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Helically symmetric astrophysical jets
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Astrophysical jets are modeled outside of their accretion disks by the helically symmetric MHD equilibria.
The derived equilibria are smooth, have no current sheets, and no discontinuities. The obtained exact solutions
to the MHD equilibrium equations generalize the Chandrasekhar equipartition solution and depend upon two
arbitrary functions,a(#) and the plasma density()=0, and K +2 arbitrary parameterg,ay,amnn,bmn-

The total kinetic and magnetic energy of the jet and its mass are finite in anydgyer<c,. In view of a
rapid decreasing of the magnetic fidddin the transversal direction, the modeled jets are highly collimated.

PACS numbdis): 52.30—q, 41.20--q

[. INTRODUCTION permeability. The JFKO equation reduces to the Grad-
Shafranov equatiofil2,13 when the helical symmetry turns

As is known, optical and radio observations have discovinto the axial one. Both equations were widely used to model
ered a variety of jets from the active galactic nuclei and theastrophysical plasmas and laboratory plasmas in tokamaks,
young stellar objects; sdé,2]. Among those are the jet in stellarators, heliotrons, and torsatrons. However, all exact so-
the elliptical galaxy Messier 8/3,4] in the Virgo cluster and lutions to the JFKO equation and the Grad-Shafranov equa-
the Herbig-Haro 34 jdi5,6]. The optical radiation emitted by tion found during the past four decades either have singulari-
the M87 jet is synchrotrofi3]; its intensity image appears to ties or unboundedly grow at infinity or are not localifdd—
have no axial symmetrj4]. We model these highly colli- 17]. Such solutions have a very restricted applicability.
mated jets outside of their accretion disks by the exact mag- The system of magnetohydrodynamics equilibrium equa-
netohydrodynamic§MHD) equilibria, which are invariant tions has the form
with respect to the helical transformations

z—z+yh, ¢—¢+h, r—r. (1.2 pV><curIV—%BxcurIB=gradP+%pgradV2,
Herer,z,¢ are the cylindrical coordinates,= const, anch 13
is an arbitrary parameter.

The observations of the solar prominences detect tubes of div(pV)=0, divB=0, cur(VxB)=0, (1.4
enhanced plasma density having helical structure, which are
presumed to coincide with the magnetic flux rop@k It is  whereB is the magnetic vector fielgy is the constant mag-
known that the solar prominences can remain in a stabl@etic permeability)V is the velocity vector field of the ideal
equilibrium for several months. fluid, p=p(x) is its density, andP is the pressure. Fov

The laboratory experiments indicate the presence of heli=0, Egs.(1.3) and(1.4) coincide with the plasma equilib-
cal external and internal kink modes of plasma in tokamaksjium equationg1.2). ForB=0, Eqgs.(1.3) and(1.4) describe
[8-10. The external kink modes are known as the mostequilibria of an ideal fluid.
dangerous MHD instabilities arising in a plasma pinch. The |n this paper, we develop a helically symmetric model of
internal (m=1) kink instability is associated with the helical astrophysical jets that are in a state of magnetohydrodynam-
plasma distortion that precedes the sawtooth oscillationfs equilibrium. Such equilibria have to be global, which
[8,9] near the magnetic axis of a tokamak. The best availablgheans they have to satisfy the following necessary physical
analytical approximations of the external and internal kinkconditions in the cylindrical coordinatesz, ¢.
modes for a “straight tokamak’ are the hellcally symmetric (@) The magnetic field, the p|asma Ve|ocity/, and pres-
plasma equilibria. They have been employed in the numerisyreP are smooth and bounded R#.
cal study of the reversed-field pin¢h0]. (b) The total magnetic and kinetic energy of plasma and

All these helically symmetric plasma configurations areits total mass are finite in any layef<z<c,. The pressure
described by the JFKO equation derived by Johnson, Friep_.p, atr— .

man, Kulsrud, and Oberman [11]. This equation is a re- (c) All magnetic-field lines are bounded in the radial vari-
duction of the plasma equilibrium equations, abler.

The conditiongb) and(c) mean that the jet is localized in
the transversal direction. The asymptotic value of pressure
p; in the condition(b) is the average pressure of the ambient
medium. As usual, the gravitational foreepgrad ¥ is in-
for the helically symmetric solutions. HeReis the magnetic  cluded in the pressure gradient in Eq.3) in the approxi-
field, J is the electric current density, andis the magnetic mation of constant density.

1
JXB=gradp, JzﬁcurlB, divB=0 (1.2
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We model the astrophysical jets by the helically symmet-plest equilibria have a double helix of magnetic axes. These
ric MHD equilibria, which are smooth and bounded in the exact solutions can be used to model not only the astrophysi-
whole Euclidean spadé® and have no singularities, no cur- cal jets but also the plasman&1) kink modes detected in
rent sheets, and no discontinuities[118,19, we derived the tokamaks[14,1€ and the twisted magnetic flux ropes ob-
exact global plasma equilibria with axial symmetry. The ob-served in solar prominencé¢g].
tained magnetohydrodynamics equilibria generalize the Animportant feature of the obtained solutions is that their
Chandrasekhar equipartition solutip20], which is defined generic magnetic-field lines and streamlines are quasiperi-
by the following three conditions: odic in variables,z, ¢. That means that they never repeat in

the z direction but appear arbitrarily close to their initial data

1 ) when variablez evolves. Therefore, the pattern of winding of

iﬁB’ B°=const. (1.9  the magnetic-field lines about each other does vary irzthe
direction.

The first condition(1.5 implies that the densities of the ~ The intensity of the synchrotron emission from the jet is

plasma kinetic energpV/2/2 and magnetic energy?/ (2. proportional toB? [3]. Hence t_he_jet_intensity image is de-
are equal. However, in the real plasma equilibria, the equifined by the form and the distribution of the surfade®

1

V= 5

p=const, P+

partition condition might not be satisfidd]. =const. For the derived solutions, the magnetic figlde-
We suppose that creases at—o as rapidly ascy exp(—pgrr#V. Hence the
high collimation of the jet follows.
B= By, V= bW B 1.6
=a(§)Br, V=B (1.6 Il. THE MAIN PHYSICAL ASSUMPTIONS

We develop a model of astrophysical jets based on the
following physical assumptions inspired by the results of the
observations of the jet in the elliptical galaxy Messiel{ 8
a2(y)—b?(ih)=Cy=const, (B,-grady)=0, divB,=0. eql(JIi)Iil:;l;ihuemJet is in a state of a helically symmetric MHD
1.7 (ii) In the cylindrical coordinates,z,¢ (1.1), the total

It is evident that Eqs(1.4) follow from Egs.(1.6) and(1.7).  Plasma kinetic energy and magnetic energy in any layer
The second equatiofl.7) means that the functiogi(x) is ~ <Z<cC> are finite.

constant along the magnetic-field lines, or along the plasma (i) All plasma streamlines and all magnetic-field lines

streamlines. Hence the surfaces of the constant level of ea@€ bounded in the radial variahie

function a(y), b(y), and p(y) are the magnetic surfaces. (V) At r—c, the plasma pressur@—p;, where p;

where the vector field3; and the functionsa(y),b(¥),y
= /(x) satisfy the equationgsee Appendix €

The two functionsb () andp(#)=0 are arbitrary. =const>0 is the average pressure of the ambient medium.
For the special cas®d(y)=cp(y)="12(), in which (V) The total mass of plasma in any layej<z<c; is

function f(#) is nonzero in an intervdl: 0<y <Y<, finite.

and is zero outside df the plasma is localized in a cylindri-  Let us prove that the MHD equilibrium equatios.3)

cal domain G=r <R, around the axig and a magnetic field and (1.4) for solutions(1.6) and (1.7) are reduced to the
exists in the whole space. It is evident that the total mas®lasma equilibrium equationd.2). For any aligned vector
of plasma and its kinetic energy are finite in any layerfields A=g(x)B;, one has the identity

c1<z<cC,.
The solutiong1.6) have the following physical meaning. AX curl A= g?B, X curl B, + BZ gradg?/2
The ratio of the plasma magnetic and kinetic energy
—g(B-gradg)B; . (2.1
& =1+ C1 ing i i i i
upV? b2(4) Applying identity (2.1) to the vector fieldg1.6) and using

Egs.(1.7), we get

is constant on the magnetic surfaces but is variable in the

spaceR3. Note that neither magnetic nor kinetic energy B curlB=a?B, X curl B, + § B2 grada?,
separately are constant on the magnetic surfaceS; }0,

then the magnetic energy is everywhere greater than the ki- 1 1 2
netic energy; ifC,<0, the converse is true. The ca€g pV X curlV=—b?B,; X curlB,;+ z—pBigrad—.
=0, p=const corresponds to the Chandrasekhar equiparti- K K p
tion solution(1.5). _ i ]

We show that Eq(1.3) and(1.4) for solutions(1.6) and Sub§tltutlng these formulas into the MHD equatidr3), we
(1.7) are reduced to the plasma equilibrium equatighg). ~ ©Ptain
Hence their helically symmetric solutions are described by
the JFKO equation.

For the helically symmetric MHD equilibria, the magnetic
surfaces are nested cylinders that rotate as helices around the
axis z. The innermost cylinders are their magnetic axes,
which altogether form a finite system of helices. The sim-

1 2 2
;(a —b%)curlB; X B,

1 2 2 2 2
=gradP + E(Bl grada“+b“ gradB7).
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Using here the equatioa?()—b?(y)=C,, we arrive at 1% 149 rooag\ ()
the plasma equilibrium equations 22 tr E(m ar + 1252
curlB;XB;=pu gradp, divB;=0, (2.2 291 () o) 29
where (re+y%) # ' '
1 where the prime denotes differentiation with respect/to
pz( P+ ﬁbz(w)Bi) / Ci. (2.3  Equation (2.9 is equivalent to the Johnson-Frieman-

Remark 1 The plasma equilibrium equatior2.2) imply
the equatiorf21] (B, - gradp)=0. Hence for any solution to
Egs. (2.2), function #(x) does exist and/(x)=p(x). The
above arguments prove also that any plasma equilibriu
B(x),p(x) defines an infinite dimensional family of magne-
tohydrodynamics equilibria,

b(p)
Vup(p)

B=a(p)B;, V= B;, a?(p)—b?p)=Cy,

b%(p)
P=Cip— 20 BI,
whereb(p) and the plasma density(p)=0 are arbitrary
smooth functions.

The helically symmetric magnetic fiel; has the form

gty ]

where (r,u) andf(r,u) are some smooth functions=z
— ¢, I=3dylix, andg ,&,,&, are the unit tangent vectors
corresponding to the coordinategl, ¢». The current] is

3= Lounp, =2 e - e 4 0 2
—;cur 1= TERTERTDE ), (2.5
where
Py’ y
l=—2— 1=, (2.6
@_1329/; d(1ay a(f )
“rad T\ vl @D

Formulas(2.4) and (2.6) imply the expression for the mag-
netic fieldB; in the cylindrical coordinates,z, ¢:

hu, A A () =1y
BlzTQ+Blez+Bze¢, Blzy_rZ+_,y2_!
o, 70 .

r’+ 'yz

Formulas(2.4) and(2.8) imply that Eqs.(1.7) are satisfied if
and only ifa=a(#), b=b(y), andp=p(y) are arbitrary
functions of, p(#)=0.

Johnsoret al. had shown if11] that the plasma equilib-
rium equationg2.2) for the helically symmetric solutions are
equivalent to the equalitids=1(#) andp=p(#) with arbi-
trary functionsl () andp(¢), and the equation

Kulsrud-Oberman(JFKO) equation[11], in which another
variableu=mq¢—hz was employed. We use the variahle
=z—y¢ because only parameter=m/h is essential. For
v=0, the JFKO equatiofR.9) turns into the Grad-Shafranov

pgquation [12,13, which describes the axially symmetric

plasma equilibria.

The JFKO equation(2.9) and formula(2.6) imply that
function @ (2.7) has the form®=—urp’(y)—fl'(¢)/r.
Hence we obtain the following for the curreht(2.5) in the
cylindrical coordinates,z, ¢:

W

J= Bi—p'()(ré,+v&). (2.10
For the analytical case, the functioh@@)) andp(#) can be
expanded into the power series

|()= g+ ay b+ agyp?+---,

P()=Ppo+ Brih+ Bath*+- -+, (2.11

with constant coefficients; ,8; . The physical conditiorii)
[the finiteness of the magnetic ene@$/(2u) in any layer
c1<z<c,] and the formulag2.8) imply that atr—« the
asymptotics hold:

[(#)—0, ¢—0, ¢,—0. (2.12

The flux functiony(r,u) is defined by Eq(2.4) up to an
arbitrary constant. Using asymptoti¢®2.12, we normalize
this constant by the conditiog(r,u)—0 atr—oo.

The physical conditior(v) implies p(r,z)—0 atr—oo.
Hence the conditiop=0 yields

(2.13

wherea,>0. If b(y)=Cq[p()]"? n>1, then the plasma
velocity V=C,p("~1/?B, is finite everywhere.

The asymptoticg2.12 and ¢—0 at r—oo imply that
ag=0. The formula(2.10 and the asymptotic8—0, J
—0 atr—o imply B;=0. Hence for any global solutions,
the power serie§2.11) actually have the formg,= + «?)

l()=aptagy? oo, ply)=po* kPPt
(2.14

Thus, the general global solutions are perturbations of the
ground-state solutions defined by the lowest-order terms,

L) =ay, p(P)=po* k>P>.

In [24—26, the formula for the pressune(y)=po+ x2y/?
was used to study the Grad-Shafranov equatadal sym-
metry), which is the limiting case of the JFKO equati¢h9)
at y— 0. It was shown that the corresponding exact solutions

p=aptagy’+---,
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#(r,z) have infinitely many zeros at—« and do not satisfy
the physical conditiotii). Therefore, we do not consider this
alternative for the pressure.

Thus the physical conditions) and (i) lead us uniquely
to the following ground-state assumptions:

() =ay, p()=po—2B°¢°Iu,

where @« and B are arbitrary constants. The corresponding
JFKO equation(2.9) is linear:

1a2¢+1a roooy _ag? a?y 2ayy
T T N T i A T
(2.15

In Sec. lll, we prove that Eq2.15 has exact global solu-
tions that satisfy all physical conditiorig—(v).
The plasma pressuf (2.3) takes the form

P=p;- E2[»'2c s ib2<w>B2 (2.16
1 m 1 2,U« ’ .
wherep,;=Cpy. We suppose that
p1>max 282C 2+ b?()B32]/ . (2.17)

Then the plasma pressulreis >0 everywhere. It is evident
that constanp, does not enter the plasma equilibrium equa-
tions (2.2).

Remark 2 For any solution/(r,u) to the linear equation
(2.19), the functionCy(r,u) is also a solution for any con-
stantC. Hence, for any bounded solutioa(r,u) and any
ambient pressurg,;>0, we have a family of solutions
Cy(r,u) that satisfy the conditio2.16). The physical con-
dition (iv) follows from Eqg. (2.16 and the asymptotics
b?(¢)BE=up()V?—0, y—0 atr—co.

Remark 3a2()—b?(y)=C, [Eq. (1.7)] has the follow-
ing solutions. (i) C,;=k* a(y)=kcha(y), b(y)
=ksha(y); (i) Ci=—k* a(y)=kshp(y),b(¥)
=kchpB(y), where a() and B(y) are arbitrary smooth
functions.

The corresponding vector field4.6) have the form

y_ ksha(y)

Vup()

B=kCha(l,b)Bl, 1

Ve kchB(y)
Vaep()
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y(r,u)=A(r)[acofwu)+bsinwu)], u=z—1yd.
3.1
Hence we obtain the equation
1d r  dA(r)
rdr r7+y2 dr
(452 w? a? 2ay A
=\ 4B Tz 212 (171 Y92 (r).
(3.2

This equation does not belong to any known class of inte-
grable ones[22]. To find exact solutions, we substitute
A(r)=r*e F°B(x), x=28r2% A=0, which reduces Eq.
3.2 to

(X?+ ¢y X)B"+[—x%+ (A —cy)x+ (A +1)c,]B’

N a2—17 azyz— 7772 ay—Ci—N X+Cq
88 4 2 4x
X()\Z—yzwz))B=0, (3.3

where B’ =dB(x)/dx, ¢;=28v? and p=4B%y*+4B\

+ w?. To find solutionsy(r,u) (3.1) obeying the asymptot-
ics y—0 atr—oo, we seek the polynomial functiori3(x)
(with a nonzero free terjn Inspecting the highest- and the
lowest-order terms in Eq3.3), we obtain the necessary con-
ditions

=n, \=|yol, (3.9

88

where the integen=0 is the order of the polynomid(x).
The form of the solution(3.1) implies thatyw must be an
integer: |yo|=m=0. Hence we get\=m, o==xm/y,
and 7= (2By+m/y)2. The first necessary conditio(3.4)
becomes the algebraic equation

a?y?=(m+cy)%+4nc, (3.5
for the two unknown integens andn. We present Eq(3.3
in the form

(x%>+ ¢ X)B"+[ — X2+ (m—cq)x+(m+1)c,]

XB'+n(x+c¢;—kmni€1)B=0, (3.6

For the first case, the magnetic energy is everywhere great¥fiere kmn=(m+c,—ay)/(2nc;). Note that Eq.(3.6) is

than the kinetic energy: the converse is true for the secondifferent from all classical differential equations that define
case. ’ the Chebyshev, Hermite, Laguerre, Legendre, or Jacobi poly-

nomials[22,23.
In Appendix A, we prove that the differential equation

Ill. EXACT GLOBAL MHD EQUILIBRIA (3.6) has a polynomial solution

The helically symmetric solutions depend on the two vari-
ablesu=z— y¢ andr (1.1) and therefore have to be periodic
in the variableu (and hence in the variabl® with period
27ry. To study the linear equatiof2.15, we apply the Fou-
rier method and separate variables by the substitution

m m+1

Bmn(X)= W Lmen(X)— kmnXW Linen(X), (3.7

whereL ,(x) are the Laguerre polynomials
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N, L (=Dkp!
5o (e 0= 2 anrpion
(3.8

1
Lp(x): a

Hence we obtain that Eq2.15 has the exact solution

2
Ymn=r"e" an(Z,[BrZ)[amncos{mu/y)

+bp,sinimu/y)], (3.9
where a,,, and b,,, are arbitrary constants. Fon=2, the
magnetic field(2.8) B;(0,2)=0 on the axisr=0. Only the
m=21 kink mode (3.9 has a nonzero magnetic field at
=0.

The linearity of Eq.(2.15 implies that if the algebraic
equation(3.5 has several integral solutioms, n then any
linear combination of the corresponding functidBs9) is an
exact solution to Eq(2.15).

For n=0, the necessary conditiof3.5 is a=28y
+m/vy, and Eq.(3.6) has solutionB=const. Hence the
JFKO equation2.9) has the exact solution

Yino(r,U) =rMe™ P a,, codmu'y) + by, sinmu/y)].
(3.10

Form=n=0, a=28Yy, the solution(3.10 takes the Gauss-

ian function form ¢,(r)=exp(—pBr?). The corresponding
magnetic field(2.8), current(2.10, and pressure are

2 4 2 2

B,=2Be Fg,, J= Tre‘ﬁr &,
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decreases at—x as rapidly axy exp(—Brdr?N. Hence the
total magnetic energy in any laye;<z<z, is finite. The
magnetic surfacegy(r)=const are cylinders= const.

Thus we have demonstrated that the JFKO equdfidd)
has global solutiong3.11), (3.13, (3.16, where the two
parameters3>0 and y#0 are arbitrary. These equilibria
possess cylindrical symmetry because they areand
¢-invariant.

For m=1, the flux functionsy,(r,u) (3.9 define the
magnetic fieldsB; (2.8) and currents] (2.10, which are
smooth in the Cartesian coordinates and decrease-at as
rapidly asc, exp(— Ar?)r?". Hence the above physical condi-
tion (ii) is satisfied. However, conditiofiii) is not met be-
cause the magnetic surfaag,,(r,u)=0 is a helicoidz
=y¢+c that is unbounded in variable

To find the global equilibria, we consider a linear combi-
nation of the exact solutiongy(r) (3.13 and ,(r,u)
(3.9 that satisfies Eq.2.15 provided that the two necessary
conditions(3.5 and (3.12 hold simultaneously. These two
conditions yield the formulas

m2

= 2:—
C1=2BY = oN=2n—m)"

_ my(4N—-m)®—16nN

YT T2N=2n—-m) (3179
_m+Cl—a'y

mne 2ng

=m[4(N—n)—m
—J(4N—m)?—16nN]. (3.18

This is a global plasma equilibrium possessing cylindricalThus we obtain that for any value of parameterland 8

pP=po— 27/32(32&2. (3.11)
symmetry.
For m=0 andn=N=#0, the necessary conditigB.5) is
a?y?=c2+4Nc, (3.12
and the exact solutio(B8.9) takes the form
In(r)=aye P Boy(2617), (313
where polynomialB,y(x) are
Bon(X) = Ln(X) = KnXLy(X). (3.14
Equation(3.12 implies
ay=ci\V1+2N/(By?),
2
kN:C;;J::: - ‘1+22|\IN/(M 0. (319

Hence polynomial$,y(x) depend on parametgry?.
For the flux function(3.13), the magnetic field2.8)

ar g+ vy

CaynTIYy 5
I’2+ ‘yz b

Bl_ I’2+’y2

(3.16

= B(v) defined by Eqgs(3.17), the JFKO equatiori2.9) has
the exact solutions

Unmi=€ P {anBon(X) + I ™Bpyn(X)[amncOg MU' y)
+bmasinimu/y) 1}, (3.19

whereN,m,nare arbitrary integers0 satisfying the inequal-
ity 2N>2n-+m, andx=2pr2. The inequality N>2n+m
implies that functionym(r,u) (3.19 has the leading term
(—2B)Nay exp(BrArN at r—o. Hence equilibria(3.19

for m=1 satisfy the above conditiofii), and all magnetic
surfacesyym(r,u) =const asymptotically for>1 are cyl-
indersr =const. Therefore, all streamlines and all magnetic-
field lines are bounded in variabte condition(iii). The for-
mula(3.19 implies that the total mass of plasma in any layer
c1<z<c, is finite if, for examplep () =ay? or p(y)) is any
analytical function ofy (2.13. Thus the exact solutions
(3.19 define the global MHD equilibria satisfying the above
physical conditiongi)—(v).

IV. EXAMPLES

For N=1, the inequality A>2n+m has one integral
solutionm=1, n=0. Formulas(3.17 give ¢c;=3, ay=3,
and B=1/(4y?); hencek;=—1 and polynomialBy(x) is
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FIG. 1. Magnetic surfaces @&=0 for the astrophysical jets
model.

1-2x; see formula(A2) in Appendix A below. Thus the
flux function (3.19 has the equivalent formx 28r?)

W(r.z,d)=e F[1—4Br2+a,r coszly— $)]. (4.1)

Figure 1 shows the sectior=0 of the magnetic surfaces

Y(r,z,¢p)=const fora;=—1, B=0.1, and y= \/§ The
function #(r,0,¢) (4.1) achieves its maximum afr
=0.8968,¢= 7 and its minimum at =3.0168,¢$=0.

The two-dimensional magnetic surfaces are obtained fro
the curves in Fig. 1 by simultaneous rotationgnwith an-
gular speed 1 and translation mwith speedy. Figure 1

shows that there are three domains filled with cylindrical
one outer domain and two inner do
mains with two magnetic axes corresponding to the critical
points of maxima and minima. The magnetic axes form a
double helixthat is presented in Fig. 2. These two curves are

magnetic surfaces:

exact magnetic-field lines.
Figure 3
B2(x,y,z)/2u for the plasma equilibriuni4.1) for y=0, z
=0 anda;=-—1, 8=0.1, y= \/§ n=0.1. Figure 4 shows
the level curvesB2(x,y,0)=const,z=0. The magnetic en-
ergy B2/2,. is concentrated near the axsand tends to zero

12

FIG. 2. Double helix of magnetic axes.
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represents the magnetic energy densit
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B2_

3 4 0

FIG. 3. Density of magnetic enerd@?(x,0,0)/2u.

very rapidly atr—oo. This property means that the above
exact solution models a highly collimated astrophysical jet.
The intensity image of the jet is defined by its synchrotron
radiation, which is proportional t82 [3]. Hence the detect-
able form of the jet approximately coincides with a surface
B2(x,y,z) =const. The surfaceB?= const are obtained from
the curves in Fig. 4 by the helical transformations. It is evi-
dent from Figs. 1 and 4 that the magnetic surfages
=const[or p(#)=cons{ and surfaceBizconst are differ-
ent. The magnetic energy B/2u = a?()B2/2u. Hence the
surfaces of constant magnetic eneRff2u do not coincide

Mith the magnetic surfaceg=const and depend upon an

arbitrary functiona(y).

Figure 5 shows the plasma pressuEx,y,z)=pg
=282 u aty=z=0, py=1.2 for the plasma equilibrium
(4.1). The plots in Figs. 3 and 5 evidently have no symmetry
ith respect tax=0.

For N=2, the inequality A>2n+m has four integral
solutionsm=1, n=0; m=1, n=1; m=2, n=0; andm
=3, n=0. Form=1, n=0, we find from formulas(3.17)

Y. 1

C,=3%, ay=1, andB=1/(12y?). Hencek,= — 2 and poly-

6 T T T T 7 T

2L

4l

-6

2 x 4 é

0

FIG. 4. Surfaces of constant
=const atz=0.

magnetic enerBy(x,y,z)
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=8 =4 0

FIG. 5. Plasma pressurp(x,0,0) for the astrophysical jets

model.

nomial Byy(x) is 1—5x+2x?%; see Appendix A, formula
(A2). The exact solutiori3.19 takes the equivalent form

z,/;(r,z,¢>):e*ﬁr2[l— 10Br2+8B%r*+ayr cogz/y— ¢)].
(4.2

The sectiorz=0 of the magnetic surfaceg(r,z, ¢)=const
is shown in Fig. 6 fora;=—1.5, 8=0.1, andy= \/E The
flux function ¢(r,0,¢) (4.2) achieves its local maxima at two
points r=4.8625, =7 and r=0.6940, ¢= 7 and has its
minimum atr =2.2361,¢=0. Hence there are four invariant
domains inRk® filled with cylindrical magnetic surfaces: one
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FIG. 7. Triple helix of magnetic axes.

the flux functions(3.19. Hence the subsequent intersections
of the magnetic-field lines oi€, with curvesS, and S;
define a rotation transfor,: S;— Sy=S;. For an appro-
priate angular parametesr=smod 1 on the closed cun&®,,

the mappingT,, is Tn(s)=s+ 0y(h). For a generich, the
rotation number 6y(h) is irrational. Hence the generic
magnetic-field lines are quasiperiodic in variakigg and in
variablez mod 27ry. This important property implies that the
pattern of winding of the magnetic-field lines about each
otherdoes varyin the z direction for the constructed global
plasma equilibrig3.19. For details, see Appendix B.

V. HELICAL MHD EQUILIBRIA DEPENDING
ON 2K+2 PARAMETERS

To derive the MHD equilibria depending on more than

outer domain and three inner domains. The correspondinthree parameters, we have to find more than two integral

three magnetic axes formtaple helix that is presented in

solutions to the algebraic equatio3.5 and (3.12 with

Fig. 7. The curves in Figs. 1 and 6 are symmetric with re-given constantsry andc;. The first formula(3.17) implies

spect to the reflectiog— —v.

In the coordinates,z, ¢, the magnetic surfaceg(r,u)
=h=const are the helically rotating cylinde@,, see Fig.
1. The section§,, z=2myk of a cylinderC,,, are the same
for all integersk because of the periodicity—z+ 27y of

8+

4

y

o ©

— 4+

~8 p

~10 =5 N 10

FIG. 6. Magnetic surfaces for plasma equilibriurtg.2)
atz=0.

that parametec;=28%? should be rationalc;=p/q. Ex-
cludingay= \/czl+4N c, from Egs.(3.5) and(3.12, we ob-
tain the Diophantine equatid27]
4pN=qm?+2pm+4pn. (5.1
In general, Eq(5.1) for givenN,p,ghas many integral solu-
tionsm,n Taking a linear combination of the corresponding
flux functionsyy(r) (3.13 and g, (r,u) (3.9), we obtain an
exact solution to the linear equati¢®.15. We present this
construction in an explicit form foc,=1/(2l), wherel is an
arbitrary odd number. Hencg=c,/(2y%)=1/(4l1y?) and
a=+8IN+1/(2lvy).
Forp=1, q=2I, Eqg.(5.1) takes the form
2N=Im?+m+2n. (5.2)

It is evident that this Diophantine equation h&s 1 pairs of
integral solutions,

m(Im+1 V8IN+1-1
n:N—¥, m=0,1,2,..K, K= T}

The coefficientky (3.15 andk,,, (3.18 are
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k_l—\/8|N+l K _2Im+1—\/8IN+1 5.3 ’
_—, - n . .

N 2N mn 2

Taking a linear combination of the exact solutiofig(r)
(3.13 and ¢y,(r,u) (3.9 for I=m=<K, we obtain that the 4+
flux function

K
y= e—ﬁrz( anBon(X) + 21 rman(X)[amncos(mUI')’)

+by,sinmu/y)] (5.4)

satisfies the JFKO equatiof2.9), depends on an arbitrary - gL
parametery, and linearly depends upork2+1 arbitrary pa-

rametersay ,amn,bmn- The corresponding magnetic fiekl —10 "y 0 x 5 10
(2.8), current J (2.10, and pressurep=py— 282y u

are smooth and bounded in the whole Euclidean space. FIG.8. Asymmetric magnetic surfaceszat 0 for plasma equi-
The function (r,u) (5.4 has the leading term librium (5.5).

(—2B)Nay exp(—Brd)rN atr — . Hence asymptotically for
r>1, all magnetic surfaceg(r,u)=const are cylinders
=const and the magnetic fieBl;, and current] decrease at
r—oo as rapidly axy exp(—BrorN andp—p,. Therefore,
the flux functionsys(r,u) (5.4) define global plasma equilib-
ria satisfying the above physical conditios—(v).

We apply the previous constructions fan=1, B
=1/(4y?). For N=3, the Diophantine equatiofb.2) has
three pairs of integral solutionsm=0, n=3), (m=1, n
=2), and m=2, n=0). Formulas(5.3 imply ky=—3%,
ki,=— 3. Hence polynomiaBgg(x) is 1—5x+ 7x2/2—x3/2
and polynomiaB;,(x) is —3+ 9x/2— x?; see formulagA2)
and(A3) in Appendix A below. The flux functioif5.4) takes
the equivalent form

so that(14.5) is excluded by the topology, cannot be in
equilibrium.”

In [29-31], this conclusion was called “Parker’s theo-
rem.” Many consequences and generalizations were pro-
duced assuming that the theorem is true; [28e-39.

Parker’'s hypothesis is formulated under three important
conditions[28]: (i) “the local perturbation to the field is
small compared to the total field,” p. 361j) the length of
the flux tubel is “large compared to the characteristic trans-
verse scale of variatiohof the field,” p. 362; andiii) “the
magnetic field is analytic in its deviatianfrom the invariant
field B;(x,y),” p. 378.

Parker’'s hypothesis attracts considerable attention in the
literature. Rosner and Knobloch [B4] study an example of

—e A%(1-108r2+1482r*— 4836 two plasma equilibrium magnetic field8y(x,y) and
v { o o A B1(y,z), where the first iszinvariant and the second
+a,r(—3+98r2—4p%r* codz/y— ¢) x-invariant. They treaB,(y,z) as a perturbation dBy(x,y)
2 ) and notice thaB,(y,z) is not z-invariant. However, such a
+rela,cog2z/y—2¢)+b,sin2z/y—2¢)]}. perturbation adds an infinite magnetic energy in any layer

(5.5 c1<z<c, and hence does not satisfy Parker's condifion
Nor does it satisfy Parker’'s conditiofii). Moreover, the

Figure 8 represents the sectipa 0 of the magnetic surfaces only exact solutions presented [84] have singularities:
¥(r,z,¢)=const fora;=§, a;=— 15, b;=35, B=0.1,and B (x,y)=(x2+y2) (—y,x,0), By(y,2)=(y>+2z2) (O,
y= \/§ The functiony(r,0,¢) (5.5 has two points of local —2z,y), Eqg. (3.10.” Hence, the case treated [134] is dif-
maxima and three points of local minima that define fiveferent from the one treated {28] and therefore it is not a
helical magnetic axes. The distribution of curves in Fig. 8 iscounterexample to Parker’s hypothesis.
evidently asymmetric while the curves in Figs. 1 and 6 are Van Ballegooijen, in his pap€9], using an expansion
symmetric with respect to the reflectign- —y. The generic  parameter different fronp28], constructs the force-free per-

plasma equilibrig5.4) have no additional symmetries. turbationsp=const, of a constant uniform magnetic fiélg
that depend orz. The lowest-order equatidr39] is equiva-
VI. COUNTEREXAMPLES TO PARKER'S HYPOTHESIS lent to the time-dependent two-dimensional vorticity equa-

tion and its solutions are supposed to be well-behaved. How-

The general properties of the plasma equilibria were theever, the complete solution [89] is presented in the form of
subject of an interesting discussion in the literature. In hisan infinite power series obtained by subsequent resolving of
1979 book[28], Parker writes on p. 374, “Consider a mag- a more complex system of partial differential equations.
netic field Bj(x,y) + eb;(x,y,z) in the neighborhood of the Whether this power series is well-behavedithand whether
general equilibrium fieldB;(x,y),” and after a detailed it satisfies Parker's conditiofii) is not studied. No exact
study arrives at the conclusion on p. 377, “Thus, in the gensolutions are obtained {189,40 and the author writes, “Our
eral case, we are led to the conclusion that the invarianceonclusions daot apply to systems with field lines that are
db;/9z=0 (14.5) is a necessary condition for equilibrium. not tied to a boundary. Examples of such systems are the
Any field in which winding pattern changes along the field, toroidal fields used in fusion machinds.g. tokamaks”
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[39], p. 426. Hence the work by Van Ballegooijg3Q] can- 1—Nky 1-nKyp
not be considered to supply a counterexample. Therefore, |BON(X)|>T(X_XN)N1 Brmn(X)| <———x".
Villata and Tsinganos wrote the following in 199&7], p. '

2158, in complete contradiction with Van Ballegooijen’s re- Hence we find

sults and in complete agreement with Parker's hypoth-

esis: “It is well known that all well-behaved MHD equi- | rnmn— ] rmxn
ihri i ; — 0 <ACNnmi———x-
libria extending to all space need to be translationally [l M — Xy )V
symmetric.”

The results of the present paper shed some light on thislence forx>N2**1x, 2k=|2 In Cymi—mIn(2B8)|[/(2N—2n
discussion. Indeed, we have derived exact plasma equilibriazm)In N, we obtain
(3.19 and (5.4 that are smooth and bounded in the whole
Euclidean spac&®. The equilibria have no current sheets | nmn— ¥l
and no discontinuities and satisfy the above physical condi- |l
tions (i)—(v). We have constructed a family of global
zinvariant plasma equilibrid3.13; each equilibrium pos- The same inequality is true for the magnetic field. Thus for
sesses a three-dimensional linear space of helically symmefn<1, the perturbation$3.19 can be significant only for
ric global perturbation§3.19. The most important feature of X<N***'xy. Substitutingx=212, we find for the length
these exact solutions is that thég depend on the variable ~ scalel in the variabler of the perturbation$3.19
and hence they areot translationally invariant, contrary to 12
the predictions in Parker’s results. In view of theuasip- |SNK(%)
eriodicity of the magnetic-field lines, theirwinding pat- 2B

tern” is continuously changing along the variakdend does ) - )
not repeat. The inequalitieg6.1) and (6.2) mean that the plasma equi-

Let us prove that the plasma equilibria.19 and (5.4)  libria (3.19 at Ay<1 are small perturbations in the whole
satisfy all Parker’s conditiong28], pp. 359—391, and hence Euclidean spacé® of the zinvariant equilibrium (3.13.
they form helically symmetric counterexamples to Parker'sHence we obtain that Parker’s condition which states that
hypothesis. 1118,19], we present the counterexamples with “the local perturbation to the field is small compared to the
axial symmetry. total field,” [28], p. 361 is satisfied everywhere. Parker’s

We consider the exact solutiori8.19 and (5.4) as per- condition that “the magnetic field is analytic in its deviation
turbations of thez-invariant global plasma equilibri¢g.13. € from the invariant field;(x,y),” [28], p. 378, is satisfied

<Ay.

The exact solutior(3.13 defines the magnetic fiel®.8): because the exact solutiot8.19 are linear functions of
small parametersa,,,,b,,. Parker's condition that the
ayPn—IPN . aryt vy length of the flux tube is “large compared to the charac-

Bn(r)=—12 2 et T G teristic transverse scale of variatibrof the field,” [28], p.

362, is satisfied becausesN“\Nx\/28 and the flux tube
which is nonzero everywhere in the Euclidean sp&e length L can be taken arbitrarily large for theinvariant
Indeed, an equalitB\(ro) =0 implies yy(ro) = ¢n(ro) =0,  equilibrium (3.19. HenceL>1. All perturbations(3.19 are
hence Boy(Xg) =Bgn(Xo) =0, a contradiction because all not zinvariant.
roots of the polynomiaBgy(x) are simple; see Appendix A One of the origins of the discrepancy with Parker’s results
below. Hence for anyR and all r<R, we have|By(r)| is as follows. In his book28], Parker writegp. 369, “We
=ayB(R)>0. suppose for convenience that, althouBl(x,y) may vary

Let Bymr(r,u) be the magnetic field defined by the flux widely, it does not vanish and change sign,” and he arrives
function Yymn (3.19 and Ay=(|ams + |bmd)/|an|. Inside  at the statement, “The result can be written
any domain Gsr<R, we have

d 1oV o9 19V o 1 oV
[Bumn— Byl _, C(R) 6. oxBZox ayBZay  azBZ oz
Byl "B(R)’

0. (6.3

_ _ _ This form is totally elliptic. In an infinite space its only
WhereC(R) is a smooth function. A[—)OO, the asymptOtICS bounded solutions are Constanis]: c.”

hold, This statement is used as a key argument in the proof of
N— oC Parker's theorem on pp. 369 and 3728] and also in the
M<AN(23)”*NM_—m, proof of its generalization for magnetohydrodynam{ig§],
[ ¢onl r 0. 837, Eq.(62).

We show that the statement is a logical error. Indeed, let

— | .
(1= nkmn)N! (6.2)  Us consider one concrete example:

Cnmn= T "Nkt

B,(x,y)=[1+(ax+by)?] Y2 W¥(x,y)=tan ‘(ax+by),
The inequality N>2n+m implies| ¥ nmn— ¥nl/| | —0 at A%y) =1+ y’] (xy) ( Y)

r—oo. Hence forAy<1, we obtain Bymn— Bnl/|Bn|<1 ev- 6.4
erywhere inR®, where tan(z) is the inverse function for tag( and a,b
Let x5 be the greatest root of the polynomijy(x). For ~ =const. FunctiorB,(x,y) (6.4) doessatisfy Parker’s condi-

X>Xy, We have tion because it is nonvanishing throughout the entire space,
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—oo<X,y<+oo, FunctionW(x,y) (6.4) satisfies Eq(6.3). It posed to arise when a magnetic flux tube is pertufdiddl

is bounded|W¥ (x,y)|< /2, and it isnonconstant The derived exact global plasma equilibf19 and (5.4
Remark 4 Solutions(6.4) can be generalized in different are smooth everywhere and have no tangential discontinui-

ways. For example, for any harmonic functidr(x,y), ties and no current sheets for any values of their arbitrary

9%hlax?+ 9*h/ 9y?=0, the functions functions a(y) and p(y) and arbitrary parameters. The axi-
ally symmetric plasma equilibria with the same properties
B,(x,y)=[1+h%(x,y)] Y2 W(x,y)=tan *(h(x,y)) are derived if18,19. The exact solution$5.4) depend on

(6.5  2K+2 arbitrary parameters,ay,amn,bm, and have the
form of the Fourier series in variable=z— y¢, for a ge-
nericr=ry. These solutions approximate any smooth func-
tion (rq,u) that is(27ry)-periodic inu. Therefore, the exact
solutions(5.4) describe rather generic global helically sym-
metric MHD equilibria.

satisfy Eq.(6.3). It is evident that functiorB,(x,y) (6.5 is
nonvanishing for allx,y and function ¥(x,y) (6.5 is
bounded anchonconstant

VIl. SUMMARY

We have developed a model of astrophysical jets outside ACKNOWLEDGMENTS

of their accretion disks. The model satisfies the physical con- The research was supported by the NSERC of Canada and
ditions (i)~(v) of Sec. Il and is represented by the eXxacline CRM of the University of Montreal. The author thanks

helically symmetric solutions to the MHD equilibrium equa- Richard Henriksen Robert Erdahl. Leo Jonker. and James
tions (1.3) and (1.4). The modeled astrophysical jets are /o nar for helpful discussions ' '

highly collimated due to the rapid decreasing of the magnetic

field in the transversal directionB|~cy exp(—Br2)r?N at r

—oo, The magnetic-field lines form a combination of nested

and helically rotated cylindrical magnetic surfaces. To obtain the explicit form of the polynomiaB,,(x),
The constructed MHD equilibria are based on the exac{ye make the substitution

solutions (3.19 and (5.4) for the flux functions (r,z

APPENDIX A

—v¢), which define the magnetic field,. The equilibria B(x)=P(x) —kpnXP'(x) (Al)
depend upon two arbitrary function®(¢y) and the plasma
densityp(¢)=0: to Eg. (3.6). A direct verification proves the identity
k sha() (X?+ ¢y X)B"+[ —x%+ (m—c)x+(m+1)c,]
B=kCha(lﬂ)Bl, V= ——=— 1-
Vup(¥) XB'+n(x+c1—KknnC1)B
The second family of equilibria has the form =(X+ €1~ KmnC1) Q—KmpX(X+Cy)

X Q'+ (ncik? —(m+cq)kmp— 1)XP’,
Bk sh )B v kCha(l/l) Q ( 1%™%mn ( 1) mn )
=ks , = —=B;. )
«()By Vup() ' where Q=xP"+(1+m—x)P’+nP. The necessary condi-
tion (3.5) is equivalent to the equation
For these exact solutions, the ratio of the plasma magnetic

and kinetic energyB?/(upV?) is variable in the spac&? 2 m+c;—ay
and is constant on the magnetic surfag€s) = const. Hence Nk, — (M+cy)kpny—1=0, kmn:—zncl
the derived MHD equilibria generalize the classical Chan-
drasekhar equipartition solutid20]. EquationQ=0 or

For the equilibria(3.19 and (5.4), the generic magnetic-
field lines are quasiperiodic ip which implies that the mag- XP"+(1+m—x)P'+nP=0

netic lines never repeat in thedirection, but can have a

structure arbitrarily close to the initial data. Their winding has polynomial solution®,,(x) =d™L . n(x)/dx™ of de-

pattern changes continuously withand does not repeat. ~ gree n, where L,(x) are the Laguerre polynomials.8).
Up until now, the quote “It is well known that all well- Hence using formul#Al), we obtain that if the two integers

behaved MHD equilibria extending to all space need to ben and n satisfy Eq.(3.5, then Eq.(3.6) follows from Q

translationally symmetric,T37], p. 2158, has been generally =0 and has the polynomial solutidB.7).

accepted. We have proved that this is logically incorrect be- Using formulas(3.8), we find the first three polynomials

cause even small perturbatiof®19 and(5.4) of the trans-  (3.14:

lationally symmetric plasma equilibrig.13 have no trans-

lational symmetry. The exact plasma equilibt&19 and Boy(X)=1—(1—ky)X,
(5.4) provide helically symmetric counterexamples to Park-
er's hypothesig28]. In [18,19, we present the axially sym- Boa(X)=1—2(1—Ky)x+ 3 (1—2ky)x?, (A2)

metric counterexamples.

The obtained results shed some light also on the ongoing Boy(x)=1—3(1—kg)x+ 2 (1—2kz)x?— % (1—3k3)x>.
discussion in the MHD literature aboutuhavoidablé and
“ ubiquitous' singularities (current sheejs which are sup- The first three polynomialB,,(x) (3.7) have the form
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Blo(x):_l, Bll(X)=—2+(1—k11)X,
Blz(x) = _3+3(1_ klz)x_% (1_2k12)X2.

Equation(3.5) impliesm-+c;<ay, hencek,,,<0. Hence

using the classical properties of the Laguerre polynomials

(3.9), we obtain that the new polynomiass,(x) (3.7) have
alternating coefficients and each polynomig},(x) hasn
distinct positive roots for anyn=0.

APPENDIX B

Let us calculate the rotation transform,: Sy— S
=S, for the thin elliptical cylindersC,, rotating around their
magnetic axes. Let an exact soluti¢®.19 have its local
maximum (or minimum at a point €g,Ug); #¥(rg,Ug)
=y. The critical point ¢q,uUg) defines the magnetic axis
Mg: r=rg, Z— y$p=uqy. We have an approximation

Yo+ O Ug+ Su)~ hg+a( or)2+b(su)?+ 2cér du,

where 2= (ro,Up), 2b= tyy(ro,Uo), 2C= tfyy(ro,Uo).
For points fg,ug) of maximum or minimum, we have
Yo Uyu— lprzuzo. In a small neighborhood of the helM,
the magnetic surfaceg(r,u)=const are thin elliptical cyl-
indersC,, rotating aroundM .

Let us find the rotation numbef, for the curvesS, at
h<1. The curveS, is approximated by the ellipsa(sr)?
+b(8u)?+2cér su=h? with parametrization

or=khsin(2ws),
su=—ckhsin(2m7s)/b+h cog2ms)/\b,

wherex = \b/\Jab—c? andSu= — y5¢. The magnetic field
(6) defines equations for the magnetic lines:

I":ﬂ _ayy—riy L aryt oy

T T T Oy B

On the magnetic axid,, we havez(t)=ay¢0t/(r§+ ¥?)
+2,. Hence the shift of for the period 2ry takes place at
to= 27r(r§+ v?) (). EquationgB1) imply the equations
for the variations,

rodr=2bdu+2csr, rydu=—_2adr—2cdu.
Their solutions are

or(t)=«khsin(wt+27s),
Su(t)= —cxh sif(wt+27s)/b+h cog wt+ 27s)/+/b,

where w=2\ab—c?/r,. Fort=t,, we obtain the rotation
transform T(s) =s+tq\ab—c?/(#ry). Hence the rotation
number is

_ (f?ﬁ 7’2) Vb huu— Yy

ar ot

0 (B2)
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In general, the rotation numbék (B2) is irrational and de-
pends on the small parameterHence the generic magnetic-
field lines are quasiperiodic in variables¢ and in variable
zmod 27 y.

APPENDIX C

The third equation of Eqq1.4) implies the existence of
magnetic surfaces for the generic MHD equilibria. Indeed,
equation curl{y X B)=0 in any simply connected domain
yields VX B=grady(x), where ¢(x) is some smooth func-
tion in D. The surfaces/(x)=const are magnetic surfaces
becauseB-grady)=0, (V-grady)=0.

Formulas(1.6) are manifestations of the following new
symmetries of the magnetohydrodynamics equilibrium equa-
tions (1.3) and (1.4). Let B(x), V(x), P(x), p(x) be an
arbitrary solution for whichp=p[#(x)], for example,p
=const. Herey(x) can be any function that defines mag-
netic surfaces. The symmetries transform the soluipi/,

P, p into a continuous family of new solutions,

b p
Bi=aB+byupV, V =—B+a\ﬁv, (Cy
1 mp 1 ,_Mpl 01

P,=C P—b—sz—lbz Vz—ab\ﬁ(BV) (C2)
1 1 2,(L 2 P M 1

where functionsa(y) and b() are constant on magnetic
surfaces and satisfy the equatioa®(y)—b?(¢)=C;
=const, and the plasma densjiy(#)=0 is arbitrary. The
fact that the function®,(x), Vi(X), P1(X), p1(X) satisfy
Egs. (1.3 and (1.4 is proved by a direct substitution and
using identity(2.1). The symmetrie$C1) and(C2) have the
following physical meaning. The difference between the
plasma kinetic and magnetic energies is changed by a scalar
C, multiplication. In addition,/p;V;XB;=C;/pV XB.

For p(¢) =p(¢), the nondegenerate transformations

b
B,=aB+byupV, V,=——B+aV

Jup

form an infinite-dimensional Lie grou@. The groupG has
two componentsG;: a2() —b?(¢)=k?, andG,: a?()
—b?(yp)=—12, where k+0 and |#0. These equations
are resolved by the formulag(y)=kcha(y), b(y)
=ksha(y) for G;, and a(y¢)=IshB(y), b(y)

=l chpB(y) for G,, wherea(y) and B(¢) are arbitrary func-
tions of ¢, andk, | are arbitrary nonzero reals. Hence ele-
ments ofG; andG, are parametrized by the pajrk, a(#)]
and [I,8(¢)]. We have G;-G,;CGy, G;-G,CGy,
G,-G,CG;. The composition of transformatiorf€3) im-
plies the Abelian law of the group multiplication
[ky, a1() J[Ka, @a() 1= [kika, a1(#) + aa(#) 1€ G, which
completely defines the Lie grouB. Applying the symme-
tries (C1) and(C2) to any exact solution of the plasma equi-
librium equations(1.2), we obtain exact MHD equilibria
(1.6).

(C3
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