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Velocity space scattering coefficients with applications in antihydrogen recombination studies
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An approach for calculating velocity space friction and diffusion coefficients with Maxwellian field particles
is developed based on a kernel function derived in a previous pgapethang and C. A. Ordonez, Phys.
Plasmas, 2947(1999]. The original fivefold integral expressions for the coefficients are reduced to onefold
integrals, which can be used for any value of the Coulomb logarithm. The onefold integrals can be further
reduced to standard analytical expressions by using a weak coupling approximation. The integral expression
for the friction coefficient is used to predict a time scale that describes the rate at which a reflecting antiproton
beam slows down within a positron plasma, while both species are simultaneously confined by a nested
Penning trap. The time scale is used to consider the possibility of achieving antihydrogen recombination within
the trap. The friction and diffusion coefficients are then used to derive an expression for calculating the energy
transfer rate between antiprotons and positrons. The expression is employed to illustrate achieving antihydro-
gen recombination while taking into account positron heating by the antiprotons. The effect of the presence of
an electric field on recombination is discussed.

PACS numbgs): 52.25.Dg, 52.25.Wz, 52.25.Fi

I. INTRODUCTION ages per unit time, are defined in terms of a probability func-
tion P(v,Av) as follows[9,10]:
Velocity space friction and diffusion coefficients are the

lower order coefficients in the Fokker-Planck equation and
are useful for, for example, evaluating time scales that are <AvN>=J AvNP(v,Av)dAv. 2
governed by velocity space scattering. The Fokker-Planck
equation and the associated coefficients are described in Ref.
[1], where historical references can also be found. For |n Sec. Il, a derivation of the probability function for
weakly coupled plasmas, plasmas with a Coulomb logarithmaxwellian field particles is presented. The probability func-
larger than ten, only the lower order terms of the expansionion is used in Sec. lll to obtain onefold integral expressions
of the Fokker-Planck equation need to be kept. In additionfor the Fokker-Planck friction and diffusion coefficients. The
the assumption of weak coupling provides the conveniencgtegrals are over the range of possible changes in momen-
of allowing the lower order Fokker-Planck coefficients to betum for a test particle undergoing binary Coulomb collisions
approximated using analytical expressions when the fielgyith field particles. The integrals are exact but diverge due to
particles are Maxwellian. However, there exist many laborathe long range Coulomb interaction. Approximations are
tory and astrophysical plasmas that are not weakly coupledlecessarily introduced when a nonzero lower integration
[2], and some collision terms for nonweakly coupled plasmagimit is chosen to avoid the divergence. The lower limit is
have been developed. The third order term of the Fokkerevaluated in terms of the Coulomb logarithm in Sec. IV. In
Planck equation has been deri@. Fokker-Planck coeffi- Sec. V, the correspondence of the present theory with prior
cients of arbitrarily high orders have been developed angheory is shown. A weak coupling approximation is applied
have been presented as a unified expressdgnThe Boltz-  to the onefold integrals to obtain standard analytical expres-
mann collision integral has been expanded to fourth ordegjons. The present theory is not restricted in applicability, at
terms, and the importance of close collision events has begaast for evaluating velocity space scattering effects due to
emphasized4]. In addition, some effort has gone into im- pinary Coulomb collisions. For example, the present theory
proving the description of the binary collision mechanics incan be applied when the Coulomb logarithm has a value less
plasmag5] and the accuracy of the Coulomb logarithm for than 10. In Sec. VI, the suitability of some expressions for

nonweakly coupled plasmé, 7]. ~ the Coulomb logarithm are considered for small Coulomb
In principle, the complete Fokker-Planck equation is ex-logarithm values. As an application of the present theory, a
pressed as the following infinite serigs9]: time scale is predicted that describes the rate at which anti-
protons slow down within a positron plasma. In Sec. VI, the
of Z (=N N time scale is used to consider the possibility of achieving
—| =X —((AvM) ). (1) antihydrogen recombination when both the antiprotons and

ot 1 NL o gpN : i : S
coll positrons are simultaneously confined within a nested Pen-

ning trap. The present theory is also used to derive an ex-
The Fokker-Planck equation gives the time rate of change gfression for the rate at which energy is transferred from the
the distribution functiorf due to collisions. In Eq(1), AvN  antiprotons to the positrons. In Sec. VIII, the expression is
is theNth order dyad of velocity change for the test particle presented and then used to assess the effect that antiproton
and the Fokker-Planck coefficien¢gdv™), which are aver- heating of the positrons has on achieving antihydrogen re-
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combination. A discussion regarding the effect of an electridield particles,n is a constant that factors out, akds Bolt-
field on recombination is presented in Sec. IX. Concludingzmann’s constant. With this, the probability function is

remarks are given in Sec. X.

II. DERIVATION OF PROBABILITY FUNCTION FOR
MAXWELLIAN FIELD PARTICLES

To obtain an expression for the probability function in Eq.
(2), the Fokker-Planck coefficients can be written in terms o

nFUth’dez |UXU5|2

(Vmavy)3u,

P(v,Av)= —u?—u3-2u-uy|,

(€)

o

u3

fwhereu:v/vth.

an integral over a scattering cross section. For Maxwellian

field particles, the Fokker-Planck coefficients have been

written as[9,10]

(AvN>=f AvNfy(vg)gogsinddéde dvg, ©)

-

is the Rutherford cross sectiofy(vg) is the Maxwellian
velocity distribution for the field particlesu=mmg/(m
+mg) is the reduced mas9), is the scattering angle in the
center-of-mass systeng is the azimuthal angle around the
relative velocityg=v—vg, v andv are the velocities of
the test particle and field particle,and z- are the charge
states of the test and field particla,andmg are the masses
of the test and field particleis the unit charge, ang, is the
permittivity of free space. It is possible to start with Eg)
and then change E@3) into the form of Eq.(2) by using a
variable change technigu8,11-13. Changing the integra-
tion variables from ¢r,6,¢) to (Av,6,¢'), Eq. (3) pro-
vides

where

z7-€%\? 1
Ameou] 4g*sint(6/2)

(4)

<AUN>:JAvaM(UF)QURSin0|J|d0d¢’I dAv, (5

wherelJ is the Jacobian for the change of variables drids
the azimuthal angle arountlv. Comparing Eq(2) and Eqg.
(5), the probability function is written

P(U,AU)ZJ fM(vF)gURS|n0|J|d0d¢, (6)
To implement the approach, a kernal function is defirned:
=fu(v)P(v,Av). Here fy(v) is a function introduced to
simplify the integral inC. The integral inC is evaluated in
Ref.[11] and found to be

——\3 2 2
C=nng MM | “vipTd ex 8—%—28 —-uil @
2makT/  ug uy X e
using
f L om o mo2
m®)=n|5—=] exg 55| 8

where e,=v-v'/(avd), e,=|vXv'|/(avd), us=Av/
(avy), a=2u/m, d=b/uj, b=zze’mq/(8mequkT),
Av=v'—v, vyp=+2KkT/mg is the thermal speed of the field

particles,n and T are the density and temperature of the

Ill. SIMPLIFICATION OF FOKKER-PLANCK
COEFFICIENTS WITHOUT THE WEAK
COUPLING APPROXIMATION

Introducing @),€,1,€,2) as an orthogonal triplet of unit
vectors withe=v/v, u; is expressed as

Us=Ugs €t Us 1€ 11 Us 2€ 2
=U,(g cosy+e qsiny cosV+e ysiny sinV),
(10)

wherey is the angle betweens andu, W is the azimuthal
angle ofu; aroundu, and|, L 1, andL 2 denote the direction
parallel and two directions perpendicular o It is conve-

nient to change the integration variables in E).using the

following differential:

dAv=(avy)3dus=(avy)uisiny dW dy dus. (1)
Equation(2) becomes

(AvNy=(av ) N(ub)

=(avth)NJ uNp(u,ugs)uisiny d¥ dy duy, (12
wherep(u,us) = (avy)*P(v,Av). Defining
o (13
T= l
NEv b
Eq. (9) is used to obtain
1
p(u,us) = (14

m27u% exp(u s+ u cosy)?

In Ref.[3], the functionp(u,uy) is expressed in the form
of an infinity series, which is convenient for the calculation
of the Fokker-Planck coefficients fad=3. For complete-
ness, higher orderN=3, Fokker-Planck coefficients are
listed here. They arE3]

(Ao 20T OAp T AL TS

BI+12K+1/2) X
= Z CI+
(_1)J+Kﬂ_ =0 J+K
N—i—1 .
T(3/2+L—i)
_ " - citL (12
X & TER=M+j) M),

(15
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whereB andI' are the beta and gamma functiohsequals (Avﬁ):(Avfz), (19
the greatest integer less than or equal o—(1)/2, andM

equals the greatest integer less than or equal/® The and

functionFy; ; is defined as

Fri () (Av,1)=(Av, ) =0. (20

) ) ) o ) Hence the friction coefficientAv ) and two diffusion coef-
(= DN (aw )" N ey (32— +,x) ]V ficients(Avf) and(Av?) can be considered the independent
€] ' coefficients. Applying Eq(12) to the three coefficients, sub-
(16) stituting in Eq.(14), integrating overV, changing the inte-

gration variables fromy to x=cosy, and integrating ovex
wherey* is a form of the incomplete gamma functipb¥],  yields

1 X w2 2
7 (a,x)= f e 'te dt. 17 vy (e —e” V= Jau lerf(U)+erf(W)]
x“l“(a) 0 <AUH>= —2 2 Us,
u Jru?
In the present work, new expressions for lower order ( (21)

<3) Fokker-Planck coefficients are derived. The field par-

ticles are assumed to have an isotropic Maxwellian velocity (avg)? [ [erf(U)+erf(W)]

2\ _
distribution, and (Avf)=—1 0 du;, (22
(Av?)=(Avf)+(AvZ,)+(Av?y), (18 and
|
2 w2 1 )
, . —We V'—Ue W'+ Ja| 5 +ud|[erf(U) +erf(W)]
<sz>:(avth) f 2 du 23
I e \/;U(S S

whereU=u+us, W=u—ug, and erf is the error function. minimum impact parameterg,,, andpm,, a value must be
chosen for the relative speed In reality, g has a range of
IV. INTEGRATION LIMITS AND THE COULOMB values between zero and infinity. However, if the integration
LOGARITHM limits are written in terms of maximum and minimum impact

o , parameters, then the same value must be used to replace
No approximations are used to arrive at EQA1)—~(23) ot integration limits so that the integrals in E6&1)—(23)

and the equations apply without restrictions. For exampleysnish in the limitp me— pmin- A reasonable choice for re-

the test particle speed can be larger than the thermal speed ﬂ%\cingg is (g), the average value @f For Maxwellian field
the field particles. Unfortunately, approximations are Necespariicles

sarily introduced when the limits of integration are chosen.

In order to take into account all possible binary Coulomb o v 1
collisions, the limits of integration for Eq€21)—(23) are (g)= Uth + oy U+ —|erf(u). (25)
Usmin=0 andu ma=2. However, setting the lower limit of N 2u

integration equal to zero causes the integrals to diverge as a
result of the long range of the Coulomb interaction. Becaus@lternative choices for replacing arev,, which is within
us=mAv/(2uvy,) is proportional to the magnitude of the 12% of (g) for v<0.lvy,, andv, which is within 12% of
change in the test-particle momentuip=mAv due to a (g) for v>2uvy,.
Coulomb collision, it is necessary to define a lower cutoff in  Incorporation of a minimum impact parameter may be
the range of valueAp may have. To proceed furthar is useful for taking into account quantum effe¢® and the
written in terms of an associated impact parametemd a  effects of particle sink reactions such as fusion reactions
limited range of impact parameters is considered. For a bif15]. Here, p,,in=0 is used to allowp,,, to be written in
nary Coulomb collision terms of the Coulomb logarithm in a simple way. The Cou-
lomb logarithm is defined6]
9
Us=——F——, 24
" v LTl B 2 N f sir\2<f

T 2w 2

do

m) dQ, (26)

whereB=zz-e?/(4meyug?) is half the classical distance of
closest approach for a head-on collision. To write the intewhere(} is the scattering solid angle in the center of mass
gration limits us min @and Us max iN terms of maximum and frame anddo/d() is the differential scattering cross section.
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Assuming azimuthally random collisions, the Coulomb loga- 4avAG(u)
rithm is equivalently defined by (Avp)=-— — (33
1 (o 0\[do 2
= ikl =1 —|gi 2(avy) N erf(u)
= sl g fnoce e (Bot)= == @
or alternatively by and
1 (= /6 2(avy)®AG(u)
- e 2y PV o m T
- BZJO S'”2<2)p o @8 (Aof) T (35
wheredQ =27 sinfdd anddo=2mpdp are used. which are standard analytical expressi¢8gsl6]. These ex-

For a classical binary Coulomb collision, the center-of-Pressions agree to within 5% with E¢21)—(23) for Cou-
mass scattering angle is related to the impact parameter B9mb logarithm values larger than 10 and test particle speeds
sir?(6/2)=1/(1+p? B?) or equivalently byp= 3 cot(6/2). The less than the thermal speed of the field particles 1) when
associated differential scattering cross section, whichhe integration limitsus mis=€ " andu;s ma=1, are used in
is known as the Rutherford cross sectiondis/dQ=c0g  Eds.(21)—(23).
=—(BI2)%csé(012). Integrating from 6= to 6

=2 arcsin(l{/l-ypmz a)!BZ) or from p=0 to p= ppax Provides VI. COULOMB LOGARITHM FOR SMALL COULOMB
and experimental anisotropic temperature relaxation rate

LOGARITHM VALUES
2
P
A=1In 14+ =)
,82
data. The experimental data was obtained using non-neutral

Solving for pymay, Substituting into Eq(24), and replacingg ~ Plasmas, in which the cyclotron rading was smaller than

by its average provides the lower integration limit the Debye length\p [18,19. Theory that employed the
usual form for the Coulomb logarithm

A comparison is presented in Rdfl7] between theory

(29

-\
usmm:(g)e . (30 A=InA, (36
' Uth

) ) S ) was found to agree with the experimental data reported in
The corresponding upper integration limit is obtained byref, [18] for A>1 with A=1/(0.33%) where «

substitutingp = pmin=0 into Eq.(24) and replacingy by its  —2.,/24/r_ andg equals half the classical distance of closest

average: approach. A numerical treatment was used to determine the
numerical factor 0.333. Note that considering the cyclotron
_@ radius as the maximum impact parameter vyields
S,max . (31) _ _
Uth = pmax/(0-666\/§:8) = 1.060 max/ B~Pmax! B-

The experimental data reported in Rff8] are associated
Writing the lower integration limit in terms of the Cou- with A values much larger than unity. The experimental data
lomb logarithm allows different Coulomb logarithm expres- in Ref. [19] are associated with values df closer to unity
sions to be used in the theory. It should be kept in mindand include values both larger and smaller than urtityv-
however, that Eq(29) is the only Coulomb logarithm ex- ertheless, the experimental data in R&®] are from weakly
pression that is truly consistent with the present theory fogorrelated plasmas.The numerical treatment reported in

Pmin=0. Ref.[17] agrees with the experimental data reported in Ref.
[19] to within the estimated experimental error. A function

V. FRICTION AND DIFFUSION COEFFICIENTS WITH denotedl (k) was calculated using the numerical treatment,

WEAK COUPLING ASSUMPTION and a spectrum of values are reported in Tables | and Il of

_ ) o o Ref.[17]. The numerical treatment was developed consider-
~Assuming that the dominant contribution to friction and jng an adiabatic invariant that governs the equipartition rate
diffusion come from weak collision events, a Taylor seriespetween parallel and perpendiculdo the magnetic field
expansion of the integrands in Eq21)—(23) may be done.  yelocity components. For<1(A>1), the equipartition rate
The usual form of the friction and diffusion coefficients are j5 the same in both “magnetized’t (<\p) and “unmagne-
recoyered by keepmg.onl-y the lowest order terms in the eXtized” (r.>\p) plasmas(with Ay replaced byr. in the
pansion, and by considerin@) =v, and the corresponding  coulomb logarithm whem,<\p), and the correspondence

integration limitsu 5 min=€ " andu 5 ma=1. With the defini- between the Coulomb logarithm antk) is given by[17]
tion of Chandrasekhar’s functidi,,9]

1[erfix) 2% 7\215|(K) (37)
G(X)=§(7— ﬁx)’ (32 V27

For velocity space scattering due to binary collisions
the friction and diffusion coefficients are reduced to within an unmagnetized plasma, the physics associated with
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100 End End
Well | Inner Well | Well
80 Eq. (36) Eq. (38) ' e e >
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FIG. 1. Comparison of three analytical expressions, E8@),
(38), and(39), for the Coulomb logarithm. Shown is the percentage
that each expression is different from each numerical value. The
points are joined by three lines to guide the eye.

the collision dynamics of a test particle is contained within
the Coulomb logarithn{6]. For a magnetized plasma, the
function | («) takes into account all dependence on the mag- . o .
netic field strengt17]. In the present work, a Coulomb FIG. 2. IIIustr_atlon of_a_method for achlgvmg overlap of anti-
logarithm for magnetized plasmas is defined using B@) protons and positrons within a nested Penning trap.
by hypothesis. The hypothesis is consistent with the proce-
dure used in Ref[17] for carrying out comparisons with (not shown in Fig. Lagrees to within 59% with the numeri-
experimental data. The procedure was equivalent to replacal values whera ;g and\ 3o denote the expressions given by
ing the Coulomb logarithm within theory for unmagnetized Egs.(38) and (39).
plasmas using Eq37) and using the cyclotron radius for the
maximum impact parameter.

An expression forl («) is provided in Ref[17] that is VII. ANTIHYDROGEN APPLICATION

suitable fork>1(A<1). Employing the definition given by The year 2000 is expected to mark the beginning of an
Eqg. (37), the corresponding Coulomb logarithm is written asinternational effort to produce low-energy antihydrogen at-
oms for scientific study20-22. The attempts will com-

15 —5(3mk)?5 Cns s mence at the CERN ADAntiproton Decelerator facility
A= \/Eex 6 (1.8% +20.9¢ and the use of nested Penning traps to achieve antihydrogen
recombination is plannedThe reader is referred to Refs.
+0.347 139151 87 .81+ 6.68& 1719, (38)  [23-23 for more details on plasma confinement in nested

Penning traps and to Refl20—22 for more details on the
In Fig. 1 of Ref.[15], a comparison of theorfor unmag- ~ €Xpected operating parameters for achieving antihydrogen
netized plasmas but using the cyclotron radius for the maxitecombination. Here, a method is considered for achieving
mum impact parameteand the anisotropic temperature re- overlap of a positron plasma by a reflecting antiproton beam
laxation rate experimental data from R¢f9] is shown. Within a nested Penning trap such that recombination occurs.
Approximate agreemenfwithin 69% for all but one data The method has been explored experimentally using elec-

point) was found when trons and protons although recombination was not reported
[26]. Figure 2 illustrates the method. Initially, positrons and
A=In( m) (39) antiprotons are stored in separate potential weéllg. 2(@)].

The potential profile is produced using cylindrical electrodes

was used for the Coulomb logarithm. The values of the Cou'—[hat are aligned along a magnetic field. The magnetic field

lomb logarithm extended from 0.00015 to 6.5. Note that EqS_provides radial confinement of the charged particles. The an-
(29) and(39) are the same whe = p,../3 tiprotons are allowed to flow into a lower potential energy
max "

Figure 1 shows the difference, expressed as a percentag‘é'f)Uter well” [Fig. 2b)] and then are captured within the

: . Iter well[Fig. 2(c)]. The change in potential energy expe-
between the analytical expressions, E§$), (38), and(39), ou g : ;
and numerical va)llues obtzined from glﬁt)ﬂes | and Il of Ref_rlenced by the antiprotons is much larger than their thermal

[17] using Eq.(37). Equations(36) and (39) are calculated €Nergy. SO they can be regarded as forming a reflecting beam.
using A = 1/(0.33%). Equations(36), (38), and (39) are The reflecting antiproton beam passes through the positron

found to agree to within 30% with the numerical values forpla_sma, which is trapped within_the “inner well.” Recombi-_
k<1.78 (\>0.6), x>316 (\<5x10 %), and k<25 (\ nation occurs between the antiprotons and positrons while

~0.006), respectively. For 25k<316 (5x10 %<\ the overlap persists. Recombined antihydrogen atoms form

<0.006) two opposi?ely directed beams that_tra_vel away from the
' ' overlap region parallel to the magnetic field.
1 11 Two time scales characterize the evolution of the system
A= —4+— (40)  after the overlap commences. One time scale characterizes
N3g  A3g the rate at which antiprotons slow down to subsequently be-
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come trapped within the “end wells” where the positrons do VIll. EFFECT OF POSITRON HEATING ON
not reside. The slowing time scale is approximately RECOMBINATION

When a test particle travels through a plasma, an ex-
v 41 change of energy occurs between the test particle and the
TS_|<AU||)|' (4D plasma. For energetic antiprotons traveling through a cold
positron plasma, the antiprotons transfer energy to the posi-
trons and cause the positron temperature to increase. The

By w f exampl h ntiproton slowing tim le is. - . . .
y way of example, the antiproton slowing time scale Sincrease in positron temperature, in turn, causes a decrease in

predicted using the present theory for a positron density anﬂwe three-body recombination rate between positrons and an-
temperature og=5x10" m 2 and T=10 K, and aB i y : P :
iprotons. In the present section, the effect that positron heat-
r\ng has on achieving antihydrogen recombination is as-
Osfessed.
The average rate at which energy is transferred from a test
article(e.g., an antiprotorto field particlege.g., positrons

about twice the positron thermal spe&htiproton kinetic
energies larger than about 6 eV for a positron temperature
10 K), the overlap is susceptible to the two-stream instabil-
ity. For the calculation, 3 eV antiprotons are considered. The
counterstreaming antiprotons are not susceptible to the two-
stream instability themselves provided the condition dE 1
<m?eqmu?/(e/)? is satisfied wheren and / are the anti- ——=—=m((Av?)+2u(Av)). (42)
proton density and lengtliSee Ref[27] for more details on dt 2

considering the two-stream instability in nested Penning

traps) If the inner well is much longer than the end wells, Substituting Egs(21) and (22) into Eq. (42) yields

the condition can be applied to the inner well. For example,

for an inner well length of 10 cm, the antiproton density dE mavtzh

must be less than 3310 m3, dt 27

The positron cyclotron radiug, is smaller than the Debye
length andA=r./B8=0.126 is used where the numerator 2e W e Uy \/;u(;(a—Z)[erf(U)vLerf(W)]
and denominator are calculated usimg=\mgkT/(eB) Xf \/;ufs

=350x108 m and B=zze%(4meou{g)?)=2.78

X107 m with (g)=3.02<x10" m/s given by Eq.(25). xdus, (43

With «=1/(0.333\)=23.8, Eq.(39) is used to obtaim

=0.00788. Using Eq(21) with the integration limits given where the integration limits are given by E¢80) and (31).

by Egs.(30) and (31), the time scale is predicted to bg  To assess the effect of positron heating, the positron plasma

=0.48 s. In comparison, E33), which is not expected to is modeled as having a spatially uniform density and

be accurate for small Coulomb logarithm values, givgs temperaturél within a constant confinement volunvg- . In

=0.11 s. addition, the number of confined positrons is assumed to be
A second time scale characterizes the recombination rat@uch larger than the number of confined antiprotons,rand

of antihydrogen. Two recombination reactions for formingis considered to remain essentially constant. The antiproton

antihydrogen from free antiprotons and positrons are spontglasma is modeled as having a uniform densitghe same

neous radiative recombination SRR and three-body recombiiameter as the positron plasma, and a larger constant con-

nation TBR. The SRR reaction rate coefficiert™*for a 1  finement volumeV, which completely encompass¥s . It is

K antihydrogen plasma can be found in Ref0]. The asso- possible for the antiprotons to have an essentially uniform

ciate time scale ig°f*=1/(a%"")=100 s. For a 10 K density axially provided that their average axial kinetic en-

antihydrogen plasma, the time scale will be even larger. Thergy is much larger than the change in their potential energy

TBR reaction rate coefficient can be expressed[28]  between an end well and the inner wéB]. The total power

a™R=6x10"244.2M)¥ . This recombination rate per- that goes into heating the positron plasma is

tains to zero magnetic field. For infinitely high fields, the rate

will be an order of magnitude le§29]. So the TBR time dE

scale is estimated to b BR~10/(a"Rn:)=0.033 s. With Pe=nVeqr (44)

7BR< 7, a substantial fraction of the antiprotons can re-

combine with positrons to form antihydrogen atoms OluringWherenVF equals the number of antiprotons within the over-

the time the overlap persists. It should be noted, howeverIa volume. Nealecting other possible enerav sources and
that newly recombined atoms in highly excited states are P ' 9 9 P gy

susceptible to electric field ionization. Although a study thatsmks’ the positron temperature time dependence due to ant-

considered the effect of electric fields on antihydrogen pro-prOton heating is given by

duction has been reportd®@0], more detailed studies that dT op on dE
consider both radial and axial electric fields produced under - F _ _<h de
specific operating conditions are needed. For the present con- dt  3kngVe 3kng dt’
figuration, recombined atoms will initially be exposed to the

radial electric field produced by the plasma. Afterward thewheren:Vg equals the number of confined positrons.

atoms travel axially and pass through the electric field pro- The rate the antiproton density changes due to recombi-
duced by the trap electrodes. nation is

(49
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1 Np K. Such a ratio appears possible. If*1@ntiprotons are con-
0.8l Mo = 104 NE _ 143 fined, 16 positrons would be needed if a positron density of
Ny 5% 10 m~3is employed. An accumulation of310% pos-
n 06 itrons with a density of X10'®* m~3 and a cylindrical ra-
rec - dius of 3 mm has been reportg81]. For smaller values of
' Np Ne /Ny, the fraction of recombined antiprotons tends to satu-
0.2 No - 102 rate by the time the positron temperature doubles. The satu-
ration is understandable in consideration of the strong tem-
12 14 16 18 20 perature dependence for three-body recombination.
T} (K) It is possible to obtain an expression for the time depen-

dence of the positron temperature by combining E¢S)
FIG. 3. Effect of antiproton heating of positrons on the fraction and (49). The expression is
F.ec Of antiprotons that recombine. The positron temperature in-
creases from 10 K t@,. Each curve is for a different ratio of the - 3kn,:fT1 daT
E;rrg?oer:sof confined positrons to the initial number of confined an- 2no J1,(1-F o (dE/dY)’

(50)

which must be numerically inverted to obtalip as a func-
tion of timet. Alternatively, a value forfT, can be chosen
such that a desired value fét,.. is reached, and then the
time it takes forT; and the desired value df.. to be

where ae is the total recombination reaction rate coeffi- reached can be obtained. For example, using the same pa-
cient, which can be chosen to include the effects of magnetigameters as abovenf=5x10* m3, B=2 T, a3 eV an-

and electric fields, collisions, recombination enhancementgproton kinetic energy, and,=10 K) and assuming an

(e.g., by laser stimulationetc. It is possible to simplify the jnjtial antiproton density of % 10° m~3, it is found to take
problem  significantly, however, by using.=a'%10  (.055 s forF,.=0.5 to be reached witf,=10.16 K and
=6x10"*n(4.2/T)? which considers three-body recom- N /N,=10". Note that the required time to reagh,.=0.5
bin{;ltion and the adverse effect of the magnetic field. E||m|'|s about an order of magnitude smaller than the antiproton
natingn gives slowing time scale calculated in the preceding section. Con-
2 sequently, the assumption that the antiproton kinetic energy
_ ﬂ _ knearecVe d_T remains essentially unchanged during recombination is valid.
. (47 -~ - :
dt  2V(dE/dt) dt For a second examplet=0.88 s is obtained forn
=3Xx10° m 3, F =05, T,=13 K, andNg/Ny=1C. In
this case, the assumption that the antiproton kinetic energy
remains essentially unchanged during recombination is not
valid, and the calculations are not consistent. It should also
(48) be mentioned that in choosing an antiproton density, the an-
To T4 dE/dt)’ tiproton plasma length must be larger than the positron
plasma length so that the antiproton plasma completely over-
where subscript O denotes an initial value and substript |aps the positron plasm@ssuming the same plasma radius
denotes a time-elapsed value. Dividing throughngyyields  for the two plasmas For example, a positron plasma con-
an expression for the fraction of antiprotons that recombingisting of 1§ positrons with a density of §10"* m~3 and a
as a function of the time-elapsed positron temperature. Theylindrical radius of 3 mm has a length of about 7 cm. An

dn NNE e VE

TR 5

Substituting in the expression far,.. and integrating pro-
vides

6X 1022kn,§VFfT1 dT

no_nt: v

expression is antiproton plasma consisting of 4@ntiprotons with a den-
— 20y, 2 sity of 3x10° m™2 and a cylindrical radius of 3 mm has a
. _6x10 knFNFth daT (49)  length of about 12 cm, which satisfies the requirement. As a
rec No T, TY%(dE/dt)’ final note, it should be emphasized that the results of the

present section do not take into account the possible detri-
where Ng=ngVe is the number of confined positrons and mental effect of the presence of an electric field on three-
No=ngV is the initial number of confined antiprotons. To body recombination.
evaluate F,.., the antiproton kinetic energy is assumed
to remain essentially unchanged during recombinationiX. EFFECT OF ELECTRIC FIELD ON RECOMBINATION

The same parameters as in the previous sectiop ( B _— _ o
=5%10" m™3, B=2 T, and a 3 e\antiproton kinetic en- A “threshold field” at which electric field ionization oc-

ergy) are used to calculaté,., and the results are shown in €Urs for hydrogen Rydberg atoms with principal quantum

Fig. 3. Each curve indicates the fraction of antiprotons thaf!umpPers greater thamy., is given by[32]
recombine as a function of the positron temperature. An ini-
tial positron temperature of 10 K is assumed, and three Ep=
curves are shown for three different ratios of the number of B4 EgaIN
confined positrons to the initial number of confined antipro-

tons. For a ratio equal to fpall of the antiprotons recom- where a,=5.29<10 ' m is the Bohr radius. The radial
bine with the positron temperature increasing by less than glectric field produced by a uniform cylindrical positron

e
(51

11
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plasma at locations far from the axial plasma edges is apa; =40, n,=57, andn;=126. These results indicate that the

proximately given by Gauss’ law as radial electric field produced by the plasma may be detrimen-
tal, and a more detailed assessment of the effect of an electric
engr field on antihydrogen recombination is warranted.
E(1)= o (52 yeros

) _ X. CONCLUSION
provided the plasma length is much larger than the plasma

diameter. Settind=y, equal toE,(rn,,) provides an expres- .A method for evaluating lower ordgr Fokker-Planck coef-
sion for the maximum principal quantum number out to aficients has been developed. By using recent results from

maximum radiug s Within the plasma. The expression is Ref. [11], the coefficients were reduced to exact onefold in-
tegrals. To avoid divergence of the integrals, a cutoff in the

1 va lower limit had to be introduced. The lower limit, which is
max— (53 proportional to the minimum change in test particle momen-
tum during binary Coulomb collisions, was written in terms

: ; ; f the Coulomb logarithm. When combined with higher or-
For example, fo a 3 mmradius positron plasma having a o o .
5% 10 m~3 density, principal quantum numbers up to 70 der Fokker-Planck coefficients, given by E#5) [3], a com-

can be produced out to the plasma edge without being iorplete set is formed for calculations of binary Coulomb scat-
ized by the plasma’s electric field. For the same positrof€/iNg With Maxwellian field particles. When a weak

density, principal quantum numbers up to 100 can be progoupling approximatipn was app_lied to the one-fold inte-
duced out tar..=0.7 mm grals, standard analytical expressions were recovered. Hence,
max . .

The distribution of initial principal quantum numbers aris- a new approach to arriving at standard friction and diffusion

ing in three- L coefficients was also obtained.
ing in three-body recombination may be expected to be pro The expressions for the lower order Fokker-Planck coef-

portional to the sixth power of the principal quantum numberf. . licable f | f the Coulomb |
[20]. However, atoms that are initially recombined with too icients are applicable for any value of the Coulomb loga-
rithm. Motivated by this, the range of validity for several

large a value for the principal quantum number become ion . X :
ized(e.qg., by the electric field in the plasma or by collisiobns analytlcal expressions for the C_oulomb logarithm was_det_er-
' mined by comparison to numerical values. As an application

It is useful to define three transition values for the principal £ the th " | dicted that d ibes th
guantum number of an antihydrogen Rydberg atom. For th e theory, a ime scale was predicted that describes the

definitions, the atom is assumed to remain within a statid@t® at. which a reﬂect!ng antiproton_beam Sl.OWS down within
positron plasma indefinitely, and the effect of the electricd Positron plasma with both species confined by a nested

field produced by the plasma is neglected. Also, only coIIi-rF:ennlng }rap. Irleoco%u;gg'b Ic()jgz?]nth_m used :n the c?lculgnon
sional processese.g., collisional deexcitation, excitation, &S & vaiue okh=0. and the time scale was Tound 10

and ionizatioh are considered. Firsh, is defined as the be much larger than the time scale for recombination. Con-

largest value for which a Rydberg atom has very close ggequently, recombination may be possible for the parameters
100% chance of remaining in a bound state indefinitely. FoFONSideéred. To assess the possibility of achieving antihydro-

the second definitiom, is defined as the principal quantum gen recombination in nested Penning traps in more detail, the

number for which a Rydberg atom has about 50% chance qffect of antiproton heating of the positrons was considered.
Qt was found that a sizeable fraction of antiprotons would

remaining in a bound state indefinitely. Thina; is defined . ) . .
as the principal quantum number for which a Rydberg a,[L_m{ecombme provided the ratio of the number of confined pos-
trons to the number of initially confined antiprotons was

has very close to 100% chance of eventually being ionized. b f . density of i H "
In Ref.[29], values for Rydberg energies associated with arge enougn for a given density of positrons. HOWEVET, |

oS -~ was also found that the radial electric field produced by the
n,, and n; are reported, which indicate;=126A/T, n,

e o : plasma may limit the production of antihydrogen atoms to
=180AT, and r_13—397/_\/f? The value c_)fnmax relative to within a small region near the axis of symmetry of the
n{, Ny, andn; gives an indication of the importance of elec-

tric field ionization of Rydberg atoms within the plasma. If plasma.
Nmax IS 1arger tham; then the electric field may be consid-

ered unimportant since Rydberg atoms with principal quan-

tum numbers larger thans; would be ionized even if the This material was based upon work supported by the Na-
electric field were not present. For a 10 K positron plasmational Science Foundation under Grant No. PHY-9876921.
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