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Helically symmetric astrophysical jets
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Astrophysical jets are modeled outside of their accretion disks by the helically symmetric MHD equilibria.
The derived equilibria are smooth, have no current sheets, and no discontinuities. The obtained exact solutions
to the MHD equilibrium equations generalize the Chandrasekhar equipartition solution and depend upon two
arbitrary functions,a~c! and the plasma densityr(c)>0, and 2K12 arbitrary parametersg,aN ,amn ,bmn .
The total kinetic and magnetic energy of the jet and its mass are finite in any layerc1,z,c2 . In view of a
rapid decreasing of the magnetic fieldB in the transversal direction, the modeled jets are highly collimated.

PACS number~s!: 52.30.2q, 41.20.2q
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I. INTRODUCTION

As is known, optical and radio observations have disc
ered a variety of jets from the active galactic nuclei and
young stellar objects; see@1,2#. Among those are the jet in
the elliptical galaxy Messier 87@3,4# in the Virgo cluster and
the Herbig-Haro 34 jet@5,6#. The optical radiation emitted by
the M87 jet is synchrotron@3#; its intensity image appears t
have no axial symmetry@4#. We model these highly colli-
mated jets outside of their accretion disks by the exact m
netohydrodynamics~MHD! equilibria, which are invariant
with respect to the helical transformations

z→z1gh, f→f1h, r→r . ~1.1!

Here r ,z,f are the cylindrical coordinates,g5const, andh
is an arbitrary parameter.

The observations of the solar prominences detect tube
enhanced plasma density having helical structure, which
presumed to coincide with the magnetic flux ropes@7#. It is
known that the solar prominences can remain in a sta
equilibrium for several months.

The laboratory experiments indicate the presence of h
cal external and internal kink modes of plasma in tokam
@8–10#. The external kink modes are known as the m
dangerous MHD instabilities arising in a plasma pinch. T
internal (m51) kink instability is associated with the helica
plasma distortion that precedes the sawtooth oscillati
@8,9# near the magnetic axis of a tokamak. The best availa
analytical approximations of the external and internal k
modes for a ‘‘straight tokamak’’ are the helically symmetr
plasma equilibria. They have been employed in the num
cal study of the reversed-field pinch@10#.

All these helically symmetric plasma configurations a
described by the JFKO equation derived by Johnson, F
man, Kulsrud, and Oberman in@11#. This equation is a re-
duction of the plasma equilibrium equations,

J3B5gradp, J5
1

m
curlB, div B50 ~1.2!

for the helically symmetric solutions. HereB is the magnetic
field, J is the electric current density, andm is the magnetic
PRE 621063-651X/2000/62~6!/8616~12!/$15.00
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permeability. The JFKO equation reduces to the Gr
Shafranov equation@12,13# when the helical symmetry turn
into the axial one. Both equations were widely used to mo
astrophysical plasmas and laboratory plasmas in tokam
stellarators, heliotrons, and torsatrons. However, all exact
lutions to the JFKO equation and the Grad-Shafranov eq
tion found during the past four decades either have singu
ties or unboundedly grow at infinity or are not localized@14–
17#. Such solutions have a very restricted applicability.

The system of magnetohydrodynamics equilibrium eq
tions has the form

rV3curlV2
1

m
B3curlB5gradP1 1

2 r gradV2,

~1.3!

div~rV!50, div B50, curl~V3B!50, ~1.4!

whereB is the magnetic vector field,m is the constant mag
netic permeability,V is the velocity vector field of the idea
fluid, r5r(x) is its density, andP is the pressure. ForV
50, Eqs. ~1.3! and ~1.4! coincide with the plasma equilib
rium equations~1.2!. For B50, Eqs.~1.3! and~1.4! describe
equilibria of an ideal fluid.

In this paper, we develop a helically symmetric model
astrophysical jets that are in a state of magnetohydrodyn
ics equilibrium. Such equilibria have to be global, whic
means they have to satisfy the following necessary phys
conditions in the cylindrical coordinatesr ,z,f.

~a! The magnetic fieldB, the plasma velocityV, and pres-
sureP are smooth and bounded inR3.

~b! The total magnetic and kinetic energy of plasma a
its total mass are finite in any layerc1,z,c2 . The pressure
P→p1 at r→`.

~c! All magnetic-field lines are bounded in the radial va
able r.

The conditions~b! and~c! mean that the jet is localized in
the transversal direction. The asymptotic value of press
p1 in the condition~b! is the average pressure of the ambie
medium. As usual, the gravitational force2r grad C is in-
cluded in the pressure gradient in Eq.~1.3! in the approxi-
mation of constant densityr.
8616 ©2000 The American Physical Society
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We model the astrophysical jets by the helically symm
ric MHD equilibria, which are smooth and bounded in t
whole Euclidean spaceR3 and have no singularities, no cu
rent sheets, and no discontinuities. In@18,19#, we derived the
exact global plasma equilibria with axial symmetry. The o
tained magnetohydrodynamics equilibria generalize
Chandrasekhar equipartition solution@20#, which is defined
by the following three conditions:

V56
1

Arm
B, r5const, P1

1

2m
B25const. ~1.5!

The first condition~1.5! implies that the densities of th
plasma kinetic energyrV2/2 and magnetic energyB2/(2m)
are equal. However, in the real plasma equilibria, the eq
partition condition might not be satisfied@1#.

We suppose that

B5a~c!B1 , V5
b~c!

Amr~c!
B1 , ~1.6!

where the vector fieldB1 and the functionsa(c),b(c),c
5c(x) satisfy the equations~see Appendix C!

a2~c!2b2~c!5C15const, ~B1•gradc!50, div B150.

~1.7!

It is evident that Eqs.~1.4! follow from Eqs.~1.6! and~1.7!.
The second equation~1.7! means that the functionc(x) is

constant along the magnetic-field lines, or along the plas
streamlines. Hence the surfaces of the constant level of e
function a(c), b(c), and r~c! are the magnetic surface
The two functionsb(c) andr(c)>0 are arbitrary.

For the special caseb(c)5cr(c)5 f 2(c), in which
function f (c) is nonzero in an intervalI : 0,c1,c,c2
and is zero outside ofI, the plasma is localized in a cylindri
cal domain 0<r ,R0 around the axisz and a magnetic field
exists in the whole space. It is evident that the total m
of plasma and its kinetic energy are finite in any lay
c1,z,c2 .

The solutions~1.6! have the following physical meaning
The ratio of the plasma magnetic and kinetic energy

B2

mrV2 511
C1

b2~c!

is constant on the magnetic surfaces but is variable in
spaceR3. Note that neither magnetic nor kinetic ener
separately are constant on the magnetic surfaces. IfC1.0,
then the magnetic energy is everywhere greater than the
netic energy; ifC1,0, the converse is true. The caseC1
50, r5const corresponds to the Chandrasekhar equip
tion solution~1.5!.

We show that Eqs.~1.3! and~1.4! for solutions~1.6! and
~1.7! are reduced to the plasma equilibrium equations~1.2!.
Hence their helically symmetric solutions are described
the JFKO equation.

For the helically symmetric MHD equilibria, the magnet
surfaces are nested cylinders that rotate as helices aroun
axis z. The innermost cylinders are their magnetic ax
which altogether form a finite system of helices. The si
-
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plest equilibria have a double helix of magnetic axes. Th
exact solutions can be used to model not only the astroph
cal jets but also the plasma (m>1) kink modes detected in
tokamaks@14,16# and the twisted magnetic flux ropes o
served in solar prominences@7#.

An important feature of the obtained solutions is that th
generic magnetic-field lines and streamlines are quasip
odic in variablesr ,z,f. That means that they never repeat
thez direction but appear arbitrarily close to their initial da
when variablez evolves. Therefore, the pattern of winding
the magnetic-field lines about each other does vary in thz
direction.

The intensity of the synchrotron emission from the jet
proportional toB2 @3#. Hence the jet intensity image is de
fined by the form and the distribution of the surfacesB2

5const. For the derived solutions, the magnetic fieldB de-
creases atr→` as rapidly ascN exp(2br2)r2N. Hence the
high collimation of the jet follows.

II. THE MAIN PHYSICAL ASSUMPTIONS

We develop a model of astrophysical jets based on
following physical assumptions inspired by the results of
observations of the jet in the elliptical galaxy Messier 87@4#.

~i! The jet is in a state of a helically symmetric MHD
equilibrium.

~ii ! In the cylindrical coordinatesr ,z,f ~1.1!, the total
plasma kinetic energy and magnetic energy in any layerc1
,z,c2 are finite.

~iii ! All plasma streamlines and all magnetic-field lin
are bounded in the radial variabler.

~iv! At r→`, the plasma pressureP→p1 , where p1
5const.0 is the average pressure of the ambient mediu

~v! The total mass of plasma in any layerc1,z,c2 is
finite.

Let us prove that the MHD equilibrium equations~1.3!
and ~1.4! for solutions ~1.6! and ~1.7! are reduced to the
plasma equilibrium equations~1.2!. For any aligned vector
fields A5g(x)B1 , one has the identity

A3curlA5g2B13curlB11B1
2 gradg2/2

2g~B1•gradg!B1 . ~2.1!

Applying identity ~2.1! to the vector fields~1.6! and using
Eqs.~1.7!, we get

B3curlB5a2B13curlB11 1
2 B1

2 grada2,

rV3curlV5
1

m
b2B13curlB11

1

2m
rB1

2 grad
b2

r
.

Substituting these formulas into the MHD equation~1.3!, we
obtain

1

m
~a22b2!curlB13B1

5gradP1
1

2m
~B1

2 grada21b2 gradB1
2!.
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Using here the equationa2(c)2b2(c)5C1 , we arrive at
the plasma equilibrium equations

curlB13B15m gradp, div B150, ~2.2!

where

p5S P1
1

2m
b2~c!B1

2D Y C1 . ~2.3!

Remark 1. The plasma equilibrium equations~2.2! imply
the equation@21# (B1•gradp)50. Hence for any solution to
Eqs. ~2.2!, function c(x) does exist andc(x)5p(x). The
above arguments prove also that any plasma equilibr
B1(x),p(x) defines an infinite dimensional family of magn
tohydrodynamics equilibria,

B5a~p!B1 , V5
b~p!

Amr~p!
B1 , a2~p!2b2~p!5C1 ,

P5C1p2
b2~p!

2m
B1

2,

where b(p) and the plasma densityr(p)>0 are arbitrary
smooth functions.

The helically symmetric magnetic fieldB1 has the form

B15
cu

r
êr2

c r

r
êu1

f

r
êf , ~2.4!

wherec(r ,u) and f (r ,u) are some smooth functions,u5z
2gf, cx5]c/]x, andêr ,êu ,êf are the unit tangent vector
corresponding to the coordinatesr ,u,f. The currentJ is

J5
1

m
curlB15

1

m S I r

r
êu2

I u

r
êr1FêfD , ~2.5!

where

I 5
r 21g2

r 2 f 2
g

r
c r , ~2.6!

F5
1

r

]2c

]u2 1
]

]r S 1

r

]c

]r D2g
]

]r S f

r 2D . ~2.7!

Formulas~2.4! and ~2.6! imply the expression for the mag
netic fieldB1 in the cylindrical coordinatesr ,z,f:

B15
cu

r
êr1B1êz1B2êf , B15

gI ~c!2rc r

r 21g2 ,

B25
rI ~c!1gc r

r 21g2 . ~2.8!

Formulas~2.4! and~2.8! imply that Eqs.~1.7! are satisfied if
and only if a5a(c), b5b(c), and r5r(c) are arbitrary
functions ofc, r(c)>0.

Johnsonet al. had shown in@11# that the plasma equilib
rium equations~2.2! for the helically symmetric solutions ar
equivalent to the equalitiesI 5I (c) andp5p(c) with arbi-
trary functionsI (c) andp(c), and the equation
m

1

r 2

]2c

]u2 1
1

r

]

]r S r

r 21g2

]c

]r D1
II 8~c!

r 21g2

1
2gI ~c!

~r 21g2!2 52mp8~c!, ~2.9!

where the prime denotes differentiation with respect toc.
Equation ~2.9! is equivalent to the Johnson-Friema
Kulsrud-Oberman~JFKO! equation@11#, in which another
variableu5mf2hz was employed. We use the variableu
5z2gf because only parameterg5m/h is essential. For
g50, the JFKO equation~2.9! turns into the Grad-Shafrano
equation @12,13#, which describes the axially symmetri
plasma equilibria.

The JFKO equation~2.9! and formula~2.6! imply that
function F ~2.7! has the formF52mrp8(c)2 f I 8(c)/r .
Hence we obtain the following for the currentJ ~2.5! in the
cylindrical coordinatesr ,z,f:

J52
I 8~c!

m
B12p8~c!~r êf1gêz!. ~2.10!

For the analytical case, the functionsI (c) andp(c) can be
expanded into the power series

I ~c!5a01a1c1a2c21¯ ,

p~c!5p01b1c1b2c21¯ , ~2.11!

with constant coefficientsa i ,b j . The physical condition~ii !
@the finiteness of the magnetic energyB2/(2m) in any layer
c1,z,c2# and the formulas~2.8! imply that at r→` the
asymptotics hold:

I ~c!→0, c r→0, cu→0. ~2.12!

The flux functionc(r ,u) is defined by Eq.~2.4! up to an
arbitrary constant. Using asymptotics~2.12!, we normalize
this constant by the conditionc(r ,u)→0 at r→`.

The physical condition~v! implies r(r ,z)→0 at r→`.
Hence the conditionr>0 yields

r5a2c21a3c31¯ , ~2.13!

wherea2.0. If b(c)5C0@r(c)#n/2, n.1, then the plasma
velocity V5C2r (n21)/2B1 is finite everywhere.

The asymptotics~2.12! and c→0 at r→` imply that
a050. The formula ~2.10! and the asymptoticsB→0, J
→0 at r→` imply b150. Hence for any global solutions
the power series~2.11! actually have the form (b256k2)

I ~c!5ac1a2c21¯ , p~c!5p06k2c21¯ .
~2.14!

Thus, the general global solutions are perturbations of
ground-state solutions defined by the lowest-order terms

I ~c!5ac, p~c!5p06k2c2.

In @24–26#, the formula for the pressurep(c)5p01k2c2

was used to study the Grad-Shafranov equation~axial sym-
metry!, which is the limiting case of the JFKO equation~2.9!
at g→0. It was shown that the corresponding exact solutio
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c(r ,z) have infinitely many zeros atr→` and do not satisfy
the physical condition~ii !. Therefore, we do not consider th
alternative for the pressure.

Thus the physical conditions~i! and ~ii ! lead us uniquely
to the following ground-state assumptions:

I ~c!5ac, p~c!5p022b2c2/m,

where a and b are arbitrary constants. The correspondi
JFKO equation~2.9! is linear:

1

r 2

]2c

]u2 1
1

r

]

]r S r

r 21g2

]c

]r D54b2c2
a2c

r 21g22
2agc

~r 21g2!2 .

~2.15!

In Sec. III, we prove that Eq.~2.15! has exact global solu
tions that satisfy all physical conditions~i!–~v!.

The plasma pressureP ~2.3! takes the form

P5p12
1

m
2b2C1c22

1

2m
b2~c!B1

2, ~2.16!

wherep15C1p0 . We suppose that

p1.max@2b2C1c21b2~c!B1
2/2#/m. ~2.17!

Then the plasma pressureP is .0 everywhere. It is eviden
that constantp1 does not enter the plasma equilibrium equ
tions ~2.2!.

Remark 2. For any solutionc(r ,u) to the linear equation
~2.15!, the functionCc(r ,u) is also a solution for any con
stant C. Hence, for any bounded solutionc(r ,u) and any
ambient pressurep1.0, we have a family of solutions
Cc(r ,u) that satisfy the condition~2.16!. The physical con-
dition ~iv! follows from Eq. ~2.16! and the asymptotics
b2(c)B1

25mr(c)V2→0, c→0 at r→`.
Remark 3. a2(c)2b2(c)5C1 @Eq. ~1.7!# has the follow-

ing solutions. ~i! C15k2: a(c)5k cha(c), b(c)
5k sha(c); ~ii ! C152k2: a(c)5k shb(c),b(c)
5k chb(c), where a~c! and b~c! are arbitrary smooth
functions.

The corresponding vector fields~1.6! have the form

B5k cha~c!B1 , V5
k sha~c!

Amr~c!
B1 ,

B5k shb~c!B1 , V5
k chb~c!

Amr~c!
B1 .

For the first case, the magnetic energy is everywhere gre
than the kinetic energy; the converse is true for the sec
case.

III. EXACT GLOBAL MHD EQUILIBRIA

The helically symmetric solutions depend on the two va
ablesu5z2gf andr ~1.1! and therefore have to be period
in the variableu ~and hence in the variablez! with period
2pg. To study the linear equation~2.15!, we apply the Fou-
rier method and separate variables by the substitution
-

ter
d

-

c~r ,u!5A~r !@a cos~vu!1b sin~vu!#, u5z2gf.
~3.1!

Hence we obtain the equation

1

r

d

dr S r

r 21g2

dA~r !

dr D
5S 4b21

v2

r 2 2
a2

r 21g22
2ag

~r 21g2!2DA~r !.

~3.2!

This equation does not belong to any known class of in
grable ones@22#. To find exact solutions, we substitut
A(r )5r le2br 2

B(x), x52br 2, l>0, which reduces Eq
~3.2! to

~x21c1x!B91@2x21~l2c1!x1~l11!c1#B8

1S a22h

8b
x1

a2g22hg2

4
1

ag2c12l

2
1

x1c1

4x

3~l22g2v2! DB50, ~3.3!

where B85dB(x)/dx, c152bg2, and h54b2g214bl
1v2. To find solutionsc(r ,u) ~3.1! obeying the asymptot-
ics c→0 at r→`, we seek the polynomial functionsB(x)
~with a nonzero free term!. Inspecting the highest- and th
lowest-order terms in Eq.~3.3!, we obtain the necessary con
ditions

a22h

8b
5n, l5ugvu, ~3.4!

where the integern>0 is the order of the polynomialB(x).
The form of the solution~3.1! implies thatgv must be an
integer: ugvu5m>0. Hence we getl5m, v56m/g,
and h5(2bg1m/g)2. The first necessary condition~3.4!
becomes the algebraic equation

a2g25~m1c1!214nc1 ~3.5!

for the two unknown integersm andn. We present Eq.~3.3!
in the form

~x21c1x!B91@2x21~m2c1!x1~m11!c1#

3B81n~x1c12kmnc1!B50, ~3.6!

where kmn5(m1c12ag)/(2nc1). Note that Eq.~3.6! is
different from all classical differential equations that defi
the Chebyshev, Hermite, Laguerre, Legendre, or Jacobi p
nomials@22,23#.

In Appendix A, we prove that the differential equatio
~3.6! has a polynomial solution

Bmn~x!5
dm

dxm Lm1n~x!2kmnx
dm11

dxm11 Lm1n~x!, ~3.7!

whereLp(x) are the Laguerre polynomials
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Lp~x!5
1

p!
ex

dp

dxp ~e2xxp!5 (
k50

p
~21!kp!

~k! !2~p2k!!
xk.

~3.8!

Hence we obtain that Eq.~2.15! has the exact solution

cmn5r me2br 2
Bmn~2br 2!@amn cos~mu/g!

1bmn sin~mu/g!#, ~3.9!

where amn and bmn are arbitrary constants. Form>2, the
magnetic field~2.8! B1(0,z)50 on the axisr 50. Only the
m51 kink mode ~3.9! has a nonzero magnetic field atr
50.

The linearity of Eq.~2.15! implies that if the algebraic
equation~3.5! has several integral solutionsm, n, then any
linear combination of the corresponding functions~3.9! is an
exact solution to Eq.~2.15!.

For n50, the necessary condition~3.5! is a52bg
1m/g, and Eq. ~3.6! has solutionB5const. Hence the
JFKO equation~2.9! has the exact solution

cm0~r ,u!5r me2br 2
@am cos~mu/g!1bm sin~mu/g!#.

~3.10!

For m5n50, a52bg, the solution~3.10! takes the Gauss
ian function form c0(r )5exp(2br2). The corresponding
magnetic field~2.8!, current~2.10!, and pressurep are

B152be2br 2
êz , J5

4b2

m
re2br 2

êf ,

p5p02
2b2

m
e22br 2

. ~3.11!

This is a global plasma equilibrium possessing cylindri
symmetry.

For m50 andn5NÞ0, the necessary condition~3.5! is

a2g25c1
214Nc1 ~3.12!

and the exact solution~3.9! takes the form

cN~r !5aNe2br 2
B0N~2br 2!, ~3.13!

where polynomialsB0N(x) are

B0N~x!5LN~x!2kNxLN8 ~x!. ~3.14!

Equation~3.12! implies

ag5c1A112N/~bg2!,

kN5
c12ag

2Nc1
5

12A112N/~bg2!

2N
,0. ~3.15!

Hence polynomialsB0N(x) depend on parameterbg2.
For the flux function~3.13!, the magnetic field~2.8!

B15
agcN2rcN8

r 21g2 êz1
arcN1gcN8

r 21g2 êf ~3.16!
l

decreases atr→` as rapidly ascN exp(2br2)r2N. Hence the
total magnetic energy in any layerz1,z,z2 is finite. The
magnetic surfacescN(r )5const are cylindersr 5const.

Thus we have demonstrated that the JFKO equation~2.9!
has global solutions~3.11!, ~3.13!, ~3.16!, where the two
parametersb.0 and gÞ0 are arbitrary. These equilibria
possess cylindrical symmetry because they arez- and
f-invariant.

For m>1, the flux functionscmn(r ,u) ~3.9! define the
magnetic fieldsB1 ~2.8! and currentsJ ~2.10!, which are
smooth in the Cartesian coordinates and decrease atr→` as
rapidly ascn exp(2br2)r2n. Hence the above physical cond
tion ~ii ! is satisfied. However, condition~iii ! is not met be-
cause the magnetic surfacecmn(r ,u)50 is a helicoid z
5gf1c that is unbounded in variabler.

To find the global equilibria, we consider a linear comb
nation of the exact solutionscN(r ) ~3.13! and cmn(r ,u)
~3.9! that satisfies Eq.~2.15! provided that the two necessar
conditions~3.5! and ~3.12! hold simultaneously. These tw
conditions yield the formulas

c152bg25
m2

2~2N22n2m!
,

ag5
mA~4N2m!2216nN

2~2N22n2m!
, ~3.17!

kmn5
m1c12ag

2nc1

5
1

2mn
@4~N2n!2m

2A~4N2m!2216nN#. ~3.18!

Thus we obtain that for any value of parameterg and b
5b(g) defined by Eqs.~3.17!, the JFKO equation~2.9! has
the exact solutions

cNmn5e2br 2
$aNB0N~x!1r mBmn~x!@amn cos~mu/g!

1bmn sin~mu/g!#%, ~3.19!

whereN,m,nare arbitrary integers>0 satisfying the inequal-
ity 2N.2n1m, andx52br 2. The inequality 2N.2n1m
implies that functioncNmn(r ,u) ~3.19! has the leading term
(22b)NaN exp(2br2)r2N at r→`. Hence equilibria~3.19!
for m>1 satisfy the above condition~ii !, and all magnetic
surfacescNmn(r ,u)5const asymptotically forr @1 are cyl-
indersr 5const. Therefore, all streamlines and all magne
field lines are bounded in variabler, condition~iii !. The for-
mula~3.19! implies that the total mass of plasma in any lay
c1,z,c2 is finite if, for example,r(c)5ac2 or r~c! is any
analytical function ofc ~2.13!. Thus the exact solutions
~3.19! define the global MHD equilibria satisfying the abov
physical conditions~i!–~v!.

IV. EXAMPLES

For N51, the inequality 2N.2n1m has one integral
solution m51, n50. Formulas~3.17! give c15 1

2 , ag5 3
2 ,

and b51/(4g2); hencek1521 and polynomialB01(x) is
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122x; see formula~A2! in Appendix A below. Thus the
flux function ~3.19! has the equivalent form (x52br 2)

c~r ,z,f!5e2br 2
@124br 21a1r cos~z/g2f!#. ~4.1!

Figure 1 shows the sectionz50 of the magnetic surface

c(r ,z,f)5const for a1521, b50.1, and g5A5
2 . The

function c(r ,0,f) ~4.1! achieves its maximum atr
50.8968,f5p and its minimum atr 53.0168,f50.

The two-dimensional magnetic surfaces are obtained f
the curves in Fig. 1 by simultaneous rotation inf with an-
gular speed 1 and translation inz with speedg. Figure 1
shows that there are three domains filled with cylindri
magnetic surfaces: one outer domain and two inner
mains with two magnetic axes corresponding to the criti
points of maxima and minima. The magnetic axes form
double helixthat is presented in Fig. 2. These two curves
exact magnetic-field lines.

Figure 3 represents the magnetic energy den
B1

2(x,y,z)/2m for the plasma equilibrium~4.1! for y50, z

50 anda1521, b50.1, g5A 5
2 , m50.1. Figure 4 shows

the level curvesB1
2(x,y,0)5const,z50. The magnetic en-

ergyB1
2/2m is concentrated near the axisz, and tends to zero

FIG. 1. Magnetic surfaces atz50 for the astrophysical jets
model.

FIG. 2. Double helix of magnetic axes.
m

l
-
l

a
e

ty

very rapidly atr→`. This property means that the abov
exact solution models a highly collimated astrophysical
The intensity image of the jet is defined by its synchrotr
radiation, which is proportional toB1

2 @3#. Hence the detect-
able form of the jet approximately coincides with a surfa
B1

2(x,y,z)5const. The surfacesB1
25const are obtained from

the curves in Fig. 4 by the helical transformations. It is e
dent from Figs. 1 and 4 that the magnetic surfacesc
5const@or r(c)5const# and surfacesB1

25const are differ-
ent. The magnetic energy isB2/2m5a2(c)B1

2/2m. Hence the
surfaces of constant magnetic energyB2/2m do not coincide
with the magnetic surfacesc5const and depend upon a
arbitrary functiona(c).

Figure 5 shows the plasma pressurep(x,y,z)5p0
22b2c2/m at y5z50, p051.2 for the plasma equilibrium
~4.1!. The plots in Figs. 3 and 5 evidently have no symme
with respect tox50.

For N52, the inequality 2N.2n1m has four integral
solutions m51, n50; m51, n51; m52, n50; and m
53, n50. For m51, n50, we find from formulas~3.17!
c15 1

6 , ag5 7
6 , andb51/(12g2). Hencek252 3

2 and poly-

FIG. 3. Density of magnetic energyB2(x,0,0)/2m.

FIG. 4. Surfaces of constant magnetic energyB2(x,y,z)
5const atz50.
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nomial B02(x) is 125x12x2; see Appendix A, formula
~A2!. The exact solution~3.19! takes the equivalent form

c~r ,z,f!5e2br 2
@1210br 218b2r 41a1r cos~z/g2f!#.

~4.2!

The sectionz50 of the magnetic surfacesc(r ,z,f)5const

is shown in Fig. 6 fora1521.5, b50.1, andg5A5
6 . The

flux functionc(r ,0,f) ~4.2! achieves its local maxima at tw
points r 54.8625,f5p and r 50.6940,f5p and has its
minimum atr 52.2361,f50. Hence there are four invarian
domains inR3 filled with cylindrical magnetic surfaces: on
outer domain and three inner domains. The correspond
three magnetic axes form atriple helix that is presented in
Fig. 7. The curves in Figs. 1 and 6 are symmetric with
spect to the reflectiony→2y.

In the coordinatesr ,z,f, the magnetic surfacesc(r ,u)
5h5const are the helically rotating cylindersCh , see Fig.
1. The sectionsSk , z52pgk of a cylinderCh , are the same
for all integersk because of the periodicityz→z12pg of

FIG. 5. Plasma pressurep(x,0,0) for the astrophysical jet
model.

FIG. 6. Magnetic surfaces for plasma equilibrium~4.2!
at z50.
g

-

the flux functions~3.19!. Hence the subsequent intersectio
of the magnetic-field lines onCh with curves S0 and S1
define a rotation transformTh : S0→S05S1 . For an appro-
priate angular parameters5s mod 1 on the closed curveS0 ,
the mappingTh is Th(s)5s1u0(h). For a generich, the
rotation numberu0(h) is irrational. Hence the generi
magnetic-field lines are quasiperiodic in variablesr, f and in
variablez mod 2pg. This important property implies that th
pattern of winding of the magnetic-field lines about ea
otherdoes varyin the z direction for the constructed globa
plasma equilibria~3.19!. For details, see Appendix B.

V. HELICAL MHD EQUILIBRIA DEPENDING
ON 2K¿2 PARAMETERS

To derive the MHD equilibria depending on more tha
three parameters, we have to find more than two integ
solutions to the algebraic equations~3.5! and ~3.12! with
given constantsag andc1 . The first formula~3.17! implies
that parameterc152bg2 should be rational,c15p/q. Ex-
cludingag5Ac1

214Nc1 from Eqs.~3.5! and~3.12!, we ob-
tain the Diophantine equation@27#

4pN5qm212pm14pn. ~5.1!

In general, Eq.~5.1! for given N,p,qhas many integral solu
tions m,n. Taking a linear combination of the correspondin
flux functionscN(r ) ~3.13! andcmn(r ,u) ~3.9!, we obtain an
exact solution to the linear equation~2.15!. We present this
construction in an explicit form forc151/(2l ), wherel is an
arbitrary odd number. Henceb5c1 /(2g2)51/(4lg2) and
a5A8lN11/(2lg).

For p51, q52l , Eq. ~5.1! takes the form

2N5 lm21m12n. ~5.2!

It is evident that this Diophantine equation hasK11 pairs of
integral solutions,

n5N2
m~ lm11!

2
, m50,1,2,...,K, K5FA8lN1121

2l G .
The coefficientskN ~3.15! andkmn ~3.18! are

FIG. 7. Triple helix of magnetic axes.
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kN5
12A8lN11

2N
, kmn5

2lm112A8lN11

2n
. ~5.3!

Taking a linear combination of the exact solutionscN(r )
~3.13! andcmn(r ,u) ~3.9! for 1<m<K, we obtain that the
flux function

c5e2br 2S aNB0N~x!1 (
m51

K

r mBmn~x!@amn cos~mu/g!

1bmn sin~mu/g!# D ~5.4!

satisfies the JFKO equation~2.9!, depends on an arbitrar
parameterg, and linearly depends upon 2K11 arbitrary pa-
rametersaN ,amn ,bmn . The corresponding magnetic fieldB
~2.8!, current J ~2.10!, and pressurep5p022b2c2/m
are smooth and bounded in the whole Euclidean sp
The function c(r ,u) ~5.4! has the leading term
(22b)NaN exp(2br2)r2N at r→`. Hence asymptotically for
r @1, all magnetic surfacesc(r ,u)5const are cylindersr
5const and the magnetic fieldB1 and currentJ decrease a
r→` as rapidly ascN exp(2br2)r2N andp→p0 . Therefore,
the flux functionsc(r ,u) ~5.4! define global plasma equilib
ria satisfying the above physical conditions~i!–~v!.

We apply the previous constructions form51, b
51/(4g2). For N53, the Diophantine equation~5.2! has
three pairs of integral solutions (m50, n53), (m51, n
52), and (m52, n50). Formulas~5.3! imply k352 2

3 ,
k1252 1

2 . Hence polynomialB03(x) is 125x17x2/22x3/2
and polynomialB12(x) is 2319x/22x2; see formulas~A2!
and~A3! in Appendix A below. The flux function~5.4! takes
the equivalent form

c5e2br 2
$1210br 2114b2r 424b3r 6

1a1r ~2319br 224b2r 4!cos~z/g2f!

1r 2@a2 cos~2z/g22f!1b2 sin~2z/g22f!#%.

~5.5!

Figure 8 represents the sectionz50 of the magnetic surface
c(r ,z,f)5const fora15 2

5 , a252 1
15 , b25 1

30 , b50.1, and

g5A 5
2 . The functionc(r ,0,f) ~5.5! has two points of local

maxima and three points of local minima that define fi
helical magnetic axes. The distribution of curves in Fig. 8
evidently asymmetric while the curves in Figs. 1 and 6
symmetric with respect to the reflectiony→2y. The generic
plasma equilibria~5.4! have no additional symmetries.

VI. COUNTEREXAMPLES TO PARKER’S HYPOTHESIS

The general properties of the plasma equilibria were
subject of an interesting discussion in the literature. In
1979 book@28#, Parker writes on p. 374, ‘‘Consider a ma
netic field Bi(x,y)1ebi(x,y,z) in the neighborhood of the
general equilibrium fieldBi(x,y), ’’ and after a detailed
study arrives at the conclusion on p. 377, ‘‘Thus, in the g
eral case, we are led to the conclusion that the invaria
]bi /]z50 ~14.51! is a necessary condition for equilibrium
Any field in which winding pattern changes along the fie
e.

s
e

e
s

-
ce

,

so that ~14.51! is excluded by the topology, cannot be
equilibrium.’’

In @29–31#, this conclusion was called ‘‘Parker’s theo
rem.’’ Many consequences and generalizations were p
duced assuming that the theorem is true; see@29–38#.

Parker’s hypothesis is formulated under three import
conditions @28#: ~i! ‘‘the local perturbation to the field is
small compared to the total field,’’ p. 361;~ii ! the length of
the flux tubeL is ‘‘large compared to the characteristic tran
verse scale of variationl of the field,’’ p. 362; and~iii ! ‘‘the
magnetic field is analytic in its deviatione from the invariant
field Bi(x,y), ’’ p. 378.

Parker’s hypothesis attracts considerable attention in
literature. Rosner and Knobloch in@34# study an example of
two plasma equilibrium magnetic fieldsB0(x,y) and
B1(y,z), where the first isz-invariant and the second
x-invariant. They treatB1(y,z) as a perturbation ofB0(x,y)
and notice thatB1(y,z) is not z-invariant. However, such a
perturbation adds an infinite magnetic energy in any la
c1,z,c2 and hence does not satisfy Parker’s condition~i!.
Nor does it satisfy Parker’s condition~ii !. Moreover, the
only exact solutions presented in@34# have singularities:
‘‘ B0(x,y)5(x21y2)21(2y,x,0), B1(y,z)5(y21z2)21(0,
2z,y), Eq. ~3.10!.’’ Hence, the case treated in@34# is dif-
ferent from the one treated in@28# and therefore it is not a
counterexample to Parker’s hypothesis.

Van Ballegooijen, in his paper@39#, using an expansion
parameter different from@28#, constructs the force-free per
turbations,p5const, of a constant uniform magnetic fieldB0
that depend onz. The lowest-order equation@39# is equiva-
lent to the time-dependent two-dimensional vorticity equ
tion and its solutions are supposed to be well-behaved. H
ever, the complete solution in@39# is presented in the form o
an infinite power series obtained by subsequent resolvin
a more complex system of partial differential equation
Whether this power series is well-behaved inR3 and whether
it satisfies Parker’s condition~ii ! is not studied. No exac
solutions are obtained in@39,40# and the author writes, ‘‘Our
conclusions donot apply to systems with field lines that ar
not tied to a boundary. Examples of such systems are
toroidal fields used in fusion machines~e.g. tokamaks!,’’

FIG. 8. Asymmetric magnetic surfaces atz50 for plasma equi-
librium ~5.5!.
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@39#, p. 426. Hence the work by Van Ballegooijen@39# can-
not be considered to supply a counterexample. Theref
Villata and Tsinganos wrote the following in 1993,@37#, p.
2158, in complete contradiction with Van Ballegooijen’s r
sults and in complete agreement with Parker’s hypo
esis: ‘‘It is well known that all well-behaved MHD equi
libria extending to all space need to be translationa
symmetric.’’

The results of the present paper shed some light on
discussion. Indeed, we have derived exact plasma equil
~3.19! and ~5.4! that are smooth and bounded in the who
Euclidean spaceR3. The equilibria have no current shee
and no discontinuities and satisfy the above physical co
tions ~i!–~v!. We have constructed a family of globa
z-invariant plasma equilibria~3.13!; each equilibrium pos-
sesses a three-dimensional linear space of helically sym
ric global perturbations~3.19!. The most important feature o
these exact solutions is that theydo depend on the variablez
and hence they arenot translationally invariant, contrary to
the predictions in Parker’s results. In view of thez quasip-
eriodicity of the magnetic-field lines, their ‘‘winding pat-
tern’’ is continuously changing along the variablez and does
not repeat.

Let us prove that the plasma equilibria~3.19! and ~5.4!
satisfy all Parker’s conditions@28#, pp. 359–391, and henc
they form helically symmetric counterexamples to Parke
hypothesis. In@18,19#, we present the counterexamples w
axial symmetry.

We consider the exact solutions~3.19! and ~5.4! as per-
turbations of thez-invariant global plasma equilibria~3.13!.
The exact solution~3.13! defines the magnetic field~2.8!:

BN~r !5
agcN2rcN8

r 21g2 êz1
arcN1gcN8

r 21g2 êf ,

which is nonzero everywhere in the Euclidean spaceR3.
Indeed, an equalityBN(r 0)50 impliescN(r 0)5cN8 (r 0)50,
hence B0N(x0)5B0N8 (x0)50, a contradiction because a
roots of the polynomialB0N(x) are simple; see Appendix A
below. Hence for anyR and all r<R, we have uBN(r )u
>aNB(R).0.

Let BNmn(r ,u) be the magnetic field defined by the flu
function cNmn ~3.19! and AN5(uamnu1ubmnu)/uaNu. Inside
any domain 0<r<R, we have

uBNmn2BNu
uBNu

,AN

C~R!

B~R!
, ~6.1!

whereC(R) is a smooth function. Atr→`, the asymptotics
hold,

ucNmn2cNu
ucNu

,AN~2b!n2N
2CNmn

r 2N22n2m ,

CNmn5
~12nkmn!N!

~12NkN!n!
. ~6.2!

The inequality 2N.2n1m implies ucNmn2cNu/ucNu→0 at
r→`. Hence forAN!1, we obtainuBNmn2BNu/uBNu!1 ev-
erywhere inR3.

Let xN be the greatest root of the polynomialB0N(x). For
x.xN , we have
e,

-

y

is
ia

i-

et-

s

uB0N~x!u.
12NkN

N!
~x2xN!N, uBmn~x!u,

12nkmn

n!
xn.

Hence we find

ucNmn2cNu
ucNu

,ANCNmn

r mxn

~x2xN!N .

Hence forx.N2k11xN , 2k5u2 lnCNmn2m ln(2b)u/(2N22n
2m)ln N, we obtain

ucNmn2cNu
ucNu

,AN .

The same inequality is true for the magnetic field. Thus
AN!1, the perturbations~3.19! can be significant only for
x,N2k11xN . Substitutingx52b l 2, we find for the length
scalel in the variabler of the perturbations~3.19!

l<NkS NxN

2b D 1/2

.

The inequalities~6.1! and ~6.2! mean that the plasma equ
libria ~3.19! at AN!1 are small perturbations in the who
Euclidean spaceR3 of the z-invariant equilibrium ~3.13!.
Hence we obtain that Parker’s condition which states t
‘‘the local perturbation to the field is small compared to t
total field,’’ @28#, p. 361 is satisfied everywhere. Parker
condition that ‘‘the magnetic field is analytic in its deviatio
e from the invariant fieldBi(x,y), ’’ @28#, p. 378, is satisfied
because the exact solutions~3.19! are linear functions of
small parametersamn ,bmn . Parker’s condition that the
length of the flux tubeL is ‘‘large compared to the charac
teristic transverse scale of variationl of the field,’’ @28#, p.
362, is satisfied becausel<NkANxN/2b and the flux tube
length L can be taken arbitrarily large for thez-invariant
equilibrium ~3.19!. HenceL@ l . All perturbations~3.19! are
not z-invariant.

One of the origins of the discrepancy with Parker’s resu
is as follows. In his book@28#, Parker writes~p. 369!, ‘‘We
suppose for convenience that, althoughBz(x,y) may vary
widely, it does not vanish and change sign,’’ and he arriv
at the statement, ‘‘The result can be written

]

]x

1

Bz
2

]C

]x
1

]

]y

1

Bz
2

]C

]y
1

]

]z

1

Bz
2

]C

]z
50. ~6.3!

This form is totally elliptic. In an infinite space its onl
bounded solutions are constants,C5C. ’’

This statement is used as a key argument in the proo
Parker’s theorem on pp. 369 and 370,@28# and also in the
proof of its generalization for magnetohydrodynamics@30#,
p. 837, Eq.~62!.

We show that the statement is a logical error. Indeed,
us consider one concrete example:

Bz~x,y!5@11~ax1by!2#21/2, C~x,y!5tan21~ax1by!,

~6.4!

where tan21(z) is the inverse function for tan(z) and a,b
5const. FunctionBz(x,y) ~6.4! doessatisfy Parker’s condi-
tion because it is nonvanishing throughout the entire spa
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2`,x,y,1`. FunctionC(x,y) ~6.4! satisfies Eq.~6.3!. It
is bounded,uC(x,y)u,p/2, and it isnonconstant.

Remark 4. Solutions~6.4! can be generalized in differen
ways. For example, for any harmonic functionh(x,y),
]2h/]x21]2h/]y250, the functions

Bz~x,y!5@11h2~x,y!#21/2, C~x,y!5tan21
„h~x,y!…

~6.5!

satisfy Eq.~6.3!. It is evident that functionBz(x,y) ~6.5! is
nonvanishing for all x,y and function C(x,y) ~6.5! is
bounded andnonconstant.

VII. SUMMARY

We have developed a model of astrophysical jets outs
of their accretion disks. The model satisfies the physical c
ditions ~i!–~v! of Sec. II and is represented by the exa
helically symmetric solutions to the MHD equilibrium equ
tions ~1.3! and ~1.4!. The modeled astrophysical jets a
highly collimated due to the rapid decreasing of the magn
field in the transversal direction,uBu'cN exp(2br2)r2N at r
→`. The magnetic-field lines form a combination of nest
and helically rotated cylindrical magnetic surfaces.

The constructed MHD equilibria are based on the ex
solutions ~3.19! and ~5.4! for the flux functions c(r ,z
2gf), which define the magnetic fieldB1 . The equilibria
depend upon two arbitrary functionsa~c! and the plasma
densityr(c)>0:

B5k cha~c!B1 , V5
k sha~c!

Amr~c!
B1 .

The second family of equilibria has the form

B5k sha~c!B1 , V5
k cha~c!

Amr~c!
B1 .

For these exact solutions, the ratio of the plasma magn
and kinetic energyB2/(mrV2) is variable in the spaceR3

and is constant on the magnetic surfacesc(x)5const. Hence
the derived MHD equilibria generalize the classical Cha
drasekhar equipartition solution@20#.

For the equilibria~3.19! and ~5.4!, the generic magnetic
field lines are quasiperiodic inz, which implies that the mag
netic lines never repeat in thez direction, but can have a
structure arbitrarily close to the initial data. Their windin
pattern changes continuously withz, and does not repeat.

Up until now, the quote ‘‘It is well known that all well-
behaved MHD equilibria extending to all space need to
translationally symmetric,’’@37#, p. 2158, has been general
accepted. We have proved that this is logically incorrect
cause even small perturbations~3.19! and ~5.4! of the trans-
lationally symmetric plasma equilibria~3.13! have no trans-
lational symmetry. The exact plasma equilibria~3.19! and
~5.4! provide helically symmetric counterexamples to Pa
er’s hypothesis@28#. In @18,19#, we present the axially sym
metric counterexamples.

The obtained results shed some light also on the ongo
discussion in the MHD literature about ‘‘unavoidable’’ and
‘‘ ubiquitous’’ singularities ~current sheets!, which are sup-
e
n-
t

ic

t

tic

-

e

-

-

g

posed to arise when a magnetic flux tube is perturbed@41#.
The derived exact global plasma equilibria~3.19! and ~5.4!
are smooth everywhere and have no tangential disconti
ties and no current sheets for any values of their arbitr
functionsa~c! and r~c! and arbitrary parameters. The ax
ally symmetric plasma equilibria with the same propert
are derived in@18,19#. The exact solutions~5.4! depend on
2K12 arbitrary parametersg,aN ,amn ,bmn and have the
form of the Fourier series in variableu5z2gf, for a ge-
neric r 5r 0 . These solutions approximate any smooth fun
tion c(r 0 ,u) that is~2pg!-periodic inu. Therefore, the exac
solutions~5.4! describe rather generic global helically sym
metric MHD equilibria.
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APPENDIX A

To obtain the explicit form of the polynomialsBmn(x),
we make the substitution

B~x!5P~x!2kmnxP8~x! ~A1!

to Eq. ~3.6!. A direct verification proves the identity

~x21c1x!B91@2x21~m2c1!x1~m11!c1#

3B81n~x1c12kmnc1!B

5~x1c12kmnc1!Q2kmnx~x1c1!

3Q81~nc1kmn
2 2~m1c1!kmn21!xP8,

whereQ5xP91(11m2x)P81nP. The necessary condi
tion ~3.5! is equivalent to the equation

nc1kmn
2 2~m1c1!kmn2150, kmn5

m1c12ag

2nc1
.

EquationQ50 or

xP91~11m2x!P81nP50

has polynomial solutionsPmn(x)5dmLm1n(x)/dxm of de-
gree n, where Lp(x) are the Laguerre polynomials~3.8!.
Hence using formula~A1!, we obtain that if the two integers
m and n satisfy Eq.~3.5!, then Eq.~3.6! follows from Q
50 and has the polynomial solution~3.7!.

Using formulas~3.8!, we find the first three polynomials
~3.14!:

B01~x!512~12k1!x,

B02~x!5122~12k2!x1 1
2 ~122k2!x2, ~A2!

B03~x!5123~12k3!x1 3
2 ~122k3!x22 1

6 ~123k3!x3.

The first three polynomialsB1n(x) ~3.7! have the form
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B10~x!521, B11~x!5221~12k11!x,
~A3!

B12~x!52313~12k12!x2 1
2 ~122k12!x

2.

Equation~3.5! impliesm1c1,ag, hencekmn,0. Hence
using the classical properties of the Laguerre polynom
~3.9!, we obtain that the new polynomialsBmn(x) ~3.7! have
alternating coefficients and each polynomialBmn(x) has n
distinct positive roots for anym>0.

APPENDIX B

Let us calculate the rotation transformTh : S0→S0
5S1 for the thin elliptical cylindersCh rotating around their
magnetic axes. Let an exact solution~3.19! have its local
maximum ~or minimum! at a point (r 0 ,u0); c(r 0 ,u0)
5c0 . The critical point (r 0 ,u0) defines the magnetic axi
M0 : r 5r 0 , z2gf5u0 . We have an approximation

c~r 01dr ,u01du!'c01a~dr !21b~du!212cdrdu,

where 2a5c rr (r 0 ,u0), 2b5cuu(r 0 ,u0), 2c5c ru(r 0 ,u0).
For points (r 0 ,u0) of maximum or minimum, we have
c rr cuu2c ru

2 >0. In a small neighborhood of the helixM0 ,
the magnetic surfacesc(r ,u)5const are thin elliptical cyl-
indersCh rotating aroundM0 .

Let us find the rotation numberu0 for the curvesS0 at
h!1. The curveS0 is approximated by the ellipsea(dr )2

1b(du)212cdrdu5h2 with parametrization

dr 5kh sin~2ps!,

du52ckh sin~2ps!/b1h cos~2ps!/Ab,

wherek5Ab/Aab2c2 anddu52gdf. The magnetic field
~6! defines equations for the magnetic lines:

ṙ 5
cu

r
, ż5

agc2rc r

r 21g2 , ḟ5
arc1gc r

r ~r 21g2!
. ~B1!

On the magnetic axisM0 , we havez(t)5agc0t/(r 0
21g2)

1z0 . Hence the shift ofz for the period 2pg takes place at
t052p(r 0

21g2)/(ac0). Equations~B1! imply the equations
for the variations,

r 0ḋr 52bdu12cdr , r 0ḋu522adr 22cdu.

Their solutions are

dr ~ t !5kh sin~vt12ps!,

du~ t !52ckh sin~vt12ps!/b1h cos~vt12ps!/Ab,

wherev52Aab2c2/r 0 . For t5t0 , we obtain the rotation
transform T(s)5s1t0Aab2c2/(pr 0). Hence the rotation
number is

u05
~r 0

21g2!Ac rr cuu2c ru
2

ar 0c0
. ~B2!
ls

In general, the rotation numberu0 ~B2! is irrational and de-
pends on the small parameterh. Hence the generic magnetic
field lines are quasiperiodic in variablesr, f and in variable
z mod 2pg.

APPENDIX C

The third equation of Eqs.~1.4! implies the existence o
magnetic surfaces for the generic MHD equilibria. Indee
equation curl(V3B)50 in any simply connected domainD
yields V3B5gradc(x), wherec~x! is some smooth func-
tion in D. The surfacesc(x)5const are magnetic surface
because (B•gradc)50, (V•gradc)50.

Formulas~1.6! are manifestations of the following new
symmetries of the magnetohydrodynamics equilibrium eq
tions ~1.3! and ~1.4!. Let B(x), V(x), P(x), r(x) be an
arbitrary solution for whichr5r@c(x)#, for example,r
5const. Herec(x) can be any function that defines ma
netic surfaces. The symmetries transform the solutionB, V,
P, r into a continuous family of new solutions,

B15aB1bAmrV, V15
b

Amr1

B1aA r

r1
V, ~C1!

P15C1P2
b2

2m
B22

1

2
b2rV22abAr

m
~B•V!, ~C2!

where functionsa(c) and b(c) are constant on magneti
surfaces and satisfy the equationa2(c)2b2(c)5C1
5const, and the plasma densityr1(c)>0 is arbitrary. The
fact that the functionsB1(x), V1(x), P1(x), r1(x) satisfy
Eqs. ~1.3! and ~1.4! is proved by a direct substitution an
using identity~2.1!. The symmetries~C1! and~C2! have the
following physical meaning. The difference between t
plasma kinetic and magnetic energies is changed by a sc
C1 multiplication. In addition,Ar1V13B15C1ArV3B.

For r1(c)5r(c), the nondegenerate transformations

B15aB1bAmrV, V15
b

Amr
B1aV ~C3!

form an infinite-dimensional Lie groupG. The groupG has
two components:G1: a2(c)2b2(c)5k2, and G2: a2(c)
2b2(c)52 l 2, where kÞ0 and lÞ0. These equations
are resolved by the formulasa(c)5k cha(c), b(c)
5k sha(c) for G1, and a(c)5 l shb(c), b(c)
5 l chb(c) for G2, wherea~c! andb~c! are arbitrary func-
tions of c, and k, l are arbitrary nonzero reals. Hence el
ments ofG1 andG2 are parametrized by the pairs@k,a(c)#
and @ l ,b(c)#. We have G1•G1,G1, G1•G2,G2,
G2•G2,G1. The composition of transformations~C3! im-
plies the Abelian law of the group multiplicatio
@k1,a1(c)#@k2,a2(c)#5@k1k2,a1(c)1a2(c)#PG, which
completely defines the Lie groupG. Applying the symme-
tries ~C1! and~C2! to any exact solution of the plasma equ
librium equations~1.2!, we obtain exact MHD equilibria
~1.6!.
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