tra
verse spatial direction, has a constant amplitude in the
gitudinal direction, and any desired pulse length. In pr
ciple, a plane wave of the form exp(6ikW•rW2ivt) is the exact
solution of the Maxwell’s equations. In practice, there a
technical limitations of simulating such a plane-wave
field with infinite extent in all directions, as this would re
quire an infinite spatial domain of integration. In the tran
verse directions, we choose a broad spatial extent of
e
ce

ry

e

e
t

a
-
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-

-
e

wave front that is contained by a Gaussian profile. It is i
portant to have the field components approaching zero n
the boundaries because of the built-in periodicity of the f
quency space. This is also known as the wrap-around ef
which results from a large contribution at one boundary
ing carried over to the opposite boundary. We ensure
even in the longitudinal direction, all the field componen
are negligible at the boundaries. Usually the physical ext
~in the longitudinal direction! of a quasi-cw input field is
strongly limited by the spatial extent of the domain of int
gration. To overcome this limitation, we update the tail e
of the field at precise times and spatial locations in our s
tial integration domain, such that we can simulate a pulse
any desired length. The choice of these times and locatio
quite critical, which if not undertaken carefully would resu
in introducing unwanted frequency components in the in
field. We also implement absorbing boundary conditions a
discuss the details in Sec. II C. We show below how one
obtain any desired pulse length without increasing the spa
domain of integration.

For simplicity, we discuss the formation of the cw field
a reduced dimensional configuration and freeze thex direc-
tion. The procedure described below applies, of course
three dimensions. Our spatial domain is now (2Ly ,Ly)
along they direction and (2Lz ,Lz) in the z direction. At
time t50, the initial field contains a finite wave locate
along thez axis, aty50 and left of the origin. We choose th
z direction as the direction of propagation, so the field
vacuum would travel from left to right along thez axis. The
initial field is
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EW ~rW,t50!5êxEi~y,z!exp@ ik0zz#,
~2.18!

BW ~rW,t50!5êy

Ei~y,z!

c
exp@ ik0zz#,

wherek0z is the wave number of the field, andêx andêy are
the unit vectors. Here,Ei(y,z) contains the spatial exten
along they direction as well as the finite profile of the fiel
along thez direction. In thez direction, we choose a smoot
turn-on and turn-off for the finite wave. This ensures th
there are no high-frequency contributions to the Fou
spectra due to a sharp cutoff of the input wave train. T
field components are transformed into the Fourier space
evolve in accordance with Eq.~2.10!. After a finite-time du-
ration, sayt, the wave travels a distance ofct/n1 (c being
the speed of light associated with refractive indexn1) from
left to right. We now update the tail end of the field aft
times t5mDt in which the field travels a distancepDz,
where m and p are the smallest possible integers inm/p
5n1Dz/(cDt). The advantage is twofold. First,m andp be-
ing integers results in the field having moved an integ
number of spatial grid points along thez direction, thus mini-
mizing the Gibbs overshoot effect@14#. Second, small value
of m andp minimize the expansion of the wave in the tran
versey direction, which invariably occurs due to the fini
extent of the wave front in the transverse direction. T
updating of the tail end of the field is undertaken in t
coordinate space and subsequently the field component
transformed back into the Fourier space for further evolut
under Eq.~2.10!. This process can be applied repeatedly
obtain a wave of a desired longitudinal extent.

2. Input Gaussian beam

To model an incident Gaussian beam propagating in thz
direction and polarized in thex direction, the following ini-
tial state is used:

EW ~rW,t50!5
êxAe2 if(z)

A11~z2zi !
2/~z02zi !

2

3eik(x21y2)/[2R(z)]e2(x21y2)/w2(z) ~2.19!

and similarly for BW where for a finite pulseA[exp@2(z
2zi)

2/(2zw
2)#, which gives the extensionzw of the pulse in

the propagation direction, which is centered atz5zi .
R(z),f(z),w(z) are of the following form:

R~z!5~z2zi !1~z02zi !
2/~z2zi !,

f~z!5tan21~z2zi !/~z02zi !, ~2.20!

w~z!5w0A11~z2zi !
2/~z02zi !

2,

where w0
25lz0 /p. Equation ~2.20! shows that the wave

front is purely planar atz5zi asR→`, and the pulse wais
at z5zi in the (x,y) direction isw0 from Eq. ~2.20!. Along
thez direction, the intensity profile is Gaussian~by choice of
the functionA). As discussed earlier, we can also simulat
quasi-cw field by choosing an appropriate form forA in Eq.
~2.19! and proper updating of the field as outlined in Se
t
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II B 1. For A51, the field in thez direction about the point
z5zi would vary as;1/z such that atz2zi5z0 the waist of
the beamw(z0)5w0A2. It should be noted that forA51,
the field in Eq. ~2.19! satisfies exactly the paraxial wav
equation which assumes a slowly varying envelope along
propagation direction@15#. For the choice of a Gaussian en
velope forA, if the pulse widthzw@l, the paraxial approxi-
mation is still quite valid and the field would be a solution
the paraxial wave equation. While Eqs.~2.18! and ~2.19!
state the conditions of a field with finite extension at t
initial moment, after repeated application of the tim
evolution operators the field cannot be contained in the s
tial computational domain. Hence, we next discuss the co
putational boundary conditions imposed in our algorithm t
regulate the size of the spatial domain of integration.

C. Computational boundary conditions

We use absorbing boundary conditions to achieve lo
integration times in a relatively small spatial integration d
main. Any field in the region close to the boundary is mu
tiplied by a function which approaches zero smoothly arou
the boundary and is unity away from it~like the square of the
cosine function!. This method works sufficiently and doe
not result in reflections greater than 1025% from these re-
gions near the boundary. This operation is carried out at
timesmDt, and the region of variation of this smooth fun
tion near the boundary is dictated by the distance traveled
the field in this time. This region is chosen to be larger th
pD i , for i 5x,y,z to ensure that even partial fragments of t
field do not contribute to any wrap-around effect along bo
the transverse and the longitudinal directions. The integ
m,p are the same as described in Sec. II B 1. We apply th
absorbing boundary conditions in the coordinate sp
(x,y,z), and then transform the electromagnetic field ba
into the Fourier domain (kx ,ky ,kz) for further evolution. In
the case of a quasi-cw incident field, the boundary conditi
are applied along all but one boundary. This boundary is
one from which the cw field emanates; the formation of t
cw field itself replaces any outgoing field in this region by
incoming cw field. We now discuss a few applications of th
algorithm.

III. APPLICATIONS

In this section we calculate the spatiotemporal field e
lution for three different configurations. We make compa
sons of our numerical results for simple geometries
which analytical expressions can be derived to demonst
the accuracy of the numerical code.

A. Simple interface

We consider first a monochromatic plane wave incid
on an air-glass interface and compare the Fresnel coeffici
for various incident angles. The geometry of the interface
depicted in Fig. 1 where the air-glass interface is along
z5y plane, withz and y being the horizontal and vertica
directions, respectively. The refractive indices for the tw
media aren1 for z,y and n2 for z>y. We also display in
the figure the reflected and refracted beams. The refra
beam travels with a velocityc/n2 and has a wavelength o
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l/n2, with n252. For the TE mode, the polarization of th
incident field is along thex direction. The incident field is
given by Eq.~2.18! in our simulations. In the present calcu
lations, 5123512 grid points were sufficient. In order t
change the angle of incidence, we merely rotate the interf
keeping the field propagating along thez direction.

The Fresnel coefficient of the transmitted field for the T
modes is given by@16#

Et

Ei
5

2n1cosu1

n1cosu11n2cosu2
, ~3.1!

whereEi is the incident wave amplitude andEt is the am-
plitude of the transmitted wave. The angle of incidence isu1
and the angle of refraction isu2. We observed in our time
resolved wave simulation that the resulting angle of refr
tion u2 is in accordance with Snell’s law, i.e.,n1sinu1
5n2sinu2. In Fig. 2, the circles represent the numerical v
ues of the transmission coefficient obtained for a grid w
12 grid points per wavelength, which are in good agreem
with the known results of Eq.~3.1!, shown as a solid line. As
an example of the accuracy, foru1524° the numerical value
obtained was 0.636 03 compared to the analytical resul
0.636 23; an agreement of 99.97% is obtained. This ag
ment is still quite good for only three grid points per wav

FIG. 1. A plane wave incident on an air-glass (n252) interface
with u1545°. The arrows denote the incident, reflection, and
refraction direction, which are in agreement with Snell’s laws. T
refracted field in the glass propagates with a velocityc/n2 and
wavelengthl/n2, as can be clearly seen by comparing with t
reflected beam.

FIG. 2. Comparison of the Fresnel coefficients for an air-gl
interface for various incident angles~in degrees!. The circles repre-
sent the obtained numerical value of the FC for the transmi
field. The corresponding analytical results, Eq.~3.1!, are shown by
the solid line. (Ny5Nz5512, Dt50.0195l/c, andDx50.0781l.!
e,

-

-

nt

of
e-

length, where it drops to 98.64%. Similar results were co
firmed for the reflected waves as well as the TM modes.
should note that, at least in principle, infinitely large freque
cies are associated with the abrupt change of the inde
refraction. However, our results demonstrate that errors
sociated with the sharpness of the interface are quite sm

B. Tunneling in multilayered media

In this section, we study the propagation of a plane wa
in multilayered media, particularly the dynamics of an ev
nescent wave tunneling through a dielectric barrier. T
similarity between tunneling of electrons and the propagat
of evanescent waves across a dielectric barrier has been
cussed in Refs.@17,18#. The barrier results from a low
dielectric region that is sandwiched between two hig
dielectric regions. For an appropriate incident angleu of the
input field from the high-dielectric region, the region of lo
dielectricity acts like a barrier. The phenomenon of tunnel
itself has always attracted a great deal of attention as we
a lot of controversies@19#. There has been no consensus
the issue of the amount of time a photon~in general any
particle! spends inside the barrier, but there are other n
controversial aspects of tunneling such as the transmiss
reflection coefficient. We simulate the process of optical tu
neling and obtain the transmission coefficient for comparis
with the analytical results and leave out the other aspects
future investigation.

The three layers are, as shown in the inset of Fig. 3,
semi-infinite layer I~refractive indexn1), the barrier layer II
of thicknessd ~refractive indexn2), and the semi-infinite
layer III ~refractive indexn1), and s denotes the Goos
Hänchen shift@16#. An incident plane wave polarized in th
x direction~TE mode! and incident on the layer I-II dielectric
interface at an angleu experiences total internal reflection fo
u.arcsin(n2 /n1). The amplitude transmission coefficient
given by @20#

Et

Ei
5

2k1zK/sinh~Kd!

A~k1z
2 2K2!214k1z

2 K2coth2~Kd!
, ~3.2!

e
e

s

d

FIG. 3. The amplitude transmission coefficient for the tunnel
phenomenon associated with the evanescent field as a functio
the barrier thicknessd. The analytical result shown by the solid lin
@from Eq. ~3.2!# is compared with numerical values. The inset co
tains the schematic of the geometry for tunneling of the electrom
netic field from layer I into layer III~both of the refractive index
n1), where layer II with indexn2 acts as a dielectric barrier.@Ny

5Nz5512 ~solid circles!, Ny5Nz5256 ~open triangles!, Ny5Nz

5128 ~solid triangles!, andDt50.0195l/c. #
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where k1z5k1cosu, k1y5k1sinu, and K5Ak1y
2 2k2

2, with
k1 and k2 being the wave numbers in the region of refra
tive index n1 and n2, respectively. An incident plane-wav
~2.18! field propagating along thez direction is incident at
thez5y interface~again assumingz andy to be the horizon-
tal and vertical directions, respectively! at an angleu5
p/4;0.785 rad and experiences total internal reflection at
layer I-II interface, asu is greater than the critical angle o
0.524 rad for the choice ofn152 andn251. Only a small
fraction of the incident field enters the layer II and this ev
nescent field decays nearly exponentially, withK as the co-
efficient of extinction, and acts as the source of the field t
tunnels through into layer III.

We obtained numerically the amplitude transmission
efficient of the field in the steady-state~cw! limit and find
that it matches quite well with the analytical result as sho
in Fig. 3. The analytical expression for the transmission
efficient Eq. ~3.2! assumes a cw input wave, whereas a
realistic field would have an initial turn-on. In our simula
tion, we have a semi-infinite pulse with a smooth turn-
over two to three optical cycles~such as the square of th
cosine function!. After an initial transient period, which de
pends on the thickness of the barrier~layer II!, the transmit-
ted field settles into a steady state. For example, atd/l
50.177 the agreement is 99.2% for a 5123512 grid.

Our fully time-resolved study of the tunneling proce
reveals two interesting features that become apparent a
turn-on of the pulse. First, one observes stretching of
turn-on segment by 4% of the tunneled field in comparis
with the incident field, as shown in Fig. 4. The stretching
the pulse is not present in the constant-amplitude cw s
ment. We also observe a slight difference~;0.17% in this
case! between the positive and negative peak amplitudes
the transmitted electric field. This results in alternating inte
sity maxima at early times. This feature disappears at l
times as the field settles into a steady state.

The second interesting feature is observed at the lea
edge of the cw segment. The negative peak~at z/l56.0) in
Fig. 4 is 0.8% larger than the steady-state value. The rela
strength of this peak increases with increasing barrier w
or equivalently with decreasing wavelength. For obtain
the transmission coefficient in Fig. 3, we used the stea
state average peak value.

C. Light propagation through random media

In this section, we demonstrate the flexibility and pow
of our numerical approach, wherein we deal with scatter

FIG. 4. The turn-on segment of the transmitted field in t
multilayer interaction described in Fig. 3. The stretching of the fr
end in comparison to the input field is shown on the left. Also n
the overshoot of the tunneled field before it settles into a ste
state. (Ny5Nz5512, d/l50.3535, andDt50.0195l/c.!
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of an incident Gaussian pulse~2.19! on a large collection of
scatterers of random shape, sizes, refractive indices, an
cations. To be able to simulate with full time resolution t
propagation of an electromagnetic radiation pulse throug
medium consisting of random scatterers is the main mot
tion for the development of the simulation code.

As is apparent, there are no analytical solutions for suc
complex problem. Most of the current knowledge about
optical properties of highly scattering inhomogeneous r
dom media is based on the transport theory and the diffus
approximation. For a review, see the two books by Ishim
@21#. These theories do not incorporate any wave characte
the field, and diffractive and interference effects such as m
tiple reflection inside each scatterer cannot be predicted
curately. It has been shown@22,23# that the diffusion ap-
proximation can model the light propagation in thic
samples, which are thicker than seven times the extinc
length due to scattering and absorption of the field. T
approximation, however, is incapable of obtaining field d
tribution near surfaces on the order of the wavelength. O
has to resort to numerical simulation to obtain space
time-resolved distributions of the field.

There are, of course, a wide variety of questions that
be raised for this kind of random medium. Is there an eff
tive ‘‘average’’ index of refraction that describes its optic
response? How do the scattering properties of the med
depend on the distribution of sizes of the scatterers, on t
distribution of indices of refraction, and on their densit
How does the average penetration depth depend on the
terial constants? How do the effects of scattering and ref
tion interplay in the inhomogeneous random media and h
does the roughness of the surface affect the quality of
reflected field? The precise relation between miscrosco
and macroscopic properties of random media is still an o
question.

A detailed discussion of the exact Maxwell’s equati
approach in the context of the diffusion approximation—
limitations and regime of validity—will be presented els
where. The focus of the present work is the algorithm of
computional method. We will present here a concrete
simple example to illustrate certain near-field effects res
ing from such highly scattering media. The physics of the
effects will be investigated in future studies.

We model a collection of 400 ellipsoidal dielectric sca
terers of random radii~varying from 0.3l to 0.7l!, having
random refractive indices (1.1,n,1.5) and located ran-
domly in the y-z plane; the system is assumed to ha
infinite extension in thex direction for simplicity. The fea-
tures of the incoming electromagnetic pulse su
as the frequency, the temporal, and the spatial width al
the transverse and longitudinal directions can be ea
controlled in our simulation. To model a laser pulse, w
use a Gaussian beam of Eq.~2.19! as the initial input field.
The parameters~in units of l! used in our calculation are
beam waistw058. The pulse is centered along thez axis at
zi5218 with a Gaussian profile overlaid along thez direc-
tion of width zw55.

In Fig. 5, we display four snapshots of the radiation pu
in the z,y plane (x50) as it enters the inhomogeneous m
dium with the interface along thez5y plane. The upper left
figure shows the contour plot of the intensity defined asE2

t
e
y



e’

he
s
n
d

si
al
ct
e
si
id
n

at
t

er
r
h
ly
ut

t

r
um

are

es
tion

of
ell

all
l to
r-

he
the

e
l’s
sis
are-
d-

as
on
s

of
ral
a-
ry.
r the
am-
rid
e-
a-

to
n-

on.
s, it
e
get

ac-
not
.

r,
al
an-

ted.
Y-
nce
at

om

PRE 62 8711NUMERICAL SOLUTION OF THE TIME-DEPENDENT . . .
for the incoming laser pulse just as it enters the ‘‘interfac
with the medium at an angle of 45°. The wavelength ofl51
and the turn-on segment of the pulse over 5l is clearly vis-
ible in this plot.

The appearance of small ‘‘jets’’ that penetrate into t
medium is apparent. This feature arises as the scatterer
cus part of the incoming wave due to their curvature. A
other interesting aspect of the interaction that cannot be
scribed by the transport theory is the interference inten
pattern close to the interface between incoming and parti
reflected waves. Some of the outgoing waves are refle
directly at the interface, whereas other waves are diffusiv
scattered after the interaction with several scatterers in
the medium. This effect leads to a temporal and spatial w
ening of the reflected beam and corresponding interfere
effects that appear as dark spots~peaks of intensity maxima!.

The lower two figures show the intensity distribution
later times when most of the incoming beam has crossed
interface. In contrast to the simulation with a smooth int
face as discussed in Sec. III A, a precise angle for the
fracted and reflected beam cannot be defined. The hig
diffusive medium acts much more like a large irregular
shaped scatterer such that the reflected intensity is distrib
in a cone around the average scattering angle equal to
incoming angle.

Another aspect of the dynamics is the formation of inte
esting quasistationary intensity patterns inside the medi

FIG. 5. Contour plots of a laser pulse interacting with a rand
medium consisting of a large number of dielectric scatterers
times t54, 8, 24, and 40~in units of l/c). Note the various near-
field effects which are dominantly coherent in nature. (Ny5Nz

5512, Dt50.0195l/c, andDx5l/12.8.!
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If one compares the intensity profiles inside the small squ
areas 0<z<2 and210<y<28 for t516 and 24, one sees
a very similar pattern that is reminiscent of standing wav
between specific scatterers. The pattern may be an indica
of coherent backscattering.

IV. CONCLUSION

We presented a numerical algorithm that is capable
producing exact spatio-temporal solutions of the Maxw
equations. The method is easy to program and includes
phase and near-field effects. It may serve as a good too
test the validity of the Boltzmann theory in random scatte
ing media. As the core part of the program involves t
repeated operation of the fast Fourier transformation,
code is easily implemented on parallel supercomputers.

We point out that our approach is quite different from th
conventional approach, wherein to solve the Maxwel
equations traditionally requires the expansion onto ba
states. The coefficients in this expansion are dictated by c
ful matching of the scattering states satisfying certain boun
ary conditions. In contrast, we view Maxwell’s equations
a set of differential equations that govern the time evoluti
of the fields, similar in spirit to the wave-function solution
of the time-dependent Schro¨dinger or Dirac equation@24#.

The proposed algorithm of simulating the interaction
pulses with inhomogeneous random media will face seve
challenges in the future. A key problem is the restricted sp
tial domain that is accessible due to finite computer memo
With respect to storage, the method has advantages ove
grid methods that are based on finite differences, as the s
pling rate can be chosen much smaller and thus fewer g
points are required per wavelength. In a typical thre
dimensional calculation, a resolution of about 64 to 512 sp
tial grid points per spatial direction might not be sufficient
investigate a real material such as a biological tissue. A
other question concerns the generality of each simulati
Even though each medium is based on random number
could well be that in order to model a real medium, on
needs to average the results of several simulations to
statistically significant data, which are characterized by m
roscopic quantities such as the scatter density and do
depend on the details of the random number distributions
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