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Stability criterion for multicomponent solitary waves

Dmitry E. Pelinovsky* and Yuri S. Kivshar
Optical Sciences Centre, Research School of Physical Sciences and Engineering, The Australian National University,

Canberra, ACT 0200, Australia
~Received 22 June 2000!

We obtain the most general matrix criterion for stability and instability of multicomponent solitary waves by
considering a system ofN incoherently coupled nonlinear Schro¨dinger equations. Soliton stability is studied as
a constrained variational problem which is reduced to finite-dimensional linear algebra. We prove that unstable
~all real and positive! eigenvalues of the linear stability problem for multicomponent solitary waves are
connected with negative eigenvalues of the Hessian matrix. The latter is constructed for the energetic surface
of N-component spatially localized stationary solutions.

PACS number~s!: 42.65.Tg, 05.45.Yv, 47.20.Ky
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I. INTRODUCTION

The recent discovery of self-focusing of partially cohere
light and experimental observation of the so-called incoh
ent spatial solitons@1# has called for a systematic analysis
the properties and stability of multicomponent and multip
rameter solitary waves. Incoherent solitons are generate
noninstantaneous nonlinear media such as biased pho
fractive crystals. In this case, a self-consistent modal the
@2#, which is equivalent to the coherent density approa
describes the incoherent solitons with the help of a system
coupled nonlinear Schro¨dinger ~NLS! equations~see also
@3–5#!. Similar models appear, in different physical contex
in the theory of soliton wavelength-division multiplexing@6#,
multichannel bit-parallel-wavelength optical fiber networ
@7#, multispecies and spinor Bose-Einstein condensates@8#,
and other important applications@9#. In all such physical
models solitary waves are multicomponent, being descri
by localized solutions of the coupled nonlinear equations
some very special cases, the coupled system allows for
plicit analytical solutions~see, e.g., Ref.@4#! but, generally
speaking, the nonlinear models with multicomponent solit
waves are nonintegrable. The stability of solitary waves
therefore a crucial issue for any kind of application.

The study of soliton stability has a long history. The s
bility of one-parameter solitary waves is already well und
stood for both fundamental~single hump and nodeless! soli-
tons @10–12# and solitons with nodes and multiple hum
@13,14#. The pioneering results of Vakhitov and Kolokolo
@10# found their rigorous justification in the general mat
ematical theory of Grillakis, Shatah, and Strauss@15#. Al-
though the corresponding stability and instability theore
for scalar NLS models extend formally to the case of mu
parametric solitons@15#, all the cases analyzed so far corr
spond to solitary waves with effectively a single paramet

Recent progress in the study of soliton instabilities is
sociated with the application of a bifurcation theory valid f
weakly unstable stationary localized waves. In this meth
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the corresponding unstable eigenvalue of the associ
spectral problem is treated as a small parameter of multis
asymptotic expansions@16#. In the case of multiparamete
solitary waves, a simplified version of this method is usua
reduced to a number of ‘‘magic determinants’’ construct
from the derivatives of the system invariants near a marg
stability line @17–20#. However, such a bifurcation metho
has no rigorous proof, and it does not allow one to pred
the complete domains of soliton stability and instabilit
since more general oscillatory instabilities may occur as w
@14,21,22#.

In this paper, we present a complete theory for stabi
and instability of multiparameter solitary waves by consid
ing a particular example of a system ofN incoherently
coupled NLS equations. Our results include the asympt
bifurcation method with the determinant criterion as a sim
near-threshold limiting case. They also expand the appl
bility boundaries of the previously known mathematic
theorems@15# to the case of multicomponent and multip
rameter solitary waves.

The system of incoherently coupled NLS equations h
already been studied in many papers~see, e.g., Refs.@23–25#
to cite a few!. However, the study of stability of single-hum
and multihump solitary waves was restricted to a sing
parameter case, when the soliton components have a sim
shape and their amplitudes are proportional to each o
@23#. In this paper, we expand those results and present
the first time to our knowledge, a complete matrix analysis
the constrained variational problem leading to finit
dimensional linear algebra. Although some of our results
pend on properties that are specific to the model under c
sideration, we believe that both the method and the ba
results can be generalized, under proper assumptions, t
applied to other types of nonlinear physical model that s
port multiparameter solitary waves.

II. MODEL AND BASIC RESULTS

We consider the nonlinear interaction ofN optical modes
that describe either the multimode structure of a partia
incoherent self-trapped beam or incoherent coupling betw
optical channels with different wavelengths in a fiber. The
the amplitude envelopes of the partial modes satisfy the
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lowing system of incoherently coupled NLS equations:

i
]cn

]z
1dn¹x

2cn1S (
m51

N

gnmucmu2Dcn50, ~1!

where ¹x
2 stands for the Laplacian in theD-dimensional

spacex5(x1 , . . . ,xD), and all the coefficientsdn are as-
sumed to be positive. When one of the variables of the ve
x stands for time, Eqs.~1! describe the spatiotemporal dy
namics of self-focused and self-modulated light in the fo
of so-called light bullets.

Provided the symmetry conditionsgnm5gmn are satisfied,
the system~1! conserves the Hamiltonian

H5E
2`

`

dxS (
n51

N

dnu¹xcnu22
1

2 (
n51

N

(
m51

N

gnmucnu2ucmu2D ,

the individual mode powersQn5 1
2 * ucnu2dx, and the total

field momentum. Localized solutions of Eqs.~1! for funda-
mental solitary waves are defined ascn5Fn(x)eibnz, where
Fn(x) are real functions with no nodes, andbn are positive
propagation constants. The soliton solutions are station
points of the Lyapunov functional

L@c#5H@c#1 (
n51

N

bnQn@c#, ~2!

i.e., the first variation ofL@c# vanishes atc5F(x). The
second variation ofL@c# defines the stability properties
negative directions of the second variation correspond to
stable eigenvalues in the soliton stability problem~see, e.g.,
Ref. @11# for a review of the basic results!.

The stability problem is defined by minimizing the seco
variation of the Lyapunov functionalL@c#,

d2L5E
2`

`

dx@^uuL1u&1^wuL0w&#, ~3!

where u(x) and w(x) are perturbations of the multicom
ponent solitary wave taken in the formc5F(x)1@u
1 iw#(x)elz, and the scalar product is defined as^fug&
5(n51

N f n* gn . The matrix Sturm-Liouville operatorL0 has a
diagonal form with the elements

~L0!nn52dn¹x
21bn2 (

m51

N

gnmFm
2

and the matrix operatorL1 has the elements

~L1!nn52dn¹x
21bn2 (

m51

N

gnmFm
2 22gnnFn

2

at the diagonal, and (L1)nm522gnmFnFm off the diagonal.
The operatorsL0 and L1 determine the linear eigenvalu
problem for the stability of multicomponent solitary wave

L1u52lw, L0w5lu. ~4!

Both the linear problem~4! and minimization problem~3!
should satisfy a set ofN constraints,
or

ry

n-

Fn5E
2`

`

dx^Fnenuu&50, ~5!

where en is the nth unit vector, which correspond to th
conservation of the individual powersQn under the action of
a perturbation described by a vector (u,w).

First of all, we recall the main result of Refs.@10–12# that
one-parameter solitary waves with no nodes (N51) are
stable in the framework of the constrained variational pro
lem ~3!–~5! provided the energetic surfaceLs(b)5L@F# is
concave up, i.e.,

d2Ls

db1
2

5
dQ1

db1
.0. ~6!

Under this condition, the linear eigenvalue problem~4! has
no unstable eigenvalues, i.e., those with a positive real
l. Otherwise, the second variation~3! constrained by the se
~5! has a single negative direction that corresponds t
single positive eigenvaluel in the linear eigenvalue problem
~4! @10,11#. The stability criterion for scalar~or one-
component! NLS solitons holds when the self-adjoint oper
tor L1 has a single negative eigenvalue, i.e., when the sec
variation~3!, without the constraint~5! imposed, has a single
negative direction. If the last condition is not satisfied,
happens for solitary waves with nodes, the fundamental
terion for soliton instability can be extended only for a sp
cial case@13,14#, while more generic mechanisms of oscill
tory instabilities, associated with complex eigenvalues of
linear eigenvalue problem, may appear beyond the predic
of the fundamental criterion@14,21,22#.

Here we extend the soliton stability analysis to the case
multicomponent solitary waves described by a system of
coherently coupled NLS equations~1!. We assume that the
number of negative directions~eigenvalues! of the second
variation d2L is fixed, and we denote it asn(L). The un-
stable eigenvaluesl of the linear problem~4! are connected
with some negative eigenvalues of the matrixU defined by
the elements

Unm5
]2Ls

]bn]bm
5

]Qn

]bm
5

]Qm

]bn
. ~7!

The matrixU is the Hessian matrix of the energetic surfa
Ls(b). We denote the number of positive eigenvalues of
matrix U asp(U), and the number of its negative eigenva
ues asn(U), so thatp(U)1n(U)<N, since some eigenval
ues may be zero in a degenerate~bifurcation! case. As is
shown below, bothp(U) and n(U) satisfy some additiona
constraints,

p~U !<min$N,n~L!%, n~U !>max$0,N2n~L!%. ~8!

Within these notations, we formulate~and prove below! the
following fundamental results on the stability and instabil
of multicomponent solitary waves of the coupled NLS equ
tions ~1!.

~i! The linear problem~4! may have at mostn(L) un-
stable eigenvaluesl, all real andpositive.



-

d

y
g-
ty-
re
ica

ss

ow
u-

o
-

e
tri
ng

-

e

ux-

e

tor

nd

es
n
ra-
tive

on-

n
of

to
on-

em

-

-

8670 PRE 62DMITRY E. PELINOVSKY AND YURI S. KIVSHAR
~ii ! A multicomponent soliton is linearly unstable pro
vided p(U),n(L); then the linear problem~4! has n(L)
2p(U) real ~positive or zero-becoming-positive! eigenval-
uesl.

~iii ! A multicomponent soliton is linearly stable provide
p(U)5n(L)(<N); in the casen(L)5N this criterion im-
plies that the energetic surfaceLs(b) is concave up in theb
space.

~iv! A single eigenvaluel crosses a marginal stabilit
curve when the matrixU possesses a zero-becomin
negative eigenvalue; the normal form for the instabili
induced dynamics of multicomponent solitary waves
sembles the equation of motion for an effective class
particle subjected to anN-dimensional potential field,

E5
1

2 (
n51

N

(
m51

N

Mnm

dnn

dz

dnm

dz
1W~b,n!, ~9!

whereMnm are the elements of the positive-definite ‘‘ma
matrix’’ @see Eq.~28! below#, n is the vector describing a
perturbation to the soliton parameterb, and W(b,n) is an
effective potential energy defined as

W~b,n!5Hs~b1n!2Hs~b!

1 (
n51

N

~bn1nn!@Qsn~b1n!2Qsn~b!#.

~10!

These results should be compared with the results foll
ing from the stability and instability theorems earlier form
lated by Grillakis, Shatah, and Strauss@15#. The stability
result ~iii !, i.e., the conditionp(U)5n(L), is identical to
that of the stability theorem@15#, but the instability results~i!
and~ii ! are more general and explicit. In particular, the the
rem of Grillakiset al. @15# guarantees soliton instability pro
vided the differencen(L)2p(U) is odd. However, our re-
sults predict that soliton instability always occurs forn(L)
2p(U).0, being associated with exactlyn(L)2p(U)
non-negative real eigenvaluesl of the linear eigenvalue
problem ~4!. Moreover, according to our result~iv!, each
new unstable eigenvaluel appears via a bifurcation at th
marginal stability curve where the determinant of the ma
U vanishes, i.e., it is connected with a zero-becomi
negative eigenvalue of the Hessian matrixU. If n(L).N,
unstable eigenvaluesl originating from the negative eigen
values of the Hessian matrixU coexist withn(L)2N un-
stable eigenvalues of the linear problem~4!, i.e., a solitary
wave is unconditionally unstable whenn(L).N.

III. A PROOF OF THE BASIC RESULTS

Here we develop the analysis of the problem~3!–~5!, in
order to prove the results~i!–~iv! formulated above. The
Sturm-Liouville operators (L0)nn are all non-negative sinc
the fundamental~nodeless! solutionF(x) for a solitary wave
reaches the bottom of the spectrum at zero: (L0)nnFn50.
As a result,
-
l

-

-

x
-

~min! d2L5E
2`

`

dx^uuL1u&5(
m

mE
2`

`

dx^ukuuk&.

~11!

Here (m,uk) are eigenvalues and eigenfunctions of the a
iliary linear problem,

L1uk5muk2 (
m51

N

nmFm~x!em . ~12!

The linear problem~12! is constrained by the set~5! and the
parametersn1 ,n2 , . . . ,nN have the meaning of Lagrang
multipliers.

Let us suppose that the Sturm-Liouville matrix opera
L1 has n(L) negative eigenvalues m
5$m2n(L) ,m2n(L)11 , . . . ,m21% corresponding to the
eigenfunctions u5$c2n(L)(x),c2n(L)11(x), . . . ,c21(x)%;
a single zero eigenvalue with a one-node eigenfunctionu
5dF/dx; and that the rest of the spectrum is positive a
contains N branches of the continuous spectrum form
.$b1 ,b2 , . . . ,bN%, and some isolated positive eigenvalu
for m5$m1 ,m2 , . . . ,mp%. The mathematical problem ca
then be reformulated in the following way. The linear ope
tor L1 hasn(L) negative eigenvalues that generate nega
directions of the second variationd2L. However, the corre-
sponding eigenfunctions do not generally satisfy the c
straints ~5!. By introducing the Lagrangian multipliers in
Eqs. ~11! and ~12!, we satisfy a constrained minimizatio
problem~3! and~5! but, due to this procedure, the number
negative eigenvalues may be reduced. We will show how
connect the total number of negative eigenvalues of the c
strained problem~5!, ~11!, and~12! with the negative eigen-
values of the Hessian matrix~7!. But, as a prerequisite, we
prove two additional results for the spectrum of the probl
~4!: ~i! the spectrum ofl2 is real, i.e., oscillatory instabilities
are prohibited;~ii ! each negative direction (m,uk) of the
problem ~12! generates an unstable~positive! eigenvaluel
of the problem~4!.

To prove the statement~i!, we notice that the matrix op
eratorL0 can be factorized asL05(d51

D Md
1Md , whereMd

has a diagonal form with the following matrix elements:

~Md!nn5AdnF2]xd
1

1

Fn~x!
]xd

Fn~x!G ,
provided the soliton solutionsFn(x) have no nodes in a
finite domain. Using this factorization, the linear problem~4!
can be rewritten for the functionu5(d51

D Md
1vd as follows:

(
d851

D

MdL1Md8
1 vd852l2vd .

Since the matrix operator with the elementsMdL1Md8
1 is

Hermitian, its eigenvalues (2l2) are all real.
To prove the statement~ii !, we suppose that we have con

structed a negative direction (m,uk) of the problem~11! and
~12! subject to the constraints~5!. Then the linear problem
~4! has an unstable eigenvaluel defined as
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l252
^ukuL0L1uk&

^ukuuk&
52m

^ukuL0uk&

^ukuuk&
. ~13!

Since the linear operatorL0 is positive definite for anyuk
Þ(0,F), we havel2.0 for anym,0.

Our next goal is to construct solutions to the auxilia
problem~12!. Since the matrix operatorL1 is Hermitian, it
has a complete spectrum in a Hilbert space that is suitable
expanding the vector functionuk(x). We present such a
spectral decomposition in the form

uk~x!5 (
m51

N

nmS (
mr,0

^cr uFmem&
m2m r

cr~x!

1 (
mr.0

^cr uFmem&
m2m r

cr~x! D , ~14!

where the sum(mr,0 containsn(L) terms from the negative

spectrum, while the sum(mr.0 includes schematically both

the discrete and continuous positive spectra ofL1. The con-
tribution from the neutral eigenfunctionu5dF/dx vanishes
due to the symmetry properties. The general solution~14!
has to be constrained by the conditions~5!. This system re-
duces to the linear algebra for the Lagrange multiplie
A(m)n50, where the matrixA(m) has a symmetric form
with the elements

Anm~m!5 (
mr,0

^Fnenucr&^cr uFmem&
m2m r

1 (
mr.0

^Fnenucr&^cr uFmem&
m2m r

. ~15!

The linear systemA(m)n5gn has generallyN real eigen-
values g1(m), g2(m), . . . ,gN(m). These eigenvalues ar
continuous functions ofm for m<0, except forn(L) reso-
nant planes atm5$m2n(L) ,m2n(L)11 , . . . ,m21%. At these
planes, the matrixA(m) has poles and the eigenvaluesg(m)
may have singularities. Below, we prove the following thr
properties of the eigenvaluesg(m): ~i! all eigenvaluesg(m)
are negative form,m2n(L)(,0); ~ii ! each eigenvalueg(m)
is a decreasing function ofm for m<0, except forn(L)
resonant planes atm5$m2n(L) ,m2n(L)11 , . . . ,m21%; ~iii !
at least (N21) eigenvaluesg(m) are continuous at any o
the resonant planesm5m r,0, while the minimal eigen-
value, sayg1(m), may have an infinite discontinuity, jump
ing from negative infinity, atm→m r20, to positive infinity,
at m→m r10.

To show the property~i!, we consider the asymptotic limi
of A(m) asm→2`. In this limit, the eigenvaluesg(m) can
be expressed from the algebra of quadratic forms as

g~m!5
1

m^nun& S (
mr,0

br1 (
mr.0

br D , ~16!

where
or

,

br5U(
n51

N

nn^cr uFnen&U2

>0. ~17!

Since all br may not vanish simultaneously fornÞ0, the
eigenvaluesg(m) are negative definite in Eq.~16! so that
g(m)→20 asm→2`.

To show the property~ii !, we take the derivative of the
systemAn5g(m)n and use the algebra of quadratic form
The derivative ofg(m) is then defined form<0, excluding
the resonant planes atm5$m2n(L) ,m2n(L)11 , . . . ,m21%, as

dg~m!

dm
5

1

^nun& K nUdA~m!

dm
nL

52
1

^nun& S (
mr,0

br

~m2m r !
2

1 (
mr.0

br

~m2m r !
2D ,

~18!

where br are defined by the same relation~17!. Since the
derivative ofg(m) is negative definite in Eq.~18!, all eigen-
values g(m) are decreasing functions ofm whenever
dg(m)/dm exists.

To show the property~iii !, we consider the behavior o
the eigenvaluesg(m) at the resonant planem5m r,0. In
this limit, the matrix elementsAnm(m) have the following
asymptotic form:

Anm~m!→ ^Fnenucr&^cr uFmem&
~m2m r !

.

Therefore, the matrixA(m) has (N21) zero eigenvalues
g(m) and a single nonzero eigenvalueg1(m) with the
asymptotic value

g1~m!→ 1

~m2m r !
(
n51

N

u^Fnenucr&u2. ~19!

If the sum in Eq.~19! does not vanish, the eigenvalueg1(m)
has an infinite discontinuity described in~iii ! and, according
to the property~ii !, it is the minimal eigenvalue. Anothe
(N21) eigenvalues are in fact nonzero in the limitm
→m r . Since the matrixA(m) is a meromorphic function of
m as m<0, the eigenvalue (m2m r)g(m) is of order of
O(m2m r) for (N21) nonsingular eigenvalues. Therefor
the values ofg(m) are generally nonzero in the limitm
→m r .

Thus, we have a clear of picture how the eigenvalu
g(m) behave as functions ofm @see Figs. 1~a,b!#. Starting
with small negative values asm→2`, all eigenvalues de-
crease asm grows towards then(L) resonant planes. A
each of those planes, (N21) eigenvalues remain continu
ously decreasing, while one~minimal! eigenvalue jumps to a
positive domain unless the condition

(
n51

N

u^Fnenucr&u250 ~20!

is satisfied~this condition will be discussed below!. Assum-
ing that the condition~20! is not met, we come to the con
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clusion that a root ofg(m) may occur only after a jump o
g(m) at a resonant planem5m r to a large positive value
and further decrease ofg(m) asm(.m r) grows. The root of
g(m), if it exists for m<0, produces a legitimate solutio
uk(x) of the problem~12! under the constraints~5!. This
solution (m,uk) would then be associated with an unstab
eigenvaluel, according to the connection formula~13!.
Thus, our main task is to control the behavior of positi
g(m) between the planem50 and the resonant planesm
5$m2n(L) ,m2n(L)11 , . . . ,m21%.

At the planem50, the problem~12! has a simple solution
for uk(x),

um50~x!5 (
n51

N

nn

]F~x!

]bn
. ~21!

Substituting Eq.~21! into the constraints~5!, we find that
A(0)5U, where the matrixU is the Hessian of the energet
surfaceLs(b) with the elementsUnm defined by Eq.~7!. We
can now use this construction and prove the main res
~i!–~iii ! in Sec. II. In the analysis below we assume that
condition~20! is never met and the root ofg(m) at m<0 is
associated with the unstable eigenvaluel of the stability
problem~4!.

The roots ofg(m) may appear only to the right of any o
the n(L) resonant planes. There are totallyn(L) jumps of
g(m) to positive values atm<0 and, therefore, no more tha
n(L) roots ofg(m) may exist form<0.

FIG. 1. Eigenvaluesg versus m in the problem A(m)n
5g(m)n for N53: ~a! a stable problem with no roots ofg(m) for
m<0, when p(U)5n(L)53; ~b! an unstable problem with a
single root ofg(m) for m<0, whenp(U)53,n(L)54.
ts
e

If n(L)5N, the positive eigenvaluesg(m) remain con-
tinuous after passing the corresponding resonant planem
5m r(,0). Therefore, the sign of these eigenvalues is c
trolled by the eigenvalues of the Hessian matrixU at m
50. If p(U)5N5n(L), all positive eigenvaluesg(m) re-
main positive form r,m<0 and no roots ofg(m) exist for
m<0 @see Fig. 1~a!#. If p(U),N5n(L), there existN
2p(U) negative or zero-becoming-negative eigenvalues
U that correspond toN2p(U) roots ofg(m) for m<0.

If n(L),N, then N2n(L) eigenvaluesg(m) do not
have jumps at the corresponding resonant planesm5m r .
They continue to be negative and match atm50 with the
N2n(L) negative eigenvalues ofU. From this, we come to
the conclusion thatp(U) and n(U) satisfy the constraints
~8!, i.e., n(U)>N2n(L) or, equivalently,p(U)<n(L).
Furthermore, a furthern(L) (,N) eigenvaluesg(m) may
have roots form<0 that are completely controlled by th
remainingn(L) eigenvalues ofU according to the same cri
terion as in the casep(L)5N. For instance, if p(U)
,n(L), then n(L)2p(U) negative or zero-becoming
negative eigenvalues of the matrixU correspond ton(L)
2p(U) roots ofg(m) at m<0.

If n(L).N, thenn(L)2N eigenvaluesg(m) jump twice
in the domainm<0 leading to at leastn(L)2N uncondi-
tional roots form<0 @see Fig. 1~b!#. After the jumps, theN
eigenvaluesg(m) match theN eigenvalues of the matrixU
and may have additional roots ofg(m) if p(U),N. The
total number of roots ofg(m) at m<0 is then defined as
@n(L)2N#1@N2p(U)#5n(L)2p(U).

The analysis above is valid for the nondegenerate c
when the condition~20! is never satisfied. However, the st
bility and instability results~i!–~iii ! in Sec. II are not affected
even if the condition~20! is satisfied for a particular resonan
planem5m r(,0). In this case, the eigenfunctionuk(x) of
the operatorL1 satisfies all the constraints~5! identically
and, therefore, the eigenvaluem5m r is associated with an
unstable eigenvaluel, according to Eq.~13!. Although the
eigenvalueg1(m) has no jump atm5m r @see Eq.~19!# and
is continuous, it is still controlled by the negative eigenv
ues ofU at m50. Indeed, in this case, the minimal eige
value g1(m) at m,m r remains negative form.m r and
matches with a negative eigenvalue of the matrixU ~if no
other jumps occur in the domainm<0). This additional
negative eigenvaluem still predicts the instability, according
to the result~iii !.

Finally, we prove the result~iv! in Sec. II for the instabil-
ity bifurcation of multicomponent solitary waves. Provide
the numbern(L) is fixed, the instability bifurcation may
occur only whenA(0)5U has a zero eigenvalue for a certa
eigenvectorn5n(k). Let us defineU5Uthr at the marginal
stability curve so that the determinant ofUthr vanishes. The
instability bifurcations of multicomponent solitons were co
sidered in Refs.@17,20# but the results do not agree with eac
other. Here, we recover the results of Ref.@17# and derive the
normal form~9! by an elegant reduction of general algebra
expressions.

Assumingm50 for n5n(k) so thatUthrn
(k)50, we find

the asymptotic solution of Eq.~4! in the form ~21! and

wm50~x!5l (
n51

N

nn
(k)L0

21]F~x!

]bn
. ~22!
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In this limit, the second variationd2L of the Lyapunov func-
tional can be found from Eqs.~3!, ~5!, ~21!, and ~22! as
follows:

d2L5D1l2, ~23!

where

D15E
2`

`

dx (
m51

N
1

Fm
2 ~x!

F (
n51

N

nn
(k)E

0

x
dx8Fm~x8!

]Fm~x8!

]bn
G2

.

~24!

The integral converges under the condition thatn(k) is a so-
lution of the equationUthrn

(k)50. On the other hand, the
perturbation~21! shifts the soliton parameterb according to
the expressionF(x,b)1um50(x)→F(x,b1n(k)). As a re-
sult, the second variation can be closed as

d2L52@L2Ls~b1n(k)!#→2D0 , ~25!

where

D05^n(k)uUn(k)&. ~26!

The parameterL in Eq. ~25! is chosen from the condition
that the first variation ofLs(b1n(k)) vanishes for arbitrary
n(k). This gives the connection formula:L[Lst5Hs(b)
1(n51

N (bn1nn
(k))Qsn(b). Equating Eq.~23! and Eq.~25!,

we recover the result of the bifurcation theory,

l252
D0

D1
. ~27!

SinceD1.0 @see Eq.~24!#, the positive values ofl2 occur
when the determinant of the matrixU is small and negative
~i.e., the matrixU has a zero-becoming-negative eigenva
when the soliton parameterb crosses the marginal stabilit
curve!. The explicit formulas of soliton bifurcation theor
provide an alternative and more compact form for the de
minantsD0 andD1 compared to those obtained in Ref.@20#.

The normal form~9! follows from Eqs. ~23! and ~25!
when L5Lst1E, and the perturbation vectorn(k) is re-
placed by a slowly varying vectorn5n(z) ~see@17# for de-
tails!. Then, the surfaceLs(b1n) is extended beyond th
second variation limit, and the linear approximation is co
verted into the slope:ln(z)5dn(z)/dz. The mass constant
Mnm follow from Eq. ~24! in the explicit form

Mnm5E
2`

`

dx(
k51

N
1

Fk
2~x!

S E
0

x
dx8Fk~x8!

]Fk~x8!

]bn
D

3S E
0

x
dx8Fk~x8!

]Fk~x8!

]bm
D . ~28!

The normal form~9! resembles the conserved sum of t
kinetic energy and potential energyW(b,n) of a particle
moving in anN-dimensional space. We notice that the k
netic energy with the ‘‘mass’’ matrix~28! is positive definite
and the unperturbed multicomponent solitary wave~i.e., that
with n50) is a stationary point ofW(b,n) for any n. Thus,
the stability of multicomponent solitons resembles the sta
ity of a particle located at an equilibrium point of th
e

r-

-

l-

N-dimensional field@17#. Under the condition thatn(L)
5N, the particle isstable if in the b space the potentia
energy surfaceW(b) is concave up, and it isunstableif the
potential energy surface is saddle type or concave down
n(L),N, the potential energy surfaceW(b) always has
someN2n(L) negative directions that do not affect the st
bility properties of the particle. However, the remainin
n(L) (,N) directions of the potential energy surface defi
the stability of the particle with the same criterion as abo
Finally, for the casen(L).N, the soliton stability properties
defined by the type of the potential energy surfaceW(b) are
not conclusive since the corresponding unstable eigenva
coexist with an additionaln(L)2N unconditionally unstable
eigenvalues.

IV. EXAMPLE: TWO COUPLED NLS EQUATIONS

In order to demonstrate how our general theory can
applied to a particular physical problem and also to comp
the stability and instability results~ii !–~iii ! in Sec. II with
some earlier known examples, we consider here the imp
tant case of two incoherently coupled NLS equations
~111! dimension~see, e.g.,@23–25#!:

i
]c1

]z
1

]2c1

]x2
1~ uc1u21guc2u2!c150,

i
]c2

]z
1

]2c2

]x2
1~ uc2u21guc1u2!c250, ~29!

whereg is a coupling parameter. The system~29! is a two-
component reduction of the generalN-component system~1!
for d15d251, g115g2251, andg125g215g. An explicit
soliton solution can easily be found forb15b25b and g
.21 in the form

F1~x!5F2~x!5A 2b

11g
sech~Abx!. ~30!

This solution describes a two-component solitary wave w
the components of equal amplitude. It corresponds to
straight lineb15b2 in the parameter plane (b1 ,b2) of a
general two-parameter family of solitary waves of the mo
~29!. When 21,g<0, such two-parameter solitons ma
exist everywhere in the plane (b1 ,b2), while for g.0, the
soliton existence domain is restricted by two bifurcati
curvesb25v6(g)b1, where

v6~g!5SA118g21

2 D 62

. ~31!

Approximate analytical expressions can also be obtai
in the vicinity of the bifurcation curves~31!, when one of the
components of a composite solitary wave becomes sm
while the other one is described by a scalar NLS equat
Such a case, when one of the component creates an effe
waveguide that guides the other component, is known to
scribe the so-called shepherding effect where the lar
amplitude component plays the role of a shepherding pu
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@7#. The composite soliton that describes a shepherding p
c1 guiding a small component pulsec2 can be found in the
form ~see also Ref.@25#!

F15R0~x!1e2R2~x!1O~e4!, F25eS1~x!1O~e3!.
~32!

It exists in the vicinity of the bifurcation curve

b25v1~g!b11e2v21~g!b11O~e4!, ~33!

and the main terms of the asymptotic series~32!,~33! are
defined as

R05A2b1 sech~Ab1x!, S15Ab1 sechAv1~Ab1x!,

and

v215

E
2`

`

dx~S1
412gR0R2S1

2!

E
2`

`

dxS1
2

,

The second-order correctionR2(x) is a solution of the dif-
ferential equation

@2]x
21b126b1 sech2~Ab1x!#R25gR0S1

2 .

From the domain of existence of the two-component s
ton, it follows thatv21(g).0 for 0,g,1, andv21(g)
,0 for g.1. At g51 ~the so-called integrable Manako
case!, a family of two-parameter composite solitons becom
degenerate: it exists on the lineb15b2 but, generally, it is
different from the one-parameter solution~30!. The coupled
solitons are known to be stable for the integrable casg
51. Here we apply the stability theory developed above a
prove that the~111!-dimensional two-parameter solitons, in
cluding solitons of equal amplitude~30!, are stable forg
>0, and unstable forg,0.

First, we evaluate the indicesp(U) andn(L) for the ex-
plicit solution ~30!. As follows from Eqs.~29! and ~30!, the
Hessian matrixU with the elements~7! can be found in the
form

]Q1

]b1
5

]Q2

]b2
5

1

Ab~11g!
and

]Q1

]b2
5

]Q2

]b1
52

g

Ab~11g!
.

It follows from these results that the Hessian matrix h
p(U)52 positive eigenvalues for21,g,1, and p(U)
51 positive eigenvalue forg.1. On the other hand, th
linear matrix operatorL1 given below Eq.~3! can be diago-
nalized for linear combinations of the eigenfunctionsv1
5u11u2 andv25u12u2 such that

@2]x
21b26b sech2~Abx!#v15mv1 ,

~34!

F2]x
21b22b

~32g!

~11g!
sech2~Abx!Gv25mv2 .

Both the operators in Eqs.~34! are linear Schro¨dinger opera-
tors with solvable sech-type potentials, and the correspo
ing eigenvalue spectra are well studied. The first opera
se

i-

s

d

s

d-
or

always has a single negative eigenvalue form523b,
whereas the second operator has no negative eigenvalue
g.1, has a single negative eigenvalue for 0,g,1, and has
two negative eigenvalues for21,g,0. Thus, in total there
exist n(L)53 negative eigenvalues for21,g,0, n(L)
52 negative eigenvalues for 0,g,1, andn(L)51 nega-
tive eigenvalue forg.1.

Applying the stability and instability results~ii !–~iii ! ob-
tained and discussed in Secs. II and III, we come to
conclusion that the soliton solution~30! with equal ampli-
tudes is linearly stable forg.0, since in this domain
p(U)5n(L)5$1,2%, and linearly unstable for21,g,0,
since in this domainp(U)52,n(L)53.

The soliton stability in the model~29! for g.0 was also
studied by Berge´ @23# who considered the case of degener
one-parametric solitary waves~30!. Here we have extende
those results to a general case: the same stability and in
bility results are valid for the two-parameter family of so
tons provided that the indicesp(U) and n(L) remain un-
changed for the values (b1 ,b2) in the soliton existence
domain. Indeed, applying a perturbation theory for smalg
~see@25# for details!, one can show thatn(L)53 for 21
!g,0, andn(L)52 for 0,g!1.

To analyze the soliton instability forg,0, we note that
the instability eigenfunctions are symmetric in space a
therefore this kind of instability is not associated with t
translational motion of the soliton components. Instead,
possible scenario of the soliton evolution is a transformat
of the two-component soliton into a one-component one.
confirm this expectation, we show in Fig. 2~a,b! the results of
the numerical simulation of a two-component solitary wa
in ~29! for g520.5. Two cases are considered: when t
amplitude of one of the components~say c1) of the exact
solution~30! is either increased or decreased by 2%, wher
the second component (c2) remains unchanged. In th

FIG. 2. The instability-induced dynamics of the two-compone
soliton ~30! for g520.5 andb50.25. The initial solution is taken
as Eq.~30! with the amplitude of thec1 component increased~a! or
decreased~b! by 2%.
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former case@see Fig. 2~a!#, the perturbed component osci
lates slowly, approaching a new stable state of a o
component soliton whereas the second component decay
a splitting into two diffracting beams. In the latter case@see
Fig. 2~b!#, the dynamics looks opposite, i.e., the compon
with the reduced amplitude decays, while the second com
nent evolves to a stable one-component soliton.

Finally, we consider the other limiting case that describ
the shepherding effect@see Eqs.~32! and~33!#. In this limit,
the elements~7! of the Hessian matrixU can also be calcu
lated in explicit analytical form,

]Q1

]b1
5

1

Ab1

1
r 2

2

v21s1
1O~e2!,

]Q1

]b2
5

]Q2

]b1
5

r 2

v21
1O~e2!,

]Q2

]b2
5

s1

v21
,

where

s15 1
2 E

2`

`

S1
2dx and r 25E

2`

`

R0R2dx.

Sinces1.0 for anyg, while v21(g).0 for 0,g,1 and
v21(g),0 for g.1, the Hessian matrixU calculated for
the shepherding soliton~32! hasp(U)52 positive eigenval-
ues for 0,g,1, and p(U)51 positive eigenvalue forg
.1.

On the other hand, the linear matrix operatorL1 cannot be
diagonalized for the shepherding soliton~32! unlesse50. In
the latter ~decoupled! case, it has a single negative eige
value atm523b1 and a double degenerate zero eigenval
When eÞ0, the zero eigenvalue shifts to becomem5
22v21(g)b1e21O(e4). Therefore, the matrix operatorL1
tt.

u-

ll,

.

R

t

e-
via

t
o-

s

-
.

for the shepherding soliton~32! hasn(L)52 negative eigen-
values for 0,g,1, andn(L)51 negative eigenvalue fo
g.1. Thus, we come to the conclusion that the shepherd
soliton is stable forg.0 sincep(U)5n(L)5$1,2%.

V. CONCLUSION

We have developed a rigorous stability analysis of mu
component solitary waves by considering a system of in
herently coupled NLS equations~1! as a particular but im-
portant physical example. The method and, correspondin
both stability and instability results can be extended to ot
types of solitary waves, such as multicomponent spatial s
tons ~e.g., incoherent solitons! in non-Kerr ~e.g., saturable!
media, parametric solitary waves in quadratic~or x (2)) opti-
cal media, etc. In all such cases, our stability and instabi
results~i!–~iv! in Sec. II can be readily generalized with
rigorous proof of some of the previously known results
the asymptotic multiscale expansion theory. However, ad
tional analysis is required in each of those cases in orde
clarify the conditions when these results completely defi
the stability properties of multicomponent solitary waves.
the cases beyond these conditions, oscillatory instabili
may occur, and appropriate studies should rely solely on
merical analysis of the corresponding eigenvalue proble
and their linear spectra.
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