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Identification of the permeability field of a porous medium from the injection of a passive tracer
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We propose a method for the direct inversion of the permeability field of a porous medium from the analysis
of the displacement of a passive tracer. By monitoring the displacement front at successive time ifftervals
example, using a tomographic methothe permeability can be directly obtained from the solution of a
nonlinear boundary-value problem. Well posedness requires knowledge of the pressure profile or the perme-
ability at no-flow boundaries. The method is tested using synthetic data in two dimef&)rignd some 3D
geometries for a variety of heterogeneous fields and found to work well when the permeability contrast is not
too large. However, it is sensitive to sharp variations in permeability. In the latter case, a modified approach
based on the successive injection in both directions and the use of an optimization technique leads to improved
estimates. The sensitivity to measurement errors is analyzed. An important feature of the direct method is that
it also applies to anisotropic porous media. When the principal axes of anisotropy are known, a suitable
procedure is proposed and demonstrated using synthetic data.

PACS numbes): 47.55.Mh, 46.65t+g, 05.40-a, 05.60-k

I. INTRODUCTION extracted, which can be used to constrain images of the sub-
surface permeability field.

Permeability heterogeneity is a most important feature of When knowledge of the displacement front at successive
natural porous media, as it affects significantly flow and fluidtime intervals is available, for example, through visual or
displacement properties. These dictate flow paths, and th®@mographic techniques, arrival time methods should in prin-
migration and dispersion ah situ or injected fluids in po- ciple be able to provide direct maps of the heterogeneity.
rous media, with applications ranging from the recovery ofBrock and Orr[6] reported one such attempt, based on the
in situ fluids to the fate of environmental contaminants in thevisualization of displacements in a two-dimensioriaD)
subsurfacé1]. Heterogeneity is manifested at various scalesheterogeneous bead pack. Withjaekal. [7] proposed a
from the laboratorycore to the megascopiffield) scale. Its model to infer the permeability heterogeneity of laboratory
ubiquitous and multiscale nature has attracted the interest §@mples from the analysis of concentration contours obtained
many investigators, and a variety of studies have been ddtom x-ray computerized tomograpR{ZT). Their model is
voted to its characterization and identificaticj. based on a number of simplifying assumptions, the main of

The classical approach for identifying permeability het-Which is that each flow streamtube has constdnit un-

erogeneity is based on the inversion of pressure data, undtgpown) permet{:lbllltylc arlld por?jsltty, V‘{h'Ch IASItthhus thanta;no#nt
single-phase flow conditiong3]. Given that the transient 0 an assumption of a layered structure. ougnh restrictive,

: . L : the work of Withjacket al.[7] was the first to point out the
flow of slightly compressible fluids in porous media obeys . 3% e . )
the diffusion equation, a variety of field testwell tests potential of CT in identifying the permeability heterogeneity.

. . - . CT techni re now routinel lied to monitor dis-
have been devised to infer permeability features by matchlnC echniques are now routinely applied to monitor dis

d n : h luti f the diffusi lacement fronts in porous media at the laboratory scale.
pressure data at well locations to the solution of the diffusior 4,ances in field scale tomography, for example, by seismic

equation. Pressure transient methods have also been appligfhihods or cross-hole tomography, are also likely to lead to
to characterize the heterogeneity of laboratory cores, USi”Qnangous results at the field scd®]. Yet, well-defined
minipermeameterg4]. These devices essentially conduct methods to invert such information to determine the perme-
miniwell tests on the surface of a laboratory ctog inject-  apjlity heterogeneity are currently lacking.
ing a small pulse of air and monitoring the resulting pressure |n this paper, we propose a method that focuses on this
transient, which are used to infer a map of the permeability question, namely, on how to invert data on arrival times at
heterogeneity at the external surface of the sample. various(and numerouspoints in the porous medium to map
An alternative approach to permeability identification isthe permeability field. The method, elements of which were
based on the analysis of the arrival times during the injectiorbriefly described in Ref9], is based on a direct inversion of
of passive tracer&namely of tracers which do not affect the the data, rather than on the optimization of initial rand@m
fluid viscosity and densily Various efforts have been made partly constrained guesses of the permeability field. It is
at the field scale to relate the arrival times to the permeabilbased on two basic premises, that Darcy’s law for single-
ity, and to match assumed permeability fields to such data@hase flow in porous media is valid, and that the dispersion
[5]. These techniques are usually indirect, based on optimizef the concentration of the injected tracer is negligible.
ing arbitrary(or constraineginitial guesses to match data at Based on these conditions, we formulate a nonlinear bound-
various, usually sparse, locations. As a result, they suffeary value problem, the coefficients of which depend on the
from nonuniqueness. Nonetheless, useful information can bexperimental arrival time data. Combined with informa-
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tion on the permeability or the pressure at the boundimg ~ =(1/u) (Vp—pg), whereu is viscosity, taken as a constant,
flow) surface of the porous medium we obtain a solution ofp is pressurep is density, also assumed constant, grslithe

the boundary-value problem, from which the permeabilityacceleration of gravity. For isotropic media we talkéx)

field can be directly calculated. The requirement that pres=k(x)I, wherel is the identity tensor. The anisotropic case
sure or permeability values at a boundary must be knowis discussed in Sec. V. In the absence of dispersion, we de-
makes the method more suitable to laboratory applicationdine a front location by the equation

An important feature of the method is that it can be applied

to determine the heterogeneity of anisotropic media, where F(x,t)=t—f(x)=0, (4)

the permeability field is a tensor, as is often the case in many

natural porous media. For this, displacements inf@o2D)  where, assuming constant or monotonic injection rates, the

or three(for 3D) different directions must be conducted.  function f(x) is single valued, thus associated with a given
As described below, the experimental information on arpoint x is a single arrival time. Then, the concentration is

rival times enters in the technique in the form of spatialgiven by

derivatives. As a result, the solution method is sensitive to

errors in their estimation, which are expected to increase C(x,t)=C;()H(t—f(x)), (5)
when variations in the permeability are sharper and larger.

The errors are magnified around certain limiting streamlines are C,(t) is the injection concentration anH is the
the width of which increases in the downstream direction,HeaviSid'e step function.

and may lead to poor estimates of the permeability in some 1pg girect algorithm is based on the following. First, we
regions. To circumvent the problem in such cases, we havgq ate the two expressions for the normal velocity at the
modified the inversion method by considering a forth-and-front, given by the kinematics and by Darcy’s law, respec-

back hybrid approach, in which arrival times are recorded Rively. Noting that the normal at the front is given by
second time by repeating the tracer displacement in the re-

verse direction. This approach is then combined with an op- VFE Vi

timization technique to improve the resulting estimates. The n= ——=———, (6)
need to repeat the displacement in two directions in such VA Vil

cases, may be an additional limitation on the applicability of ) . ) ]
the method to field cases. we combine Eqs(5) and (6) with Eq. (1) to obtain a kine-

The paper is organized as follows. In Sec. Il we describdhatic expression for the normal velocity there, namely,
the inversion method for the case of isotropic media. Section
Il shows numerical examples which test the applicability of _ 9
the method to various forms of permeability heterogeneity Un= W
and its sensitivity to permeability variation and spatial cor-
relation. Section IV describes the hybrid approach for invertDarcy’s law[Egs. (2) and (6)] gives another expression for
ing permeability fields with sharp and large contrasts. A senthe same quantity
sitivity study of the effect of measurement errors is also
provided. The extension of the method to anisotropic media k(X)Vd-Vf
of known and fixed principal axes is presented in Sec. V. We UHZT
close with concluding remarks.

)

®

From Egs.(7) and(8) we obtain the following result for the

II. DIRECT INVERSION ALGORITHM: ISOTROPIC permeability:

MEDIA

Consider the injection of a passive tracer in a heteroge- K(x) = — $(X)
neous and isotropic porous medium. In the absence of dis- Vo.Vf
persion, the concentratioc@(x,t) satisfies the equation

(€)

which, in principle, can be evaluated in terms ®fandf.
dC _ Substituting the above expression in Darcy’s law and making
¢(X) —+v-VC=0 (1) i ; . .
at ’ use of the continuity equatiof3) we obtain a nonlinear

equation ford, which reads
where ¢(x) is the porosity of the medium andis the su-

perficial fluid velocity vector. Under slow, viscous flow con- H(X)VD
ditions, the latter satisfies Darcy’s law Vo.vr =0. (10
v=—K-Vo (2 ) )
The two equationg9) and (10) constitute the keys of the
and the continuity equation direct inversion method. EquatiqiO) is a partial differen-
tial equation which determine®, given appropriate bound-
V.v=0 (3)  ary conditions, and information on the porosityx) and the

arrival time functionf(x). From its solution, the permeabil-
assuming incompressible fluids. Heke(x) is the(symmet- ity field can be directly calculated using E@®).
ric) permeability tensor, andb is a flow potential, Vo The following remarks are in order.
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(1) For the solution of Eq(10), the porosity must be a of constant arrival time, which are available experimentally.
known function of the spatial coordinates. For applicationsHence, the stream function can be computed by integrating
using CT, this is readily available. along these contours, for example,

(2) Although, at first glance, Eq.10) appears to be an
elliptic (Laplace typg equation, it is in fact a system of first- W=+ fyjd (14)
order hyperbolic equations. This can be readily shown, e.g., -0 vofx y:
in 2D, by introducing

where, in the case of a rectilinear sample with a no-flow

U= 9P/ oy (11) boundary aty,=0, we can take?,=0 without loss. To
d®/dx estimate the permeability we also need to compute the po-
) ) tential. In the isotropic case, we make use of the fact that
in which case Eq(10) becomes equipotentials are orthogonal to the streamlines, thus
R S S IS S (12 IV 9D oV ob
ox| fetufy| ay|f+ufy| WWjLWW:O' (15

where subscripts indicate partial derivative® similar
analysis holds for 3D.The two Egs.(11) and (12) form a
pair of first-order hyperbolic equations. For their solution
and thus for the solution of Eq10), information on the
potential® at the(no-flow) boundaries is necessary. Equiva-

Equation(15) is also a hyperbolic equation, which can be
integrated subject to appropriate boundary conditions. Then,
'the permeability can be estimated from E§), or from the
alternative expressiork=dW¥/dy/o®/dx. This approach
does not rely on the restrictive approximations made by the

lently, this information can be furnished from a knowledge . . ; ;
. RSP . previous authors. lllustrative examples will be discussed be-
of the permeability at the boundariéwhich, for instance, low

can be obtained for a laboratory sample by a minipermeame-
ter, as previously noted At no-flow boundariegwhere in
the normal directioryd®/dn=0), Eq.(9) becomes a partial Ill. APPLICATIONS USING SIMULATED DATA

differential equation for the variation ap along the bound- The direct inversion method was subsequently tested
ary, which can be integrated, givérandf at the boundary, paged on simulated data. We used a high-resolution finite-
to yield the required profile. In this way, the numerical yittarence simulator(the main features of which are de-
method utilizes information from all boundaries, essentiallygeriped in Ref[10]), or a streamline-based method, to simu-
solving an ellipticlike, rather than a hyperbolic system. In thea¢e tracer displacement at constant-rate and in the absence of
applications to be shown below we solved EX{) assuming  4rayity and provide data on arrival times and the pressure
pressure profiles are known at all boundaries. profile at the boundaries. Parenthetically, we note that the
(3) A notable feature of Eqs(9) and (10) is that they  foward problem belongs to the general class of problems
depend on the gradient of the front arrival time rather than ORecently discussed by Sethifitl], and can also benefit from
the arrival time itself. On the positive side, this reflects ayne application of a fast marching technique. Such was not
desirable sensitivity of the method to heterogeneity. HOW‘impIemented here, however. The numerical results thus ob-
ever, this dependence also introduces numerical instability;ined were considered “error-free” data to be used as input
which can lead to problems when the permeability contrast ig,, the solution of Eq.(10). The boundary value problem
sharp and large. A technique to circumvent these problems, ) \vas solved using a standard SOR finite-difference for-
and its sensitivity to error in measurements is described latet,5jism  which was suitably iterated until convergence. For

in Sec. IV. _ _ N example, for the 2D geometry we used the five-point scheme
In summary, supplied with boundary conditions on the
i i i 1 1 1
potentlal,. I_Eqs_(9) and(lO) can be solved directly to ylleld the mllz’@injle + @?1—1/2,1‘1’??1,1 +@ir?j+1/2q)mtl
permeability field in a heterogeneous porous medium based
on information on arrival times and the porosity heterogene- +OM_ @MY — (O 1+ O o+ Oy
ity. The resolution of the inverted permeability field depends, m a1
among others, on the resolution of the arrival time contours. + 071 Pij =0, (16)

Stream-function approach f&D geometriesBefore pro- m o . o )
ceeding, it is worthwhile to note that in 2D geometries, anWhere ®;; is the conductivity coefficient at blocki () at
alternative inversion method is possible, based on the ugeration levelm. All other coefficients were evaluated using
of the stream function¥, where 9W/dy=v, and J¥/o9x  the harmonic average betweéx, and its nearest neighbor.
= —v,. Stream-function-based methods were proposed bf\n interpolation routine was used to interpolate the arrival
Brock and Orr[6] and Withjacket al. [7], using Heuristic ~imes, when necessary. The spatial derivativeswére cal-
arguments, as noted previously. To proceed with such agulated using three-point differences. Equatit¥6) was

approach, we first rearrange E@) to read solved using prescribed pressure profiles on the two no-flow
boundaries.

of oV  of o¥ Figures 1-3 show results of the application of the inver-

ay ax X W: — (). (13 sjon method in three 2D heterogeneity fields of a moderate

permeability contrast, corresponding to a layered medium, a
This is a first-order, hyperbolic differential equation fir, medium with a smoothly varying heterogeneity and a perme-
the characteristics of which are curves of consfanamely,  ability distribution following the FBM(fractional Brownian
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FIG. 1. Application of the direct inversion method to a layered systejrand(b) actual permeability plotdc) actual arrival times{d)
actual(solid lineg and inverteddotted line$ potential profiles{e) and (f) inverted permeability plots.

motion) statistics. Each figure shows true and directly in-tween actual and inverted fieldsm permeability and poten-
verted permeability fields, along with true and directly in- tial profiles is very good. This example is characteristic of
verted and potential profiles. In all these examples, the diredhe success of the method in smoothly varying permeability
inversion was found to give very good results. fields.

Figure 1 shows that the method handles well permeability A more stringent test is shown in Fig. 3 involving a simi-
contrasts transversely to the direction of displacement, wittiar permeability contrast. The permeability field is of the
some expected dispersion around the discontinuity. Potenti#BM type with a Hurst exponerii =0.8, and it is a typical
profiles are also reproduced well, again with some differ-example of a self-affine field, containing large-scale correla-
ences noted around the discontinuity. We must emphasizions[13]. FBM statistics with a Hurst exponent larger than
that, particularly in this example, the success of the metho@.5 are often taken to describe the heterogeneity in the hori-
rests on the availability of the potential profile at the bound-zontal permeability of natural rock44]. Figure 3 shows that
ary, which removes the nonuniqueness of the problém. the match between actual and inverted data is also quite
deed for a 1D displacement at constant injection rate in good. Potential profiles are closely matched. The inverted
piecewise constant permeability, EG.0) becomes indeter- permeability reproduces well the main features of this field,
minate] Likewise, good results were found when the perme-specifically the regions where the permeability is high, me-
ability contrast was in the direction parallel to the displace-dium, or low. However, discrepancies do exist in the detailed
ment. The ability of the method to invert the permeability point-by-point variation of the permeability, the inverted
field in the presence of an arbitrary closed region of shargield being somewhat smoother than the actual. The ability to
permeability contrast is discussed later. capture long-wavelength, as opposed to high-frequency,

The permeability field of Fig. 2 is smoothly varying and variations is typical of this technique and was noted in other
contains two peaks and one valley, with a permeability conexamples, as well. Figure 4 shows a statistical analysis of
trast of about 2. It was generated in a>684 grid using actual and inverted permeabilities. Histograms and the cor-
Franke's test function fronmATLAB [12]. This function of-  relation structuréthe semivariogramsnatch quite well, and
ten serves as a test for the interpolation of scattered data. Whke scatter plot is satisfactory. The dispersion around the 45°
first note that the arrival times are more sensitive to the hetline indicates a small degree of point-by-point mismatch, as
erogeneity than the pressure profiles, which are essentiallgiso evidenced in Fig. 3.
parallel to the transverse direction. This feature was also The direct inversion technique can be equally well applied
noted in all other cases, where the permeability variation iso 3D geometries. Before we proceed, however, it is instruc-
relatively smooth. Figure 2 shows that the comparison betive to compare inversion results using the 2D stream-
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FIG. 2. Application of the direct inversion method to a smoothly varying fiedgland (b) actual permeability plotsic) actual arrival
times; (d) actual(solid line9 and inverteddotted line$ potential profiles{e) and (f) inverted permeability plots.

function method described in the previous section. Figures Bwith respect to the sample sizef 0.5. The permeability
and 6 show the resulting permeability estimates, along witlvariation is somewhat larger than before. Characteristic ar-
the associated stream functions, corresponding to Figs. 2 amal time contours from the simulation of the forward prob-
3, respectively. The streamlines are well reproduced, and them in a 16< 16X 16 lattice are shown in Figs(d@ and 7d).
inverted permeability fields maintain the large correlationThe direct inversion algorithm was applied by using a 3D
features. However, it is evident that the inverted fields miss/ersion of Eq.(16) along with boundary conditions supplied
many details. There are also apparent defects extendingom the forward problem. The results of the permeability

along slice-shaped regions, which arise from the integratiof,,,ersion are shown in Fig. 8. They appear to be in relatively
along the arrival time contours. A statistical analysis, nOtgood agreement with the act#iigs. 7a) and 7b)]. A more
shown here for lack of space, shows that the inverted perm ' '

bilit d bl I th o eq'uantitative comparison is shown in the statistics of Fig. 9,
apility - reproduces reasonably we € semivarogramse. |ated by GSLIB[15]. In general, the comparison is

However, the histograms, and to a greater degree, the scatteéod_ The inverted field shows a smaller range of variation

plot, have large errors in several places. The stream—functlo‘ﬂ_‘an the actual, as reflected in both the semivariogram and

method is prone to relatively large numerical errors, as i . . .
involves a threefold interpolation for spatial derivative esti-the histogram. We note that the spatial correlation structure

mation and the integration of hyperbolic equatidfar de- of the fo_rm_er is well captured in the inyerted.data. The scat-
termining the stream functionThese weaknesses make the € Plot indicates a somewnhat larger dispersion, compared to
method unfavorable compared to the direct solution of Eqsthe FBM field of Figs. 3,4, which is expected, given the
(9) and (10) (as seen in the comparison of Figs. 2—5 andl@rger permeability contrast here.
3-6). Advantages of the method, on the other hand, are that In the above examples, where the permeability contrast is
the permeability is inverted fast, compared to the previoushot too large, or where the permeability has relatively large
while one also readily obtains stream function and streamlingpatial correlations, the direct inversion method gives good
profiles. These may be useful in certain applications, particuresults. When the contrast increases and variations in perme-
larly in the field. ability are sharper, however, the method is subject to in-
To demonstrate the applicability of the direct inversioncreased errors. These arise primarily from the approximation
method to three dimensions, we considered the 3D permesf the spatial gradients of the arrival time in regions where
ability field shown in Figs. @ and 7b), consisting of a the latter varies sharply. Figure 10 shows arrival time con-
log-normal distribution generated by the sequential Gaussiaiours, calculated analyticallysee the Appendix for flow
simulation, with a natural logarithmic mean of 2.0, a stan-around an embedded circle of lower permeability. Even
dard deviation of 0.2 and a dimensionless correlation lengtithough the permeability contrast is relatively modgs6:1),
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FIG. 3. Application of the direct inverse method to an FBM field witk=0.8: (a) and (b) actual permeability plotsic) actual arrival
times; (d) actual(solid line9 and inverteddotted line$ potential profilesfe) and (f) inverted permeability plots.

there exist two thin layers, extending downstream of thediscard in all others. Assign estimates in these regions by an
circle and centered around the two limiting streamlines taninterpolation algorithmknown in the geostatistics literature
gent to the circle, where the arrival times exhibit sharp spaas kriging.

tial variations. In these regions, the evaluation of the coeffi- (4) Use an optimization algorithrtto be briefly described
cients of Eg. (10) is likely to introduce errors and below) to fine-tune the so obtained composite permeability
accordingly poor estimates for the permeability in certainestimates.

places. These limiting streamlines also exist in any other The optimization algorithm is based on standard gradient
fields containing regions of sharp permeability contrast. Bemethods[16] and will not be discussed here in detail. We
cause the respective layers extend downstream of the regidmiefly note that we used the following objective function:

of the sharp contrast, however, the associated errors in per-

meability estimates are different depending on the direction 1 - " oqT

of displacement. We have conjectured, therefore, that the J= E{[f(k)_f 17 W [1(k) = 7]+ [k=KP] - W
estimates of the direct method could be improved substan-

tially, if we were to combine information from two different [k=KP]+[ @, — BT W [ By — Dy} (17
displacements, one in the forward and the other in the re-
verse direction. consisting of three inner product terms. The first is the

weighted sum of the squares of the differences between the
current estimates of the front arrival timésbtained from
the simulator response, and the “error-free” détd The
To circumvent the problems posed by high permeabilityweight W, is a diagonal matrix whose elements are the in-
contrasts we implemented the following hybrid procedure. verse of the variances of the errors of the measured arrival
(1) Carry out a tracer displacement in the forward direc-times. The third term is the analogous inner product for the
tion and directly invert to obtain one permeability estimatedifferences between the current estimates for the potential at
K¢ (X). the no-flow boundaried, and the databy', with W3 being
(2) Carry out a tracer displacement in the reverse directhe corresponding diagonal matrix. The second term repre-
tion and directly invert to obtain a second permeability esti-sents the mismatch between the current permeability esti-
mateky(x). matek and its priorkP. It is a regularization term, as re-
(3) Retain the estimates in those places, where they diffequired by Tikhonov's theory[17], and restricts the
in absolute value by no more than a prescribed value, angdarameters being optimized to not deviate greatly from the

IV. A HYBRID ALGORITHM
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FIG. 4. Statistical comparison between actual and inverted permeabilities of F&.t8stogram of actual permeabilityb) histogram
of inverted permeability(c) semivariogram in two different directions of the act(sdlid lineg and invertedcircles data;(d) scatter plot
of actual and inverted data.

prior information. HereW, denotes the inverse of the cova- Which is generally close to the true permeability field. As a
riance matrix of the prior. Numerical experience has demontesult, in many of the cases tried, the optimization method
strated its necessity for stable and convergent solutions:onverges close to the true values. By contrast, in other re-
However, the accuracy of the initial guess plays a pivotalated inverse problems, the prior permeability is typically
role in the convergence to the true solution. It is in thisgenerated by a geostatistical algorithm constraineflsn-
context that the hybrid algorithm offers an important advan-ally) sparse measurements, and its convergence to the true
tage. In our method, the prior information is supplied usingsolution is generally uncertaife.g., see Ref[18]). At the

the direct inversion method, outlined in steps 1-3 abovesame time, we must stress that we have also encountered
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FIG. 5. Application of the stream-function approach to the medium of Figa2and (b) inverted permeability plots(c) actual(solid
lines) and inverteddotted line$ streamlines.
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FIG. 6. Application of the stream-function approach to the medium of Figa)3and (b) inverted permeability plots(c) actual(solid
lines and inverteddotted line$ streamlines.

many problems involving sharp permeability contrasts,ability with a 1:5 contrast. This particular configuration cor-
which cannot be successfully handled even with the hybridesponds to the experimental Hele-Shaw cell used in Ref.
algorithm, as shown below. For completeness, we mentiofl9], and was discretized by a 220 lattice. The top of Fig.
that in order to match arrival times and boundary pressuresl [panels(a), (b)] shows the prior estimate fed to the opti-
as well as possible, we often had to increase their weights imization algorithm, following steps 1-3. Due to the sharp
the objective function by multiplying with a large number. permeability contrast between low and high permeable re-
Applications of the hybrid algorithm using simulated datagions, the spatial derivatives of the arrival times have signifi-
are illustrated in Figs. 11-14 for three different examplescant numerical errors in certain regions, and lead after steps
The medium in Fig. 11 contains two blocks of low perme-1 and 2 to a mismatch between true and inverted values in
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FIG. 7. A 3D permeability field and corresponding arrival times:and(b) the actual permeability field in different cross-sectiofs;
the arrival time distribution(d) arrival time isosurface &t=0.07.
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FIG. 8. Application of the direct inversion method to the 3D field of Fig(&f:and (b) representation of the inverted data in different
Cross sections.

various places. Through step(&here estimates were dis- 11(a), 11(b)], is shown in the middle of Fig. 1fpanels(c),
carded when they differed by more than 30%hese errors (d)]. The results are much improved and, with a few excep-
have been minimized. The directly inverted field, after step 3ions, they are very close to the actual. Although not shown,
[Figs. 11a), 11(b)] has the main trends of the true field, potential and arrival time profiles are also matched very well.
although it is obvious that the contrast is not as sharp as thBy contrast, if in the optimization algorithm we used a uni-
actual, and is in need of fine-tuning. Results following theform initial guess, instead of that corresponding to the direct
application of the optimization algorithm of step 4, using 40method[panels(a), (b) in Fig. 11], the resulting estimate
iterations, and based on the initial guess after krigifigis.  (after the same number of iteratigns poor in many places,

(a) (b)
Actual Log(K) Number of Data 4096 Inverted Log(K) Number of Data 4096
] nn mean 1.9314 e mean 1.9332
1 . n std. dev. 0.2088 0.0600 H std. dev. 0.1865
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FIG. 9. Statistical comparison between actual and inverted permeabilities of Fa.l8stogram of actual permeabilityh) histogram
of inverted permeability{c) omnidirection semivariogram of the actuablid line9 and inverteddash lineg data;(d) scatter plot of actual
and inverted data.
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-2 ‘ ‘ ' ‘ ‘ ‘ ' as shown in the bottom of Fig. Ipanels(e), (f)]. This is
] despite the fact that arrival times and potential profiles are
gl - ] also matched very well. We conclude that, at least for this

example, the application of the hybrid method gives a sub-
stantial improvement.
Figure 12 shows the application of the algorithm to a
N ] correlated log-normal distribution with a logarithmic mean
/ [ ] / / / / /\ / of 2.0, a standard deviation of 0.5 and a dimensionless cor-
’ relation length of 0.25. In this example, the block-to-block
\ \ permeability variation is much larger than in the FBM field
\ 3 of Fig. 3 or the 3D field of Fig. 7, the largest contrast being
of an order of magnitude. The application of the direct in-
version method followed by kriging leads to the results
shown in the middle of Figs. 18), 12(d). Although captur-
ing the general features of the true field, the estimates are
generally coarser and smoother than the actual values. Com-
parison of arrival times and potential profiles based on the
o5 1 05 0 o0s 1 1s 2 inverted field(not shown for lack of spagéndicates a mis-
X match with the actual in certain places. To fine-tune the re-
FIG. 10. Streamlines and arrival time contours corresponding t$ults and recover some of the high-frequency variations, we
a medium of uniform permeability in which a circular inclusion of applied the optimization algorithm of step 4. Results after 40
lower permeability is embeddetpermeability contrast is 0.611  iterations are shown on the right of Figs.(&R 12(f). The
The contours are calculated analyticalsee Appendix Displace-  algorithm does not fully reproduce the actual field, and some
ment is from left to right.

-1

(b)

(a)

FIG. 11. Application of the hybrid algorithm to a system with block discontinuities in permealplégmeability contrast is 1)5Top
two plots(a) and(b) show permeability estimates after steps 1kidging). Middle two plots(c) and(d) show permeability estimates after
step 4(optimization). Note the closeness to the actual data. Bottom two p&tand(f) show permeability estimates using the optimization
method but with a uniform permeability initial guess.
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25
20
15

110

(b) (d) ® )

FIG. 12. Application of the hybrid algorithm to a field with a log-normal distribution with maximum contrast of aboga)18nd (b)
actual permeability plotsc) and(d) plots of permeability estimates after steps Xki2ging); (e) and(f) plots of permeability estimates after
step 4(optimization). Note that the cutoff value of the colorbars in the image plots is set at 25.

errors around large variations of permeability are detectableexperiment§20]. The results of the algorithm at the end of
However, it is obvious that a significant improvement hasthe kriging step are shown in the middle of Figs.(d4
been achieved. Figure 13 shows the corresponding statisticali(d). The mismatch with the true data is quite apparent. The
comparison. The mean and the variance from the hybrid alzp projection in the middle of Fig. 14 reproduces roughly
gorithm agree very well with the actualBy contrast, in  the places of maximum permeability variation, but the pic-
results that are not shown here, the variance from kriging igyre is clearly “out of focus.” The results of the application
underestimated by about 20%, although the mean is thgf the optimization method are shown in the right of Figs.
same) The two histograms are roughly equal, while the 14¢) and 14f). We note a clear improvement, compared to
semivariograms have the same correlation structure. Thg,o previous step, and a better focused image. Yet, there is
scatter plot shows that good agreement exists over a googls, cjear evidence of mismatches in various places, includ-

range of lower permeabilities, al_thpugh an i_ncreasing ScatteiF]g a smoothing of the sharp contrast around the edges of
can be seen at larger permeabilities. In this example, thesaa

. ; . iscontinuity, and of other defects, which altogether preclude
are typically associated with large contrasts. We need to "€ exact matching. Thus. althouah overall the hvbrid algo-
iterate that the success of the hybrid algorithm depends to 9. ' 9 y 9

large extent on the accuracy of the initial guess, which id! hm appears to be a promising alternative in cases involv-

here provided by the direct method and positions the optimilng large contrasts, we caution that this is not uniformly true

zation scheme close to the true solution. By contrast, th&"d that many counterexamples can readily be constructed
estimates resulting from the application of the same optimi¥vhere this algorithm will not be as successful.
zation algorithm after bypassing steps 1-3 and utilizing a Sensitivity studyThe sensitivity of the algorithm to sharp
uniform |n|t|a| guess were quite poor, even though arriva|permeabi|ity contrasts is a reflection of its I‘elatively weak
times and potential matched nearly perfectly with the trugrobustness to errors in arrival time and/or boundary pressure.
values. To asses the latter, we studied the sensitivity of the directly
At the same time, we must point out that we have alsgnverted permeability values to random errors in the arrival
encountered several cases where the hybrid algorithm wdéne and the boundary pressure, using again synthetic data.
not as successful as desired. Figuresall414(b) are ex- For this purpose, the forward numerical solutions for the
amples of a “checkerboard-pattern” heterogeneous fieldarrival time and boundary pressurig! and ®,", respec-
with a permeability contrast of 1:4. A pattern similar to this tively, assumed to represent trierror-freg results, were
was used in some previously reported tracer displacememandomly perturbed as follows



874 LANG ZHAN AND YANNIS C. YORTSOS PRE 62

(a) (b)
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FIG. 13. Statistical comparison between actual and inveaétdr steps 1-¥4permeabilities of Fig. 12(a) histogram of actual perme-
ability; (b) histogram of inverted permeabilityc) omnidirection semivariogram of the actyablid lines and inverteddash lineg data;(d)
scatter plot of actual and inverted data.

f.=fM+ 0. min[f™] (18 input, the inverted data have a residual error. This was al-

ready noted in the discussion of Fig. 12, and was attributed

and to the relatively sharp changes in permeability for that field.
We also note that inversion errors, following the full hybrid

q)bE:q)bm+ 6.min[d,™], (19 algorithm, are considerably smaller than those based on krig-

ing, as also discussed before. As the error in the input data
d’ncreases, however, the inversion errors for the hybrid algo-
rithm, both in mean and variance, increase faster than those
in Egs.(18) and(19) reflects the assumption that in a realis- b_a;ed on kngmg. In _fact, the latter IS actually 'T'Ot very sen-
sitive to errors in the input data, and in a sense is quite robust

tic experiment, the resolution of the measuring device is in ) ;
dependent of the value of the quantity being measured. Th(éompared to the full hybrid algorithm. The latter outperforms

results from Eqs(18) and (19) were then used in Eqg9) kriging at small values of input error. However, it is subject

: S e ; .1 toincreasing inversion errors beyond a certain level of input
:Ingdo(r%tcr)l)r;o invert the permeability field following the hybrid error. The origin of this discrepancy is due to the two differ-

Shown in Fig. 15 are the sensitivity results for the perme-ent olbjectives sati_sfigd .by th? two algorithms._ In the hybrid
ability field of Fig. 12(inversion error vs). Two curves are algorithm, the optimization aims to match arrival time and

shown, one corresponding to the full hybrid algoritfsteps pressure c_iat_:{ieven if they are inaccur@teln kriging, this
1-4) and another corresponding to the results after only step _at<_:h|ng IS |g_nored, after the (_:ompletlon of steps 1 and_2.
1-3 were completed, namely, after kriging the direct esti- imilar pghav_mr was found with other types of synthetic
mates from the forwaird and l:;ackward displacements. As Bermeabmty fields used. We conclude that the successful
measure of the inversion error, we used the standard devia- plementation of the technique proposed relies on input
tion of the inverted from the true permeability, normalized ata of good accuracy.

with respect to the mean, the error in the input data being V. DIRECT INVERSION ALGORITHM: ANISOTROPIC
proportional toe. For eache, a total of ten realizations were MEDIA

performed. The curves in Fig. 15 represent the mean values

of the results obtained, with the standard deviation also de- On the other hand, a strong attribute of this technique is
noted. First, we observe that even in the case of “error-free’that it can be applied to anisotropic porous media. In this

where 6, is a random Gaussian noise with mean equal t
zero and standard deviation equaletoThe minimum taken
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FIG. 14. Application of the hybrid algorithm to a checkerboard permeability pattamtrast is 2:8 (a) and (b) actual permeability
plots; (c) and(d) plots of permeability estimates after steps 1kBging); (e) and (f) plots of permeability estimates after stefoptimi-
zation. Note that the cutoff value of the colorbars in the image plots is set at 8.

section, we consider for simplicity 2D geometries, where the Ky (X) 0

principal directions of the permeability tensor are constant K=o« Mk (20

and coincide with the rectangular coordinatesand vy, y

namely, we take An extension to the more general case is under consideration

and will be presented elsewhere. Under these conditions, the

equations analogous to Eq9) and(10) read
1.2

(K-V®).-Vi=—¢(x) (21

e
T

and

o
=)

V(-K-V®)=0. (22)

Using scalar notation, and substituting from Eg0), we
further have

Error measure
=)
o

0.4
‘ b of ad of 03
[ — + —_— = —
0.2 Xox ox Yy gy ¢ (23
0 ‘ , ‘ , ‘ and
0 0.1 0.2 0.3 0.4 0.5 0.6
Standard deviation of errors added J E10)) 9 b
) o ] — K= |+ —|ky—=—|=0. (24
FIG. 15. Sensitivity of the inverted permeability field of Fig. 12 X oX ay ay

to errors in arrival times and boundary pressure data. Inversion

based on the hybrid algorithifsteps 1—# (thin line) and on the  Equations(23) and(24) constitute a pair of two equations in
kriging algorithm(steps 1—3B(thick line). The error measure is the three unknownsk,, k,, and®) and require additional in-
normalized standard deviation of the inverted from the actual performation for their solution. One possible approach, by
meabilities. The input error is as described in EG®) and(19). which this information can be obtained, is by conducting two
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(b) (d)

FIG. 16. Application of the direct inversion method to an anisotropic field with known and fixed principal axes of anisotropy. Results for
k,: (a) and(b) plots of the actual permeability component valu@s;and(d) plots of the inverted permeability component values.

tracer displacements, one in thxedirection with no-flow given the datd, andf, , and the calculated potentials and
boundaries perpendicular to tigeaxis, and another in thg @, . The latter can be obtained by solving E84), with k,
direction with no-flow boundaries perpendicular to tke andk, given by Egs.(27)—(29), and with the appropriate
axis. If we denote the arrival time functions and the potenfoundary conditions corresponding to the two different dis-
tials of the two displacements Hy andf,;, and®, and®;,  placements. The following iterative algorithm was imple-
respectively, Eq(23) becomes mented to solve the resulting coupled system.
(1) Based on the-level estimates for the potentiafs,
ad, of, ad, of, N . .
e otk —=—0¢, (25) and®,/, use Egs(27) and(28) to estimate the-level iter-
Ix X » % atesk, andky. At the initial level (v=0), an initial guess,
typically in the form of a linear variation, was supplied for
WL TR TR g the potenials. PP
“ox ax Yy dy (2) Based on explicit ¢-leve)) estimates foik, andky,
integrate Eq(24) twice, using SOR finite differences to cal-

for the respective displacements. Then, the permeability ote the potentials at the next iteration levél? "1 and
components can be determined from the two equations PrHl '
(L

¢
A

(27) tested.
The method was subsequently applied to the anisotropic
permeability field shown in the left of Figs. 16 and [pan-
els(a), (b)]. Its statistics are similar to Fig. 7, and involve a
log-normal spatially correlated distribution with the same
, (28) mean and standard deviation. By simulating a forward tracer
displacement in the two directions,andy, respectively, we
obtained arrival time functions and potentials at the no-flow
where boundaries, which were then used for the inversion accord-
ing to the above scheme. The directly inverted figidsthe
_ 0P of, 9Py ofy 9Py ofy 9P, 91, absence of optimization or krigingre shown in the right of

A=TX o gy oy Ix X dy dy @9 ihe wo Figs. 16 and 1fpanels(c), (d)]. Given the coupled

ab, oty oD, af'} This algorithm was found to work well for the various cases

and

oX JIX  IX OIX
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(@ ()

FIG. 17. Application of the direct inversion method to an anisotropic field with known and fixed principal axes of anisotropy. Results for
ky: (a) and(b) plots of the actual permeability component valu@s;and(d) plots of the inverted permeability component values.

nature of the problem, the reconstruction of the two permealgorithm developed is a rigorous, although not necessarily
ability components can be considered generally good. Theobust, tool for the analysis of arrival time contours.

method reproduces relatively well the regions of high and Using simulated data, the method was found to work well
low permeability. Compared to the isotropic case under théor cases where the permeability contrast is not very large,
same permeability contrast, however, the reconstruction ignd the field is spatially correlated. In general, the technique
not as sharp, and the projections of the inverted images apaptures well variations corresponding to larger wavelengths,
pear slightly “out of focus” in certain places. This reflects pyt not as well fine-scale details. For sharper contrasts, a
an underlying mismatch in the arrival times and the potential,ybrig version of the algorithm was developed, in which the
profiles, which is not shown here. Further work is under Wayjirect method is used to generate the initial guess in an op-
to improve the_ algorlthm and flne—_tune the dlr_ect INVETSIONGmization algorithm. The hybrid version minimizes the sen-
method, including the implementation of a hybrid algorlthm'sitivity of the method to errors in spatial derivatives, which

as in the isotropic case. are augmented in the presence of sharp contrasts. Numerical
examples in two and three dimensions using simuléted
VI. CONCLUDING REMARKS sumed “error-free’) data demonstrated that the hybrid algo-

In this paper we presented a method for the direct inverfithm works well and that it is superior to the more conven-
sion of the permeability of porous media, based on arrivafional case, where the initial input is a uniform distribution.
time contours and information on the pressure profiles at thElowever, other examples can also be constructed, involving
boundaries. In real systems, the former can be obtained usirfflarp contrasts and/or errors in the input data, where the
techniques of visualization, computerized tomograghy  inversion technique is not as satisfactory and requires further
seismic and cross-hole tomography for field applications improvement. A sensitivity analysis showed that the method
The method utilizes Darcy’s law for flow in porous media in is prone to increasing inversion errors, as the quality of the
combination with the kinematics of flow, as expressed in thenput data deteriorates. On the other hand, a nontrivial ad-
arrival times, to derive a boundary-value problem, the soluvantage of the direct inversion technique is its potential to
tion of which leads to a direct reconstruction of the perme-invert the permeability tensor in anisotropic porous media.
ability field. An important feature of the technique is that it Preliminary results for the case where the principal axes of
requires information from the pressure at the boundaries, tanisotropy are fixed and known were presented and found to
solve an ellipticlike formulation, rather than the two hyper- be promising. Further work is currently under way to fine-
bolic equations, which formally describe the problem. Thetune the method and to also extend it to the more general
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case, where the permeability tensor is full. V- [kV(x—)]=0, (A2)
The various requirements for its implementation suggest

that the technique proposed is best suited for laboratory agwherey=® +x. In view of Eq. (A1) this further reads

plications. Even then, its applicability relies on several con-

ditions: the availability of pressure profiles at the system

boundaries, the absence, or the minimization, of dispersion

during the tracer displacement and the adequate resolution in

arrival time contours. The first requirement appears to be th@/here 5 denotes the Dirac delta function. To solve EA3)

most difficult to meet, in view of the demand for adequatewe use polar coordinates,@) and the following interface

spatial resolution, which presently available tools may notconditions at the place of permeability discontinuity:

possess, and the need to enforce Darcy’s law near no-flow

boundaries. Alternatively, this profile can be obtained by lo- Pli=r, =li=1 (A4)

cally probing the surfaces with a minipermeameter to con-

struct a surface permeability map, from which the pressurgnd

profile can be computed. A certain amount of pore-scale dis-

v.(kV¢)=—(1—K)5(r—1))r—(, (A3)

persion in real porous media is also unavoidable, given that y i

the dispersion coefficient is proportional to the velocity, thus el e N (A5)
leading to a constant Peclet number and a finite amount of = 1+

dispersion. However, for relatively small dispersivities, SUChThe solution follows readily

dispersion effects could be minimal. Sufficient spatial reso-

lution on arrival times would allow to capture fine-scale 1—k

variations, at the expense of increased computational time in Y= 1 rcosd; r<1, (AB)
the optimization routine of the hybrid algorithm, and pos- K

sible instabilities as the degree of resolution increases and

the input error increases. However, it must also be remarked _ ]-_—K)ECOSH' r>1 (A7)
that in our experience, so far, a coarse-grid reconstruction 1+k)r ' '

can adequately capture the large-scale features of the perme-

ability field, both in the isotropic and the anisotropic cases.from which the velocity components can be calculated. We
Regarding field applications, the absence of boundar§ind,

pressure data and the difficulty in conducting displacements

in different directions, impose constraints that make difficult 2k

the application of the present technique. One could still use UxT 11k r<1,
arrival time contours, if available through seismic or cross-
hole tomography, to reconstruct streamfunctions and stream- 1-k\| y?—x?
tubes, as outlined in the text for a 2D problem. However, =1+ 1+ x m; r>1,
such information is not sufficient for the inversion of the
permeability field, although it may be useful for other and
purposes.
vy=0; r=<1i,
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APPENDIX: ARRIVAL TIMES FOR CIRCULAR dy 2(1—k)xy —
PERMEABILITY HETEROGENEITY ax 1+ 002y r (- (y2=x3) '~

In this appendix, we provide analytical solutions for a
simple 2D problem involving tracer displacement in an infi-
nite domain of constant permeability 1, in which a circular
inclusion of radiusr=1 and permeabilityx is embedded. x ¢
Hence, the permeability is the step function t—tO:f ————dx

Xoux(x !y)

from which the arrival times are obtained by integrating
along the streamlines

g (A8)

k=(1—-xk)H(r—1)+«. (A1)
where ¢ is the porosity. These results were used to compute
To solve this problem, we subtract the homogeneous solutiothe streamlines and the arrival time contours of Fig. 10 in the
(—x) from the potential, and thus consider the problem  text.
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