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Identification of the permeability field of a porous medium from the injection of a passive tracer

Lang Zhan and Yannis C. Yortsos
Petroleum Engineering Program, Department of Chemical Engineering, University of Southern California,
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~Received 27 September 1999; revised manuscript received 28 February 2000!

We propose a method for the direct inversion of the permeability field of a porous medium from the analysis
of the displacement of a passive tracer. By monitoring the displacement front at successive time intervals~for
example, using a tomographic method!, the permeability can be directly obtained from the solution of a
nonlinear boundary-value problem. Well posedness requires knowledge of the pressure profile or the perme-
ability at no-flow boundaries. The method is tested using synthetic data in two dimensions~2D! ~and some 3D!
geometries for a variety of heterogeneous fields and found to work well when the permeability contrast is not
too large. However, it is sensitive to sharp variations in permeability. In the latter case, a modified approach
based on the successive injection in both directions and the use of an optimization technique leads to improved
estimates. The sensitivity to measurement errors is analyzed. An important feature of the direct method is that
it also applies to anisotropic porous media. When the principal axes of anisotropy are known, a suitable
procedure is proposed and demonstrated using synthetic data.

PACS number~s!: 47.55.Mh, 46.65.1g, 05.40.2a, 05.60.2k
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I. INTRODUCTION

Permeability heterogeneity is a most important feature
natural porous media, as it affects significantly flow and flu
displacement properties. These dictate flow paths, and
migration and dispersion ofin situ or injected fluids in po-
rous media, with applications ranging from the recovery
in situ fluids to the fate of environmental contaminants in t
subsurface@1#. Heterogeneity is manifested at various scal
from the laboratory~core! to the megascopic~field! scale. Its
ubiquitous and multiscale nature has attracted the intere
many investigators, and a variety of studies have been
voted to its characterization and identification@2#.

The classical approach for identifying permeability h
erogeneity is based on the inversion of pressure data, u
single-phase flow conditions@3#. Given that the transien
flow of slightly compressible fluids in porous media obe
the diffusion equation, a variety of field tests~well tests!
have been devised to infer permeability features by match
pressure data at well locations to the solution of the diffus
equation. Pressure transient methods have also been ap
to characterize the heterogeneity of laboratory cores, u
minipermeameters@4#. These devices essentially condu
miniwell tests on the surface of a laboratory core~by inject-
ing a small pulse of air and monitoring the resulting press
transient!, which are used to infer a map of the permeabil
heterogeneity at the external surface of the sample.

An alternative approach to permeability identification
based on the analysis of the arrival times during the injec
of passive tracers~namely of tracers which do not affect th
fluid viscosity and density!. Various efforts have been mad
at the field scale to relate the arrival times to the permea
ity, and to match assumed permeability fields to such d
@5#. These techniques are usually indirect, based on optim
ing arbitrary~or constrained! initial guesses to match data
various, usually sparse, locations. As a result, they su
from nonuniqueness. Nonetheless, useful information can
PRE 621063-651X/2000/62~1!/863~17!/$15.00
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extracted, which can be used to constrain images of the
surface permeability field.

When knowledge of the displacement front at success
time intervals is available, for example, through visual
tomographic techniques, arrival time methods should in p
ciple be able to provide direct maps of the heterogene
Brock and Orr@6# reported one such attempt, based on
visualization of displacements in a two-dimensional~2D!
heterogeneous bead pack. Withjacket al. @7# proposed a
model to infer the permeability heterogeneity of laborato
samples from the analysis of concentration contours obta
from x-ray computerized tomography~CT!. Their model is
based on a number of simplifying assumptions, the main
which is that each flow streamtube has constant~but un-
known! permeability and porosity, which is thus tantamou
to an assumption of a layered structure. Although restrict
the work of Withjacket al. @7# was the first to point out the
potential of CT in identifying the permeability heterogeneit
CT techniques are now routinely applied to monitor d
placement fronts in porous media at the laboratory sc
Advances in field scale tomography, for example, by seis
methods or cross-hole tomography, are also likely to lead
analogous results at the field scale@8#. Yet, well-defined
methods to invert such information to determine the perm
ability heterogeneity are currently lacking.

In this paper, we propose a method that focuses on
question, namely, on how to invert data on arrival times
various~and numerous! points in the porous medium to ma
the permeability field. The method, elements of which we
briefly described in Ref.@9#, is based on a direct inversion o
the data, rather than on the optimization of initial random~or
partly constrained! guesses of the permeability field. It i
based on two basic premises, that Darcy’s law for sing
phase flow in porous media is valid, and that the dispers
of the concentration of the injected tracer is negligib
Based on these conditions, we formulate a nonlinear bou
ary value problem, the coefficients of which depend on
experimental arrival time data. Combined with inform
863 ©2000 The American Physical Society
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864 PRE 62LANG ZHAN AND YANNIS C. YORTSOS
tion on the permeability or the pressure at the bounding~no-
flow! surface of the porous medium we obtain a solution
the boundary-value problem, from which the permeabi
field can be directly calculated. The requirement that pr
sure or permeability values at a boundary must be kno
makes the method more suitable to laboratory applicatio
An important feature of the method is that it can be appl
to determine the heterogeneity of anisotropic media, wh
the permeability field is a tensor, as is often the case in m
natural porous media. For this, displacements in two~for 2D!
or three~for 3D! different directions must be conducted.

As described below, the experimental information on
rival times enters in the technique in the form of spat
derivatives. As a result, the solution method is sensitive
errors in their estimation, which are expected to incre
when variations in the permeability are sharper and larg
The errors are magnified around certain limiting streamlin
the width of which increases in the downstream directi
and may lead to poor estimates of the permeability in so
regions. To circumvent the problem in such cases, we h
modified the inversion method by considering a forth-an
back hybrid approach, in which arrival times are recorde
second time by repeating the tracer displacement in the
verse direction. This approach is then combined with an
timization technique to improve the resulting estimates. T
need to repeat the displacement in two directions in s
cases, may be an additional limitation on the applicability
the method to field cases.

The paper is organized as follows. In Sec. II we descr
the inversion method for the case of isotropic media. Sec
III shows numerical examples which test the applicability
the method to various forms of permeability heterogene
and its sensitivity to permeability variation and spatial c
relation. Section IV describes the hybrid approach for inve
ing permeability fields with sharp and large contrasts. A s
sitivity study of the effect of measurement errors is a
provided. The extension of the method to anisotropic me
of known and fixed principal axes is presented in Sec. V.
close with concluding remarks.

II. DIRECT INVERSION ALGORITHM: ISOTROPIC
MEDIA

Consider the injection of a passive tracer in a hetero
neous and isotropic porous medium. In the absence of
persion, the concentrationC(x,t) satisfies the equation

f~x!
]C

]t
1v•“C50, ~1!

wheref(x) is the porosity of the medium andv is the su-
perficial fluid velocity vector. Under slow, viscous flow co
ditions, the latter satisfies Darcy’s law

v52K•“F ~2!

and the continuity equation

“•v50 ~3!

assuming incompressible fluids. Here,K (x) is the~symmet-
ric! permeability tensor, andF is a flow potential,“F
f
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5(1/m)(“p2rg), wherem is viscosity, taken as a constan
p is pressure,r is density, also assumed constant, andg is the
acceleration of gravity. For isotropic media we takeK (x)
5k(x)I , whereI is the identity tensor. The anisotropic ca
is discussed in Sec. V. In the absence of dispersion, we
fine a front location by the equation

F~x,t ![t2 f ~x!50, ~4!

where, assuming constant or monotonic injection rates,
function f (x) is single valued, thus associated with a giv
point x is a single arrival time. Then, the concentration
given by

C~x,t !5Ci~ t !H„t2 f ~x!…, ~5!

where Ci(t) is the injection concentration andH is the
Heaviside step function.

The direct algorithm is based on the following. First, w
equate the two expressions for the normal velocity at
front, given by the kinematics and by Darcy’s law, respe
tively. Noting that the normal at the front is given by

n5
“F

u“Fu
52

“ f

u“ f u
, ~6!

we combine Eqs.~5! and ~6! with Eq. ~1! to obtain a kine-
matic expression for the normal velocity there, namely,

vn52
f~x!

u“ f u
. ~7!

Darcy’s law @Eqs. ~2! and ~6!# gives another expression fo
the same quantity

vn5
k~x!“F•“ f

u“ f u
. ~8!

From Eqs.~7! and~8! we obtain the following result for the
permeability:

k~x!52
f~x!

“F•“ f
~9!

which, in principle, can be evaluated in terms ofF and f.
Substituting the above expression in Darcy’s law and mak
use of the continuity equation~3! we obtain a nonlinear
equation forF, which reads

“•Ff~x!“F

“F•“ f G50. ~10!

The two equations~9! and ~10! constitute the keys of the
direct inversion method. Equation~10! is a partial differen-
tial equation which determinesF, given appropriate bound
ary conditions, and information on the porosityf(x) and the
arrival time functionf (x). From its solution, the permeabil
ity field can be directly calculated using Eq.~9!.

The following remarks are in order.
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PRE 62 865IDENTIFICATION OF THE PERMEABILITY FIELD OF . . .
~1! For the solution of Eq.~10!, the porosity must be a
known function of the spatial coordinates. For applicatio
using CT, this is readily available.

~2! Although, at first glance, Eq.~10! appears to be an
elliptic ~Laplace type! equation, it is in fact a system of first
order hyperbolic equations. This can be readily shown, e
in 2D, by introducing

u[
]F/]y

]F/]x
~11!

in which case Eq.~10! becomes

]

]x F f~x!

f x1u fy
G1

]

]y F f~x!u

f x1u fy
G50, ~12!

where subscripts indicate partial derivatives.~A similar
analysis holds for 3D.! The two Eqs.~11! and ~12! form a
pair of first-order hyperbolic equations. For their solutio
and thus for the solution of Eq.~10!, information on the
potentialF at the~no-flow! boundaries is necessary. Equiv
lently, this information can be furnished from a knowled
of the permeability at the boundaries~which, for instance,
can be obtained for a laboratory sample by a minipermea
ter, as previously noted!. At no-flow boundaries~where in
the normal direction]F/]n50), Eq. ~9! becomes a partia
differential equation for the variation ofF along the bound-
ary, which can be integrated, givenk and f at the boundary,
to yield the required profile. In this way, the numeric
method utilizes information from all boundaries, essentia
solving an ellipticlike, rather than a hyperbolic system. In t
applications to be shown below we solved Eq.~10! assuming
pressure profiles are known at all boundaries.

~3! A notable feature of Eqs.~9! and ~10! is that they
depend on the gradient of the front arrival time rather than
the arrival time itself. On the positive side, this reflects
desirable sensitivity of the method to heterogeneity. Ho
ever, this dependence also introduces numerical instab
which can lead to problems when the permeability contras
sharp and large. A technique to circumvent these proble
and its sensitivity to error in measurements is described l
in Sec. IV.

In summary, supplied with boundary conditions on t
potential, Eqs.~9! and~10! can be solved directly to yield th
permeability field in a heterogeneous porous medium ba
on information on arrival times and the porosity heteroge
ity. The resolution of the inverted permeability field depen
among others, on the resolution of the arrival time contou

Stream-function approach for2D geometries. Before pro-
ceeding, it is worthwhile to note that in 2D geometries,
alternative inversion method is possible, based on the
of the stream functionC, where ]C/]y5vx and ]C/]x
52vy . Stream-function-based methods were proposed
Brock and Orr@6# and Withjacket al. @7#, using Heuristic
arguments, as noted previously. To proceed with such
approach, we first rearrange Eq.~7! to read

] f

]y

]C

]x
2

] f

]x

]C

]y
52f~x!. ~13!

This is a first-order, hyperbolic differential equation forC,
the characteristics of which are curves of constantf, namely,
s
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of constant arrival time, which are available experimenta
Hence, the stream function can be computed by integra
along these contours, for example,

C5C01E
y0

y f

f x
dy, ~14!

where, in the case of a rectilinear sample with a no-fl
boundary aty050, we can takeC050 without loss. To
estimate the permeability we also need to compute the
tential. In the isotropic case, we make use of the fact t
equipotentials are orthogonal to the streamlines, thus

]C

]x

]F

]x
1

]C

]y

]F

]y
50. ~15!

Equation~15! is also a hyperbolic equation, which can b
integrated subject to appropriate boundary conditions. Th
the permeability can be estimated from Eq.~9!, or from the
alternative expressionk5]C/]y/]F/]x. This approach
does not rely on the restrictive approximations made by
previous authors. Illustrative examples will be discussed
low.

III. APPLICATIONS USING SIMULATED DATA

The direct inversion method was subsequently tes
based on simulated data. We used a high-resolution fin
difference simulator~the main features of which are de
scribed in Ref.@10#!, or a streamline-based method, to sim
late tracer displacement at constant-rate and in the absen
gravity and provide data on arrival times and the press
profile at the boundaries. Parenthetically, we note that
forward problem belongs to the general class of proble
recently discussed by Sethian@11#, and can also benefit from
the application of a fast marching technique. Such was
implemented here, however. The numerical results thus
tained, were considered ‘‘error-free’’ data to be used as in
for the solution of Eq.~10!. The boundary value problem
~10! was solved using a standard SOR finite-difference f
malism, which was suitably iterated until convergence. F
example, for the 2D geometry we used the five-point sche

Q i 11/2,j
m F i 11,j

m11 1Q i 21/2,j
m F i 21,j

m11 1Q i , j 11/2
m F i , j 11

m11

1Q i , j 21/2
m F i , j 21

m11 2~Q i 11/2,j
m 1Q i 21/2,j

m 1Q i , j 11/2
m

1Q i , j 21/2
m !F i , j

m1150, ~16!

where Q i , j
m is the conductivity coefficient at block (i , j ) at

iteration levelm. All other coefficients were evaluated usin
the harmonic average betweenQ i , j

m and its nearest neighbor
An interpolation routine was used to interpolate the arri
times, when necessary. The spatial derivatives off were cal-
culated using three-point differences. Equation~16! was
solved using prescribed pressure profiles on the two no-fl
boundaries.

Figures 1–3 show results of the application of the inv
sion method in three 2D heterogeneity fields of a moder
permeability contrast, corresponding to a layered medium
medium with a smoothly varying heterogeneity and a perm
ability distribution following the FBM~fractional Brownian
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FIG. 1. Application of the direct inversion method to a layered system:~a! and~b! actual permeability plots;~c! actual arrival times;~d!
actual~solid lines! and inverted~dotted lines! potential profiles;~e! and ~f! inverted permeability plots.
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motion! statistics. Each figure shows true and directly
verted permeability fields, along with true and directly i
verted and potential profiles. In all these examples, the di
inversion was found to give very good results.

Figure 1 shows that the method handles well permeab
contrasts transversely to the direction of displacement, w
some expected dispersion around the discontinuity. Pote
profiles are also reproduced well, again with some diff
ences noted around the discontinuity. We must empha
that, particularly in this example, the success of the met
rests on the availability of the potential profile at the boun
ary, which removes the nonuniqueness of the problem.@In-
deed for a 1D displacement at constant injection rate i
piecewise constant permeability, Eq.~10! becomes indeter
minate.# Likewise, good results were found when the perm
ability contrast was in the direction parallel to the displac
ment. The ability of the method to invert the permeabil
field in the presence of an arbitrary closed region of sh
permeability contrast is discussed later.

The permeability field of Fig. 2 is smoothly varying an
contains two peaks and one valley, with a permeability c
trast of about 2. It was generated in a 64364 grid using
Franke’s test function fromMATLAB @12#. This function of-
ten serves as a test for the interpolation of scattered data
first note that the arrival times are more sensitive to the h
erogeneity than the pressure profiles, which are essent
parallel to the transverse direction. This feature was a
noted in all other cases, where the permeability variation
relatively smooth. Figure 2 shows that the comparison
-

ct
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tween actual and inverted fields~in permeability and poten-
tial profiles! is very good. This example is characteristic
the success of the method in smoothly varying permeab
fields.

A more stringent test is shown in Fig. 3 involving a sim
lar permeability contrast. The permeability field is of th
FBM type with a Hurst exponentH50.8, and it is a typical
example of a self-affine field, containing large-scale corre
tions @13#. FBM statistics with a Hurst exponent larger tha
0.5 are often taken to describe the heterogeneity in the h
zontal permeability of natural rocks@14#. Figure 3 shows that
the match between actual and inverted data is also q
good. Potential profiles are closely matched. The inver
permeability reproduces well the main features of this fie
specifically the regions where the permeability is high, m
dium, or low. However, discrepancies do exist in the detai
point-by-point variation of the permeability, the inverte
field being somewhat smoother than the actual. The abilit
capture long-wavelength, as opposed to high-frequen
variations is typical of this technique and was noted in ot
examples, as well. Figure 4 shows a statistical analysis
actual and inverted permeabilities. Histograms and the c
relation structure~the semivariograms! match quite well, and
the scatter plot is satisfactory. The dispersion around the
line indicates a small degree of point-by-point mismatch,
also evidenced in Fig. 3.

The direct inversion technique can be equally well appl
to 3D geometries. Before we proceed, however, it is instr
tive to compare inversion results using the 2D strea
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FIG. 2. Application of the direct inversion method to a smoothly varying field:~a! and ~b! actual permeability plots;~c! actual arrival
times; ~d! actual~solid lines! and inverted~dotted lines! potential profiles;~e! and ~f! inverted permeability plots.
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function method described in the previous section. Figure
and 6 show the resulting permeability estimates, along w
the associated stream functions, corresponding to Figs. 2
3, respectively. The streamlines are well reproduced, and
inverted permeability fields maintain the large correlati
features. However, it is evident that the inverted fields m
many details. There are also apparent defects exten
along slice-shaped regions, which arise from the integra
along the arrival time contours. A statistical analysis, n
shown here for lack of space, shows that the inverted per
ability reproduces reasonably well the semivariogram
However, the histograms, and to a greater degree, the sc
plot, have large errors in several places. The stream-func
method is prone to relatively large numerical errors, as
involves a threefold interpolation for spatial derivative es
mation and the integration of hyperbolic equations~for de-
termining the stream function!. These weaknesses make t
method unfavorable compared to the direct solution of E
~9! and ~10! ~as seen in the comparison of Figs. 2–5 a
3–6!. Advantages of the method, on the other hand, are
the permeability is inverted fast, compared to the previo
while one also readily obtains stream function and stream
profiles. These may be useful in certain applications, part
larly in the field.

To demonstrate the applicability of the direct inversi
method to three dimensions, we considered the 3D per
ability field shown in Figs. 7~a! and 7~b!, consisting of a
log-normal distribution generated by the sequential Gaus
simulation, with a natural logarithmic mean of 2.0, a sta
dard deviation of 0.2 and a dimensionless correlation len
5
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he
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it
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-
th

~with respect to the sample size! of 0.5. The permeability
variation is somewhat larger than before. Characteristic
rival time contours from the simulation of the forward pro
lem in a 16316316 lattice are shown in Figs. 7~c! and 7~d!.
The direct inversion algorithm was applied by using a 3
version of Eq.~16! along with boundary conditions supplie
from the forward problem. The results of the permeabil
inversion are shown in Fig. 8. They appear to be in relativ
good agreement with the actual@Figs. 7~a! and 7~b!#. A more
quantitative comparison is shown in the statistics of Fig.
calculated by GSLIB@15#. In general, the comparison i
good. The inverted field shows a smaller range of variat
than the actual, as reflected in both the semivariogram
the histogram. We note that the spatial correlation struct
of the former is well captured in the inverted data. The sc
ter plot indicates a somewhat larger dispersion, compare
the FBM field of Figs. 3,4, which is expected, given th
larger permeability contrast here.

In the above examples, where the permeability contras
not too large, or where the permeability has relatively lar
spatial correlations, the direct inversion method gives go
results. When the contrast increases and variations in pe
ability are sharper, however, the method is subject to
creased errors. These arise primarily from the approxima
of the spatial gradients of the arrival time in regions whe
the latter varies sharply. Figure 10 shows arrival time co
tours, calculated analytically~see the Appendix!, for flow
around an embedded circle of lower permeability. Ev
though the permeability contrast is relatively modest~0.6:1!,
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FIG. 3. Application of the direct inverse method to an FBM field withH50.8: ~a! and ~b! actual permeability plots;~c! actual arrival
times; ~d! actual~solid lines! and inverted~dotted lines! potential profiles;~e! and ~f! inverted permeability plots.
th
an
pa
ffi

ain
he
e

g
p
tio
th

ta
t
r

lit
.
c
te

ec
sti

iff
an

an
e

lity

ent
e

he
the

in-
ival
the
l at

re-
sti-
-

the
there exist two thin layers, extending downstream of
circle and centered around the two limiting streamlines t
gent to the circle, where the arrival times exhibit sharp s
tial variations. In these regions, the evaluation of the coe
cients of Eq. ~10! is likely to introduce errors and
accordingly poor estimates for the permeability in cert
places. These limiting streamlines also exist in any ot
fields containing regions of sharp permeability contrast. B
cause the respective layers extend downstream of the re
of the sharp contrast, however, the associated errors in
meability estimates are different depending on the direc
of displacement. We have conjectured, therefore, that
estimates of the direct method could be improved subs
tially, if we were to combine information from two differen
displacements, one in the forward and the other in the
verse direction.

IV. A HYBRID ALGORITHM

To circumvent the problems posed by high permeabi
contrasts we implemented the following hybrid procedure

~1! Carry out a tracer displacement in the forward dire
tion and directly invert to obtain one permeability estima
kf(x).

~2! Carry out a tracer displacement in the reverse dir
tion and directly invert to obtain a second permeability e
matekb(x).

~3! Retain the estimates in those places, where they d
in absolute value by no more than a prescribed value,
e
-
-
-

r
-

ion
er-
n
e

n-

e-

y

-

-
-

er
d

discard in all others. Assign estimates in these regions by
interpolation algorithm~known in the geostatistics literatur
as kriging!.

~4! Use an optimization algorithm~to be briefly described
below! to fine-tune the so obtained composite permeabi
estimates.

The optimization algorithm is based on standard gradi
methods@16# and will not be discussed here in detail. W
briefly note that we used the following objective function:

J5
1

2
$@ f~k!2f m#T

•W1•@ f~k!2f m#1@k2kp#T
•W2

•@k2kp#1@Fb2Fb
m#T

•Ws•@Fb2Fb
m#% ~17!

consisting of three inner product terms. The first is t
weighted sum of the squares of the differences between
current estimates of the front arrival timesf obtained from
the simulator response, and the ‘‘error-free’’ dataf m. The
weight W1 is a diagonal matrix whose elements are the
verse of the variances of the errors of the measured arr
times. The third term is the analogous inner product for
differences between the current estimates for the potentia
the no-flow boundariesFb and the dataFb

m , with W3 being
the corresponding diagonal matrix. The second term rep
sents the mismatch between the current permeability e
mate k and its priorkp. It is a regularization term, as re
quired by Tikhonov’s theory @17#, and restricts the
parameters being optimized to not deviate greatly from
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FIG. 4. Statistical comparison between actual and inverted permeabilities of Fig. 3:~a! histogram of actual permeability;~b! histogram
of inverted permeability;~c! semivariogram in two different directions of the actual~solid lines! and inverted~circles! data;~d! scatter plot
of actual and inverted data.
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prior information. Here,W2 denotes the inverse of the cov
riance matrix of the prior. Numerical experience has dem
strated its necessity for stable and convergent solutio
However, the accuracy of the initial guess plays a pivo
role in the convergence to the true solution. It is in th
context that the hybrid algorithm offers an important adva
tage. In our method, the prior information is supplied us
the direct inversion method, outlined in steps 1–3 abo
-
s.
l

-

,

which is generally close to the true permeability field. As
result, in many of the cases tried, the optimization meth
converges close to the true values. By contrast, in other
lated inverse problems, the prior permeability is typica
generated by a geostatistical algorithm constrained to~usu-
ally! sparse measurements, and its convergence to the
solution is generally uncertain~e.g., see Ref.@18#!. At the
same time, we must stress that we have also encount
FIG. 5. Application of the stream-function approach to the medium of Fig. 2:~a! and ~b! inverted permeability plots;~c! actual~solid
lines! and inverted~dotted lines! streamlines.
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FIG. 6. Application of the stream-function approach to the medium of Fig. 3:~a! and ~b! inverted permeability plots;~c! actual~solid
lines! and inverted~dotted lines! streamlines.
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many problems involving sharp permeability contras
which cannot be successfully handled even with the hyb
algorithm, as shown below. For completeness, we men
that in order to match arrival times and boundary pressu
as well as possible, we often had to increase their weight
the objective function by multiplying with a large number

Applications of the hybrid algorithm using simulated da
are illustrated in Figs. 11–14 for three different exampl
The medium in Fig. 11 contains two blocks of low perm
,
d
n
s

in

.
-

ability with a 1:5 contrast. This particular configuration co
responds to the experimental Hele-Shaw cell used in R
@19#, and was discretized by a 22310 lattice. The top of Fig.
11 @panels~a!, ~b!# shows the prior estimate fed to the op
mization algorithm, following steps 1–3. Due to the sha
permeability contrast between low and high permeable
gions, the spatial derivatives of the arrival times have sign
cant numerical errors in certain regions, and lead after s
1 and 2 to a mismatch between true and inverted value
FIG. 7. A 3D permeability field and corresponding arrival times:~a! and~b! the actual permeability field in different cross-sections;~c!
the arrival time distribution;~d! arrival time isosurface att50.07.
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FIG. 8. Application of the direct inversion method to the 3D field of Fig. 7:~a! and ~b! representation of the inverted data in differe
cross sections.
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various places. Through step 3~where estimates were dis
carded when they differed by more than 30%!, these errors
have been minimized. The directly inverted field, after ste
@Figs. 11~a!, 11~b!# has the main trends of the true fiel
although it is obvious that the contrast is not as sharp as
actual, and is in need of fine-tuning. Results following t
application of the optimization algorithm of step 4, using
iterations, and based on the initial guess after kriging@Figs.
3

he

11~a!, 11~b!#, is shown in the middle of Fig. 11@panels~c!,
~d!#. The results are much improved and, with a few exc
tions, they are very close to the actual. Although not show
potential and arrival time profiles are also matched very w
By contrast, if in the optimization algorithm we used a un
form initial guess, instead of that corresponding to the dir
method @panels~a!, ~b! in Fig. 11#, the resulting estimate
~after the same number of iterations! is poor in many places
FIG. 9. Statistical comparison between actual and inverted permeabilities of Fig. 8:~a! histogram of actual permeability;~b! histogram
of inverted permeability;~c! omnidirection semivariogram of the actual~solid lines! and inverted~dash lines! data;~d! scatter plot of actual
and inverted data.
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FIG. 10. Streamlines and arrival time contours correspondin
a medium of uniform permeability in which a circular inclusion
lower permeability is embedded~permeability contrast is 0.6:1!.
The contours are calculated analytically~see Appendix!. Displace-
ment is from left to right.
as shown in the bottom of Fig. 11@panels~e!, ~f!#. This is
despite the fact that arrival times and potential profiles
also matched very well. We conclude that, at least for t
example, the application of the hybrid method gives a s
stantial improvement.

Figure 12 shows the application of the algorithm to
correlated log-normal distribution with a logarithmic mea
of 2.0, a standard deviation of 0.5 and a dimensionless
relation length of 0.25. In this example, the block-to-blo
permeability variation is much larger than in the FBM fie
of Fig. 3 or the 3D field of Fig. 7, the largest contrast bei
of an order of magnitude. The application of the direct
version method followed by kriging leads to the resu
shown in the middle of Figs. 12~c!, 12~d!. Although captur-
ing the general features of the true field, the estimates
generally coarser and smoother than the actual values. C
parison of arrival times and potential profiles based on
inverted field~not shown for lack of space! indicates a mis-
match with the actual in certain places. To fine-tune the
sults and recover some of the high-frequency variations,
applied the optimization algorithm of step 4. Results after
iterations are shown on the right of Figs. 12~e!, 12~f!. The
algorithm does not fully reproduce the actual field, and so

to
r
on
FIG. 11. Application of the hybrid algorithm to a system with block discontinuities in permeability~permeability contrast is 1:5!: Top
two plots~a! and~b! show permeability estimates after steps 1–3~kriging!. Middle two plots~c! and~d! show permeability estimates afte
step 4~optimization!. Note the closeness to the actual data. Bottom two plots~e! and~f! show permeability estimates using the optimizati
method but with a uniform permeability initial guess.
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FIG. 12. Application of the hybrid algorithm to a field with a log-normal distribution with maximum contrast of about 10:~a! and ~b!
actual permeability plots;~c! and~d! plots of permeability estimates after steps 1–3~kriging!; ~e! and~f! plots of permeability estimates afte
step 4~optimization!. Note that the cutoff value of the colorbars in the image plots is set at 25.
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errors around large variations of permeability are detecta
However, it is obvious that a significant improvement h
been achieved. Figure 13 shows the corresponding statis
comparison. The mean and the variance from the hybrid
gorithm agree very well with the actual.~By contrast, in
results that are not shown here, the variance from krigin
underestimated by about 20%, although the mean is
same.! The two histograms are roughly equal, while t
semivariograms have the same correlation structure.
scatter plot shows that good agreement exists over a g
range of lower permeabilities, although an increasing sca
can be seen at larger permeabilities. In this example, th
are typically associated with large contrasts. We need to
iterate that the success of the hybrid algorithm depends
large extent on the accuracy of the initial guess, which
here provided by the direct method and positions the opti
zation scheme close to the true solution. By contrast,
estimates resulting from the application of the same opti
zation algorithm after bypassing steps 1–3 and utilizing
uniform initial guess were quite poor, even though arriv
times and potential matched nearly perfectly with the t
values.

At the same time, we must point out that we have a
encountered several cases where the hybrid algorithm
not as successful as desired. Figures 14~a!, 14~b! are ex-
amples of a ‘‘checkerboard-pattern’’ heterogeneous fie
with a permeability contrast of 1:4. A pattern similar to th
was used in some previously reported tracer displacem
e.
s
cal
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s
i-
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nt

experiments@20#. The results of the algorithm at the end
the kriging step are shown in the middle of Figs. 14~c!,
14~d!. The mismatch with the true data is quite apparent. T
2D projection in the middle of Fig. 14 reproduces rough
the places of maximum permeability variation, but the p
ture is clearly ‘‘out of focus.’’ The results of the applicatio
of the optimization method are shown in the right of Fig
14~e! and 14~f!. We note a clear improvement, compared
the previous step, and a better focused image. Yet, the
also clear evidence of mismatches in various places, inc
ing a smoothing of the sharp contrast around the edge
discontinuity, and of other defects, which altogether preclu
an exact matching. Thus, although overall the hybrid al
rithm appears to be a promising alternative in cases invo
ing large contrasts, we caution that this is not uniformly tr
and that many counterexamples can readily be constru
where this algorithm will not be as successful.

Sensitivity study. The sensitivity of the algorithm to shar
permeability contrasts is a reflection of its relatively we
robustness to errors in arrival time and/or boundary press
To asses the latter, we studied the sensitivity of the dire
inverted permeability values to random errors in the arri
time and the boundary pressure, using again synthetic d
For this purpose, the forward numerical solutions for t
arrival time and boundary pressure,f m and Fb

m , respec-
tively, assumed to represent true~error-free! results, were
randomly perturbed as follows
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FIG. 13. Statistical comparison between actual and inverted~after steps 1–4! permeabilities of Fig. 12:~a! histogram of actual perme
ability; ~b! histogram of inverted permeability;~c! omnidirection semivariogram of the actual~solid lines! and inverted~dash lines! data;~d!
scatter plot of actual and inverted data.
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fe5f m1uemin@ f m# ~18!

and

Fbe
5Fb

m1uemin@Fb
m#, ~19!

where ue is a random Gaussian noise with mean equa
zero and standard deviation equal toe. The minimum taken
in Eqs.~18! and~19! reflects the assumption that in a real
tic experiment, the resolution of the measuring device is
dependent of the value of the quantity being measured.
results from Eqs.~18! and ~19! were then used in Eqs.~9!
and~10! to invert the permeability field following the hybrid
algorithm.

Shown in Fig. 15 are the sensitivity results for the perm
ability field of Fig. 12~inversion error vse!. Two curves are
shown, one corresponding to the full hybrid algorithm~steps
1–4! and another corresponding to the results after only s
1–3 were completed, namely, after kriging the direct e
mates from the forward and backward displacements. A
measure of the inversion error, we used the standard de
tion of the inverted from the true permeability, normaliz
with respect to the mean, the error in the input data be
proportional toe. For eache, a total of ten realizations wer
performed. The curves in Fig. 15 represent the mean va
of the results obtained, with the standard deviation also
noted. First, we observe that even in the case of ‘‘error-fre
o

-
he

-

ps
i-
a

ia-

g
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e-
’’

input, the inverted data have a residual error. This was
ready noted in the discussion of Fig. 12, and was attribu
to the relatively sharp changes in permeability for that fie
We also note that inversion errors, following the full hybr
algorithm, are considerably smaller than those based on k
ing, as also discussed before. As the error in the input d
increases, however, the inversion errors for the hybrid al
rithm, both in mean and variance, increase faster than th
based on kriging. In fact, the latter is actually not very se
sitive to errors in the input data, and in a sense is quite rob
compared to the full hybrid algorithm. The latter outperform
kriging at small values of input error. However, it is subje
to increasing inversion errors beyond a certain level of in
error. The origin of this discrepancy is due to the two diffe
ent objectives satisfied by the two algorithms. In the hyb
algorithm, the optimization aims to match arrival time a
pressure data~even if they are inaccurate!. In kriging, this
matching is ignored, after the completion of steps 1 and
Similar behavior was found with other types of synthe
permeability fields used. We conclude that the succes
implementation of the technique proposed relies on in
data of good accuracy.

V. DIRECT INVERSION ALGORITHM: ANISOTROPIC
MEDIA

On the other hand, a strong attribute of this technique
that it can be applied to anisotropic porous media. In t
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FIG. 14. Application of the hybrid algorithm to a checkerboard permeability pattern~contrast is 2:8!: ~a! and ~b! actual permeability
plots; ~c! and ~d! plots of permeability estimates after steps 1–3~kriging!; ~e! and ~f! plots of permeability estimates after step 4~optimi-
zation!. Note that the cutoff value of the colorbars in the image plots is set at 8.
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by
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section, we consider for simplicity 2D geometries, where
principal directions of the permeability tensor are const
and coincide with the rectangular coordinatesx and y,
namely, we take

FIG. 15. Sensitivity of the inverted permeability field of Fig. 1
to errors in arrival times and boundary pressure data. Inver
based on the hybrid algorithm~steps 1–4! ~thin line! and on the
kriging algorithm~steps 1–3! ~thick line!. The error measure is th
normalized standard deviation of the inverted from the actual p
meabilities. The input error is as described in Eqs.~18! and ~19!.
e
t K5Ukx~x! 0

0 ky~x!
U. ~20!

An extension to the more general case is under considera
and will be presented elsewhere. Under these conditions
equations analogous to Eqs.~9! and ~10! read

~K•“F!•“ f 52f~x! ~21!

and

“~•K•“F!50. ~22!

Using scalar notation, and substituting from Eq.~20!, we
further have

kx

]F

]x

] f

]x
1ky

]F

]y

] f

]y
52f ~23!

and

]

]x Fkx

]F

]x G1
]

]y Fky

]F

]y G50. ~24!

Equations~23! and~24! constitute a pair of two equations i
three unknowns (kx , ky , andF! and require additional in-
formation for their solution. One possible approach,
which this information can be obtained, is by conducting tw

n

r-
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FIG. 16. Application of the direct inversion method to an anisotropic field with known and fixed principal axes of anisotropy. Res
kx : ~a! and ~b! plots of the actual permeability component values;~c! and ~d! plots of the inverted permeability component values.
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tracer displacements, one in thex direction with no-flow
boundaries perpendicular to they axis, and another in they
direction with no-flow boundaries perpendicular to thex
axis. If we denote the arrival time functions and the pote
tials of the two displacements byf I and f II , andF I andF II ,
respectively, Eq.~23! becomes

kx

]F I

]x

] f I

]x
1ky

]F I

]y

] f I

]y
52f, ~25!

kx

]F II

]x

] f II

]x
1ky

]F II

]y

] f II

]y
52f ~26!

for the respective displacements. Then, the permeab
components can be determined from the two equations

kx52
f

A F]F II

]y

] f II

]y
2

]F I

]y

] f I

]y G ~27!

and

ky52
f

A F]F I

]x

] f I

]x
2

]F II

]x

] f II

]x G , ~28!

where

A5
]F I

]x

] f I

]x

]F II

]y

] f II

]y
2

]F II

]x

] f II

]x

]F I

]y

] f II

]y
~29!
-

ty

given the dataf I and f II , and the calculated potentialsF I and
F II . The latter can be obtained by solving Eq.~24!, with kx

and ky given by Eqs.~27!–~29!, and with the appropriate
boundary conditions corresponding to the two different d
placements. The following iterative algorithm was impl
mented to solve the resulting coupled system.

~1! Based on thev-level estimates for the potentialsF I
n

andF II
n , use Eqs.~27! and ~28! to estimate thev-level iter-

ateskx
n andky

n . At the initial level (n50), an initial guess,
typically in the form of a linear variation, was supplied fo
the potentials.

~2! Based on explicit (v-level! estimates forkx
n and ky

n ,
integrate Eq.~24! twice, using SOR finite differences to ca
culate the potentials at the next iteration level,F I

n11 and
F II

n11.
This algorithm was found to work well for the various cas
tested.

The method was subsequently applied to the anisotro
permeability field shown in the left of Figs. 16 and 17@pan-
els ~a!, ~b!#. Its statistics are similar to Fig. 7, and involve
log-normal spatially correlated distribution with the sam
mean and standard deviation. By simulating a forward tra
displacement in the two directions,x andy, respectively, we
obtained arrival time functions and potentials at the no-fl
boundaries, which were then used for the inversion acco
ing to the above scheme. The directly inverted fields~in the
absence of optimization or kriging! are shown in the right of
the two Figs. 16 and 17@panels~c!, ~d!#. Given the coupled
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FIG. 17. Application of the direct inversion method to an anisotropic field with known and fixed principal axes of anisotropy. Res
ky : ~a! and ~b! plots of the actual permeability component values;~c! and ~d! plots of the inverted permeability component values.
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nature of the problem, the reconstruction of the two perm
ability components can be considered generally good.
method reproduces relatively well the regions of high a
low permeability. Compared to the isotropic case under
same permeability contrast, however, the reconstructio
not as sharp, and the projections of the inverted images
pear slightly ‘‘out of focus’’ in certain places. This reflec
an underlying mismatch in the arrival times and the poten
profiles, which is not shown here. Further work is under w
to improve the algorithm and fine-tune the direct invers
method, including the implementation of a hybrid algorith
as in the isotropic case.

VI. CONCLUDING REMARKS

In this paper we presented a method for the direct inv
sion of the permeability of porous media, based on arri
time contours and information on the pressure profiles at
boundaries. In real systems, the former can be obtained u
techniques of visualization, computerized tomography~or
seismic and cross-hole tomography for field application!.
The method utilizes Darcy’s law for flow in porous media
combination with the kinematics of flow, as expressed in
arrival times, to derive a boundary-value problem, the so
tion of which leads to a direct reconstruction of the perm
ability field. An important feature of the technique is that
requires information from the pressure at the boundaries
solve an ellipticlike formulation, rather than the two hype
bolic equations, which formally describe the problem. T
-
e

d
e
is
p-

l
y

,

r-
l
e
ng

e
-
-

to

algorithm developed is a rigorous, although not necessa
robust, tool for the analysis of arrival time contours.

Using simulated data, the method was found to work w
for cases where the permeability contrast is not very lar
and the field is spatially correlated. In general, the techni
captures well variations corresponding to larger waveleng
but not as well fine-scale details. For sharper contrast
hybrid version of the algorithm was developed, in which t
direct method is used to generate the initial guess in an
timization algorithm. The hybrid version minimizes the se
sitivity of the method to errors in spatial derivatives, whic
are augmented in the presence of sharp contrasts. Nume
examples in two and three dimensions using simulated~as-
sumed ‘‘error-free’’! data demonstrated that the hybrid alg
rithm works well and that it is superior to the more conve
tional case, where the initial input is a uniform distributio
However, other examples can also be constructed, involv
sharp contrasts and/or errors in the input data, where
inversion technique is not as satisfactory and requires fur
improvement. A sensitivity analysis showed that the meth
is prone to increasing inversion errors, as the quality of
input data deteriorates. On the other hand, a nontrivial
vantage of the direct inversion technique is its potential
invert the permeability tensor in anisotropic porous med
Preliminary results for the case where the principal axes
anisotropy are fixed and known were presented and foun
be promising. Further work is currently under way to fin
tune the method and to also extend it to the more gen
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case, where the permeability tensor is full.
The various requirements for its implementation sugg

that the technique proposed is best suited for laboratory
plications. Even then, its applicability relies on several co
ditions: the availability of pressure profiles at the syst
boundaries, the absence, or the minimization, of dispers
during the tracer displacement and the adequate resolutio
arrival time contours. The first requirement appears to be
most difficult to meet, in view of the demand for adequa
spatial resolution, which presently available tools may
possess, and the need to enforce Darcy’s law near no-
boundaries. Alternatively, this profile can be obtained by
cally probing the surfaces with a minipermeameter to c
struct a surface permeability map, from which the press
profile can be computed. A certain amount of pore-scale
persion in real porous media is also unavoidable, given
the dispersion coefficient is proportional to the velocity, th
leading to a constant Peclet number and a finite amoun
dispersion. However, for relatively small dispersivities, su
dispersion effects could be minimal. Sufficient spatial re
lution on arrival times would allow to capture fine-sca
variations, at the expense of increased computational tim
the optimization routine of the hybrid algorithm, and po
sible instabilities as the degree of resolution increases
the input error increases. However, it must also be remar
that in our experience, so far, a coarse-grid reconstruc
can adequately capture the large-scale features of the pe
ability field, both in the isotropic and the anisotropic case

Regarding field applications, the absence of bound
pressure data and the difficulty in conducting displaceme
in different directions, impose constraints that make diffic
the application of the present technique. One could still
arrival time contours, if available through seismic or cro
hole tomography, to reconstruct streamfunctions and stre
tubes, as outlined in the text for a 2D problem. Howev
such information is not sufficient for the inversion of th
permeability field, although it may be useful for oth
purposes.
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APPENDIX: ARRIVAL TIMES FOR CIRCULAR
PERMEABILITY HETEROGENEITY

In this appendix, we provide analytical solutions for
simple 2D problem involving tracer displacement in an in
nite domain of constant permeability 1, in which a circu
inclusion of radiusr 51 and permeabilityk is embedded.
Hence, the permeability is the step function

k5~12k!H~r 21!1k. ~A1!

To solve this problem, we subtract the homogeneous solu
(2x) from the potential, and thus consider the problem
st
p-
-

n
in
e

t
w
-
-
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s-
at
s
of
h
-

in
-
nd
d
n
e-

.
ry
ts
t
e
-
m-
,

o.

e

r

n

“•@k“~x2c!#50, ~A2!

wherec5F1x. In view of Eq. ~A1! this further reads

“•~k“c!52~12k!d~r 21!
x

r
, ~A3!

whered denotes the Dirac delta function. To solve Eq.~A3!
we use polar coordinates (r ,u) and the following interface
conditions at the place of permeability discontinuity:

cur 511
5cur 512

~A4!

and

k
]c

]r U
12

2
]c

]r U
11

5~12k!cosu. ~A5!

The solution follows readily

c5S 12k

11k D r cosu; r<1, ~A6!

c5S 12k

11k D 1

r
cosu; r .1, ~A7!

from which the velocity components can be calculated. W
find,

vx5
2k

11k
; r<1,

vx511S 12k

11k D y22x2

~x21y2!2 ; r .1,

and

vy50; r<1,

vy52S k~12k!

11k D 2xy

~x21y2!2 ; r .1.

Thus, the streamlines are the solution of

dy

dx
50; r<1,

dy

dx
52

2~12k!xy

~11k!~x21y2!21~12k!~y22x2!
; r .1,

from which the arrival times are obtained by integrati
along the streamlines

t2t05E
x0

x f

ux~x8,y!
dx8, ~A8!

wheref is the porosity. These results were used to comp
the streamlines and the arrival time contours of Fig. 10 in
text.
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