
PHYSICAL REVIEW E DECEMBER 2000VOLUME 62, NUMBER 6
Velocity space scattering coefficients with applications in antihydrogen recombination studies

Yongbin Chang and C. A. Ordonez
Department of Physics, University of North Texas, Denton, Texas 76203

~Received 2 June 2000!

An approach for calculating velocity space friction and diffusion coefficients with Maxwellian field particles
is developed based on a kernel function derived in a previous paper@Y. Chang and C. A. Ordonez, Phys.
Plasmas6, 2947~1999!#. The original fivefold integral expressions for the coefficients are reduced to onefold
integrals, which can be used for any value of the Coulomb logarithm. The onefold integrals can be further
reduced to standard analytical expressions by using a weak coupling approximation. The integral expression
for the friction coefficient is used to predict a time scale that describes the rate at which a reflecting antiproton
beam slows down within a positron plasma, while both species are simultaneously confined by a nested
Penning trap. The time scale is used to consider the possibility of achieving antihydrogen recombination within
the trap. The friction and diffusion coefficients are then used to derive an expression for calculating the energy
transfer rate between antiprotons and positrons. The expression is employed to illustrate achieving antihydro-
gen recombination while taking into account positron heating by the antiprotons. The effect of the presence of
an electric field on recombination is discussed.

PACS number~s!: 52.25.Dg, 52.25.Wz, 52.25.Fi
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I. INTRODUCTION

Velocity space friction and diffusion coefficients are t
lower order coefficients in the Fokker-Planck equation a
are useful for, for example, evaluating time scales that
governed by velocity space scattering. The Fokker-Pla
equation and the associated coefficients are described in
@1#, where historical references can also be found.
weakly coupled plasmas, plasmas with a Coulomb logarit
larger than ten, only the lower order terms of the expans
of the Fokker-Planck equation need to be kept. In additi
the assumption of weak coupling provides the convenie
of allowing the lower order Fokker-Planck coefficients to
approximated using analytical expressions when the fi
particles are Maxwellian. However, there exist many labo
tory and astrophysical plasmas that are not weakly coup
@2#, and some collision terms for nonweakly coupled plasm
have been developed. The third order term of the Fokk
Planck equation has been derived@2#. Fokker-Planck coeffi-
cients of arbitrarily high orders have been developed
have been presented as a unified expression@3#. The Boltz-
mann collision integral has been expanded to fourth or
terms, and the importance of close collision events has b
emphasized@4#. In addition, some effort has gone into im
proving the description of the binary collision mechanics
plasmas@5# and the accuracy of the Coulomb logarithm f
nonweakly coupled plasmas@6,7#.

In principle, the complete Fokker-Planck equation is e
pressed as the following infinite series@8,9#:

S ] f

]t D
coll

5 (
N51

`
~21!N

N!

]N

]vN
~^DvN& f !. ~1!

The Fokker-Planck equation gives the time rate of chang
the distribution functionf due to collisions. In Eq.~1!, DvN

is theNth order dyad of velocity change for the test partic
and the Fokker-Planck coefficients^DvN&, which are aver-
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ages per unit time, are defined in terms of a probability fu
tion P(v,Dv) as follows@9,10#:

^DvN&5E DvNP~v,Dv !dDv. ~2!

In Sec. II, a derivation of the probability function fo
Maxwellian field particles is presented. The probability fun
tion is used in Sec. III to obtain onefold integral expressio
for the Fokker-Planck friction and diffusion coefficients. Th
integrals are over the range of possible changes in mom
tum for a test particle undergoing binary Coulomb collisio
with field particles. The integrals are exact but diverge due
the long range Coulomb interaction. Approximations a
necessarily introduced when a nonzero lower integrat
limit is chosen to avoid the divergence. The lower limit
evaluated in terms of the Coulomb logarithm in Sec. IV.
Sec. V, the correspondence of the present theory with p
theory is shown. A weak coupling approximation is appli
to the onefold integrals to obtain standard analytical expr
sions. The present theory is not restricted in applicability
least for evaluating velocity space scattering effects due
binary Coulomb collisions. For example, the present the
can be applied when the Coulomb logarithm has a value
than 10. In Sec. VI, the suitability of some expressions
the Coulomb logarithm are considered for small Coulom
logarithm values. As an application of the present theory
time scale is predicted that describes the rate at which a
protons slow down within a positron plasma. In Sec. VII, t
time scale is used to consider the possibility of achiev
antihydrogen recombination when both the antiprotons
positrons are simultaneously confined within a nested P
ning trap. The present theory is also used to derive an
pression for the rate at which energy is transferred from
antiprotons to the positrons. In Sec. VIII, the expression
presented and then used to assess the effect that antip
heating of the positrons has on achieving antihydrogen
8564 ©2000 The American Physical Society
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PRE 62 8565VELOCITY SPACE SCATTERING COEFFICIENTS WITH . . .
combination. A discussion regarding the effect of an elec
field on recombination is presented in Sec. IX. Conclud
remarks are given in Sec. X.

II. DERIVATION OF PROBABILITY FUNCTION FOR
MAXWELLIAN FIELD PARTICLES

To obtain an expression for the probability function in E
~2!, the Fokker-Planck coefficients can be written in terms
an integral over a scattering cross section. For Maxwel
field particles, the Fokker-Planck coefficients have be
written as@9,10#

^DvN&5E DvNf M~vF!gsRsinu du df dvF , ~3!

where

sR5S zzFe2

4pe0m D 2 1

4g4 sin4~u/2!
~4!

is the Rutherford cross section,f M(vF) is the Maxwellian
velocity distribution for the field particles,m5mmF /(m
1mF) is the reduced mass,u is the scattering angle in th
center-of-mass system,f is the azimuthal angle around th
relative velocityg5v2vF , v and vF are the velocities of
the test particle and field particle,z and zF are the charge
states of the test and field particle,m andmF are the masse
of the test and field particle,e is the unit charge, ande0 is the
permittivity of free space. It is possible to start with Eq.~3!
and then change Eq.~3! into the form of Eq.~2! by using a
variable change technique@3,11–13#. Changing the integra
tion variables from (vF ,u,f) to (Dv,u,f8), Eq. ~3! pro-
vides

^DvN&5E DvNf M~vF!gsR sinuuJudu df8 dD v, ~5!

whereJ is the Jacobian for the change of variables andf8 is
the azimuthal angle aroundDv. Comparing Eq.~2! and Eq.
~5!, the probability function is written

P~v,Dv !5E f M~vF!gsR sinuuJudu df8. ~6!

To implement the approach, a kernal function is definedC
5 f M(v)P(v,Dv). Here f M(v) is a function introduced to
simplify the integral inC. The integral inC is evaluated in
Ref. @11# and found to be

C5nnFS AmmF

2pakTD
3 v thpd2

ud
expS «g

2

ud
2 22«x2ud

2D ~7!

using

f M~v !5nS m

2pkTD 3/2

expS 2
mv2

2kTD , ~8!

where «x5v•v8/(av th
2 ), «g5uv3v8u/(av th

2 ), ud5Dv/
(av th), a52m/m, d5b/ud

2 , b5zzFe2mF /(8pe0mkT),
Dv5v82v, v th5A2kT/mF is the thermal speed of the fiel
particles,nF and T are the density and temperature of t
c
g

.
f
n
n

field particles,n is a constant that factors out, andk is Bolt-
zmann’s constant. With this, the probability function is

P~v,Dv !5
nFv thpd2

~Apav th!
3ud

expS uu3udu2

ud
2

2u22ud
222u•udD ,

~9!

whereu5v/v th .

III. SIMPLIFICATION OF FOKKER-PLANCK
COEFFICIENTS WITHOUT THE WEAK

COUPLING APPROXIMATION

Introducing (ei ,e'1 ,e'2) as an orthogonal triplet of uni
vectors withei5v/v, ud is expressed as

ud5udiei1ud'1e'11ud'2e'2

5ud~ei cosx1e'1 sinx cosC1e'2sinx sinC!,

~10!

wherex is the angle betweenud andu, C is the azimuthal
angle ofud aroundu, andi , '1, and'2 denote the direction
parallel and two directions perpendicular tou. It is conve-
nient to change the integration variables in Eq.~2! using the
following differential:

dDv5~av th!
3dud5~av th!

3ud
2 sinx dC dx dud . ~11!

Equation~2! becomes

^DvN&5~av th!
N^ud

N&

5~av th!
NE ud

Np~u,ud!ud
2 sinx dC dx dud , ~12!

wherep(u,ud)5(av th)
3P(v,Dv). Defining

t5
1

nFv thpb2
, ~13!

Eq. ~9! is used to obtain

p~u,ud!5
1

p3/2tud
5 exp~ud1u cosx!2

. ~14!

In Ref. @3#, the functionp(u,ud) is expressed in the form
of an infinity series, which is convenient for the calculatio
of the Fokker-Planck coefficients forN>3. For complete-
ness, higher order,N>3, Fokker-Planck coefficients ar
listed here. They are@3#

^Dv i
N22(J1K)Dv'1

2J Dv'2
2K&

5
b~J11/2,K11/2!

~21!J1Kp
(
i 50

J1K

CJ1K
i

3 (
j 5L

N2 i 21
G~3/21L2 i !

G~3/22M1 j !
CM2 i

j 2L FN,i , j~u2!,

~15!
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whereb andG are the beta and gamma functions,L equals
the greatest integer less than or equal to (N21)/2, andM
equals the greatest integer less than or equal toN/2. The
function FN,i , j is defined as

FN,i , j~x!

5
~21!N1 i~av th!

Nxj 112N/2@xjexg* ~3/22 i 1 j ,x!# ( j )

texj
,

~16!

whereg* is a form of the incomplete gamma function@14#,

g* ~a,x!5
1

xaG~a!
E

0

x

e2tta21 dt. ~17!

In the present work, new expressions for lower orderN
,3) Fokker-Planck coefficients are derived. The field p
ticles are assumed to have an isotropic Maxwellian velo
distribution, and

^Dv2&5^Dv i
2&1^Dv'1

2 &1^Dv'2
2 &, ~18!
.
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^Dv'1
2 &5^Dv'2

2 &, ~19!

and

^Dv'1&5^Dv'2&50. ~20!

Hence the friction coefficient̂Dv i& and two diffusion coef-
ficients^Dv i

2& and^Dv2& can be considered the independe
coefficients. Applying Eq.~12! to the three coefficients, sub
stituting in Eq.~14!, integrating overC, changing the inte-
gration variables fromx to x5cosx, and integrating overx
yields

^Dv i&5
av th

tu2 E e2W2
2e2U2

2Apud@erf~U !1erf~W!#

Apud
2

dud ,

~21!

^Dv2&5
~av th!

2

tu E @erf~U !1erf~W!#

ud
dud , ~22!

and
^Dv i
2&5

~av th!
2

tu3 E 2We2U2
2Ue2W2

1ApS 1

2
1ud

2D @erf~U !1erf~W!#

Apud

dud , ~23!
ion
ct

-

be

ons

u-

ss
n.
whereU5u1ud , W5u2ud , and erf is the error function

IV. INTEGRATION LIMITS AND THE COULOMB
LOGARITHM

No approximations are used to arrive at Eqs.~21!–~23!
and the equations apply without restrictions. For exam
the test particle speed can be larger than the thermal spe
the field particles. Unfortunately, approximations are nec
sarily introduced when the limits of integration are chos
In order to take into account all possible binary Coulom
collisions, the limits of integration for Eqs.~21!–~23! are
ud,min50 andud,max5`. However, setting the lower limit o
integration equal to zero causes the integrals to diverge
result of the long range of the Coulomb interaction. Beca
ud5mDv/(2mv th) is proportional to the magnitude of th
change in the test-particle momentumDp5mDv due to a
Coulomb collision, it is necessary to define a lower cutoff
the range of valuesDp may have. To proceed further,ud is
written in terms of an associated impact parameterr and a
limited range of impact parameters is considered. For a
nary Coulomb collision

ud5
g

v thA11r2/b2
, ~24!

whereb5zzFe2/(4pe0mg2) is half the classical distance o
closest approach for a head-on collision. To write the in
gration limits ud,min and ud,max in terms of maximum and
,
of

s-
.

a
e

i-

-

minimum impact parameters,rmax andrmin , a value must be
chosen for the relative speedg. In reality, g has a range of
values between zero and infinity. However, if the integrat
limits are written in terms of maximum and minimum impa
parameters, then the same value must be used to replaceg in
both integration limits so that the integrals in Eqs.~21!–~23!
vanish in the limitrmax→rmin . A reasonable choice for re
placingg is ^g&, the average value ofg. For Maxwellian field
particles

^g&5
v the

2u2

Ap
1v thS u1

1

2uDerf~u!. ~25!

Alternative choices for replacingg arev th , which is within
12% of ^g& for v,0.1v th , and v, which is within 12% of
^g& for v.2v th .

Incorporation of a minimum impact parameter may
useful for taking into account quantum effects@7# and the
effects of particle sink reactions such as fusion reacti
@15#. Here, rmin50 is used to allowrmax to be written in
terms of the Coulomb logarithm in a simple way. The Co
lomb logarithm is defined@6#

l5
1

2pb2E sin2S u

2D S ds

dV DdV, ~26!

whereV is the scattering solid angle in the center of ma
frame andds/dV is the differential scattering cross sectio
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Assuming azimuthally random collisions, the Coulomb log
rithm is equivalently defined by

l5
1

b2E
p

0

sin2S u

2D S ds

dV D sinu du ~27!

or alternatively by

l5
1

b2E
0

`

sin2S u

2D r dr, ~28!

wheredV52p sinu du andds52prdr are used.
For a classical binary Coulomb collision, the center-

mass scattering angle is related to the impact paramete
sin2(u/2)51/(11r2/b2) or equivalently byr5b cot(u/2). The
associated differential scattering cross section, wh
is known as the Rutherford cross section, isds/dV5sR
52(b/2)2csc4(u/2). Integrating from u5p to u
52 arcsin(1/A11rmax

2 /b2) or from r50 to r5rmax provides

l5 lnSA11
rmax

2

b2 D . ~29!

Solving for rmax, substituting into Eq.~24!, and replacingg
by its average provides the lower integration limit

ud,min5
^g&e2l

v th
. ~30!

The corresponding upper integration limit is obtained
substitutingr5rmin50 into Eq. ~24! and replacingg by its
average:

ud,max5
^g&
v th

. ~31!

Writing the lower integration limit in terms of the Cou
lomb logarithm allows different Coulomb logarithm expre
sions to be used in the theory. It should be kept in mi
however, that Eq.~29! is the only Coulomb logarithm ex
pression that is truly consistent with the present theory
rmin50.

V. FRICTION AND DIFFUSION COEFFICIENTS WITH
WEAK COUPLING ASSUMPTION

Assuming that the dominant contribution to friction an
diffusion come from weak collision events, a Taylor ser
expansion of the integrands in Eqs.~21!–~23! may be done.
The usual form of the friction and diffusion coefficients a
recovered by keeping only the lowest order terms in the
pansion, and by considering^g&5v th and the corresponding
integration limitsud,min5e2l andud,max51. With the defini-
tion of Chandrasekhar’s function@1,9#

G~x!5
1

2 S erf~x!

x2
2

2e2x2

Apx
D , ~32!

the friction and diffusion coefficients are reduced to
-

-
by

h

,

r

s

-

^Dv i&52
4av thlG~u!

t
, ~33!

^Dv2&5
2~av th!

2l erf~u!

tu
, ~34!

and

^Dv i
2&5

2~av th!
2lG~u!

tu
, ~35!

which are standard analytical expressions@9,16#. These ex-
pressions agree to within 5% with Eqs.~21!–~23! for Cou-
lomb logarithm values larger than 10 and test particle spe
less than the thermal speed of the field particles (u,1) when
the integration limitsud,min5e2l and ud,max51, are used in
Eqs.~21!–~23!.

VI. COULOMB LOGARITHM FOR SMALL COULOMB
LOGARITHM VALUES

A comparison is presented in Ref.@17# between theory
and experimental anisotropic temperature relaxation
data. The experimental data was obtained using non-ne
plasmas, in which the cyclotron radiusr c was smaller than
the Debye lengthlD @18,19#. Theory that employed the
usual form for the Coulomb logarithm

l5 ln L, ~36!

was found to agree with the experimental data reported
Ref. @18# for L@1 with L51/(0.333k) where k
52A2b/r c andb equals half the classical distance of close
approach. A numerical treatment was used to determine
numerical factor 0.333. Note that considering the cyclotr
radius as the maximum impact parameter yieldsL
5rmax/(0.666A2b)51.06rmax/b'rmax/b.

The experimental data reported in Ref.@18# are associated
with L values much larger than unity. The experimental d
in Ref. @19# are associated with values ofL closer to unity
and include values both larger and smaller than unity.~Nev-
ertheless, the experimental data in Ref.@19# are from weakly
correlated plasmas.! The numerical treatment reported
Ref. @17# agrees with the experimental data reported in R
@19# to within the estimated experimental error. A functio
denotedI (k) was calculated using the numerical treatme
and a spectrum of values are reported in Tables I and I
Ref. @17#. The numerical treatment was developed consid
ing an adiabatic invariant that governs the equipartition r
between parallel and perpendicular~to the magnetic field!
velocity components. Fork!1(L@1), the equipartition rate
is the same in both ‘‘magnetized’’ (r c,lD) and ‘‘unmagne-
tized’’ ( r c@lD) plasmas~with lD replaced byr c in the
Coulomb logarithm whenr c,lD), and the correspondenc
between the Coulomb logarithm andI (k) is given by@17#

l5
15I ~k!

A2p
. ~37!

For velocity space scattering due to binary collisio
within an unmagnetized plasma, the physics associated
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the collision dynamics of a test particle is contained with
the Coulomb logarithm@6#. For a magnetized plasma, th
function I (k) takes into account all dependence on the m
netic field strength@17#. In the present work, a Coulom
logarithm for magnetized plasmas is defined using Eq.~37!
by hypothesis. The hypothesis is consistent with the pro
dure used in Ref.@17# for carrying out comparisons with
experimental data. The procedure was equivalent to rep
ing the Coulomb logarithm within theory for unmagnetiz
plasmas using Eq.~37! and using the cyclotron radius for th
maximum impact parameter.

An expression forI (k) is provided in Ref.@17# that is
suitable fork@1(L!1). Employing the definition given by
Eq. ~37!, the corresponding Coulomb logarithm is written

l5
15

A2p
expF25~3pk!2/5

6 G~1.83k27/15120.9k211/15

10.347k213/15187.8k2116.68k217/15!. ~38!

In Fig. 1 of Ref.@15#, a comparison of theory~for unmag-
netized plasmas but using the cyclotron radius for the m
mum impact parameter! and the anisotropic temperature r
laxation rate experimental data from Ref.@19# is shown.
Approximate agreement~within 69% for all but one data
point! was found when

l5 ln~A11L2! ~39!

was used for the Coulomb logarithm. The values of the C
lomb logarithm extended from 0.00015 to 6.5. Note that E
~29! and ~39! are the same whenL5rmax/b.

Figure 1 shows the difference, expressed as a percen
between the analytical expressions, Eqs.~36!, ~38!, and~39!,
and numerical values obtained from Tables I and II of R
@17# using Eq.~37!. Equations~36! and ~39! are calculated
using L51/(0.333k). Equations~36!, ~38!, and ~39! are
found to agree to within 30% with the numerical values
k,1.78 (l.0.6), k.316 (l,531029), and k,25 (l
.0.006), respectively. For 25,k,316 (531029,l
,0.006),

l5S 1

l38
1

1

l39
D 21

~40!

FIG. 1. Comparison of three analytical expressions, Eqs.~36!,
~38!, and~39!, for the Coulomb logarithm. Shown is the percenta
that each expression is different from each numerical value.
points are joined by three lines to guide the eye.
-

e-

c-

i-

-
.

ge,

f.

r

~not shown in Fig. 1! agrees to within 59% with the numer
cal values wherel38 andl39 denote the expressions given b
Eqs.~38! and ~39!.

VII. ANTIHYDROGEN APPLICATION

The year 2000 is expected to mark the beginning of
international effort to produce low-energy antihydrogen
oms for scientific study@20–22#. The attempts will com-
mence at the CERN AD~Antiproton Decelerator! facility
and the use of nested Penning traps to achieve antihydro
recombination is planned.~The reader is referred to Refs
@23–25# for more details on plasma confinement in nes
Penning traps and to Refs.@20–22# for more details on the
expected operating parameters for achieving antihydro
recombination.! Here, a method is considered for achievin
overlap of a positron plasma by a reflecting antiproton be
within a nested Penning trap such that recombination occ
The method has been explored experimentally using e
trons and protons although recombination was not repo
@26#. Figure 2 illustrates the method. Initially, positrons a
antiprotons are stored in separate potential wells@Fig. 2~a!#.
The potential profile is produced using cylindrical electrod
that are aligned along a magnetic field. The magnetic fi
provides radial confinement of the charged particles. The
tiprotons are allowed to flow into a lower potential ener
‘‘outer well’’ @Fig. 2~b!# and then are captured within th
outer well @Fig. 2~c!#. The change in potential energy exp
rienced by the antiprotons is much larger than their therm
energy, so they can be regarded as forming a reflecting be
The reflecting antiproton beam passes through the posi
plasma, which is trapped within the ‘‘inner well.’’ Recomb
nation occurs between the antiprotons and positrons w
the overlap persists. Recombined antihydrogen atoms f
two oppositely directed beams that travel away from
overlap region parallel to the magnetic field.

Two time scales characterize the evolution of the syst
after the overlap commences. One time scale characte
the rate at which antiprotons slow down to subsequently

e

FIG. 2. Illustration of a method for achieving overlap of an
protons and positrons within a nested Penning trap.
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come trapped within the ‘‘end wells’’ where the positrons
not reside. The slowing time scale is approximately

ts5
v

u^Dv i&u
. ~41!

By way of example, the antiproton slowing time scale
predicted using the present theory for a positron density
temperature ofnF5531013 m23 and T510 K, and aB
52 T magnetic field. For antiproton speeds larger th
about twice the positron thermal speed~antiproton kinetic
energies larger than about 6 eV for a positron temperatur
10 K!, the overlap is susceptible to the two-stream insta
ity. For the calculation, 3 eV antiprotons are considered. T
counterstreaming antiprotons are not susceptible to the
stream instability themselves provided the conditionn
,p2e0mv2/(el )2 is satisfied wheren and l are the anti-
proton density and length.~See Ref.@27# for more details on
considering the two-stream instability in nested Penn
traps.! If the inner well is much longer than the end well
the condition can be applied to the inner well. For examp
for an inner well length of 10 cm, the antiproton dens
must be less than 3.331011 m23.

The positron cyclotron radiusr c is smaller than the Debye
length andL5r c /b50.126 is used where the numerat
and denominator are calculated usingr c5AmFkT/(eB)
53.5031028 m and b5zzFe2/(4pe0m^g&2)52.78
31027 m with ^g&53.023104 m/s given by Eq.~25!.
With k51/(0.333L)523.8, Eq. ~39! is used to obtainl
50.00788. Using Eq.~21! with the integration limits given
by Eqs.~30! and ~31!, the time scale is predicted to bets
50.48 s. In comparison, Eq.~33!, which is not expected to
be accurate for small Coulomb logarithm values, givests
50.11 s.

A second time scale characterizes the recombination
of antihydrogen. Two recombination reactions for formi
antihydrogen from free antiprotons and positrons are spo
neous radiative recombination SRR and three-body recom
nation TBR. The SRR reaction rate coefficientaSRR for a 1
K antihydrogen plasma can be found in Ref.@20#. The asso-
ciate time scale istSRR51/(aSRRnF)5100 s. For a 10 K
antihydrogen plasma, the time scale will be even larger.
TBR reaction rate coefficient can be expressed as@28#
aTBR56310224(4.2/T)9/2nF . This recombination rate per
tains to zero magnetic field. For infinitely high fields, the ra
will be an order of magnitude less@29#. So the TBR time
scale is estimated to betTBR'10/(aTBRnF)50.033 s. With
tTBR!ts , a substantial fraction of the antiprotons can
combine with positrons to form antihydrogen atoms dur
the time the overlap persists. It should be noted, howe
that newly recombined atoms in highly excited states
susceptible to electric field ionization. Although a study th
considered the effect of electric fields on antihydrogen p
duction has been reported@30#, more detailed studies tha
consider both radial and axial electric fields produced un
specific operating conditions are needed. For the present
figuration, recombined atoms will initially be exposed to t
radial electric field produced by the plasma. Afterward t
atoms travel axially and pass through the electric field p
duced by the trap electrodes.
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VIII. EFFECT OF POSITRON HEATING ON
RECOMBINATION

When a test particle travels through a plasma, an
change of energy occurs between the test particle and
plasma. For energetic antiprotons traveling through a c
positron plasma, the antiprotons transfer energy to the p
trons and cause the positron temperature to increase.
increase in positron temperature, in turn, causes a decrea
the three-body recombination rate between positrons and
tiprotons. In the present section, the effect that positron h
ing has on achieving antihydrogen recombination is
sessed.

The average rate at which energy is transferred from a
particle~e.g., an antiproton! to field particles~e.g., positrons!
is

dE

dt
52

1

2
m~^Dv2&12v^Dv i&!. ~42!

Substituting Eqs.~21! and ~22! into Eq. ~42! yields

dE

dt
52

mav th
2

2tu

3E 2e2W2
22e2U2

1Apud~a22!@erf~U !1erf~W!#

Apud
2

3dud , ~43!

where the integration limits are given by Eqs.~30! and~31!.
To assess the effect of positron heating, the positron pla
is modeled as having a spatially uniform densitynF and
temperatureT within a constant confinement volumeVF . In
addition, the number of confined positrons is assumed to
much larger than the number of confined antiprotons, andnF
is considered to remain essentially constant. The antipro
plasma is modeled as having a uniform densityn, the same
diameter as the positron plasma, and a larger constant
finement volumeV, which completely encompassesVF . It is
possible for the antiprotons to have an essentially unifo
density axially provided that their average axial kinetic e
ergy is much larger than the change in their potential ene
between an end well and the inner well@23#. The total power
that goes into heating the positron plasma is

PF5nVF

dE

dt
, ~44!

wherenVF equals the number of antiprotons within the ove
lap volume. Neglecting other possible energy sources
sinks, the positron temperature time dependence due to
proton heating is given by

dT

dt
5

2PF

3knFVF
5

2n

3knF

dE

dt
, ~45!

wherenFVF equals the number of confined positrons.
The rate the antiproton density changes due to recom

nation is
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dn

dt
52

nnFa recVF

V
, ~46!

where a rec is the total recombination reaction rate coef
cient, which can be chosen to include the effects of magn
and electric fields, collisions, recombination enhanceme
~e.g., by laser stimulation!, etc. It is possible to simplify the
problem significantly, however, by usinga rec5aTBR/10
56310225nF(4.2/T)9/2, which considers three-body recom
bination and the adverse effect of the magnetic field. Elim
natingn gives

2
dn

dt
5

3knF
2a recVF

2V~dE/dt!

dT

dt
. ~47!

Substituting in the expression fora rec and integrating pro-
vides

n02nt5
6310222knF

3VF

V E
T0

Tt dT

T9/2~dE/dt!
, ~48!

where subscript 0 denotes an initial value and subscrit
denotes a time-elapsed value. Dividing through byn0 yields
an expression for the fraction of antiprotons that recomb
as a function of the time-elapsed positron temperature.
expression is

F rec5
6310222knF

2NF

N0
E

T0

Tt dT

T9/2~dE/dt!
, ~49!

where NF5nFVF is the number of confined positrons an
N05n0V is the initial number of confined antiprotons. T
evaluate F rec, the antiproton kinetic energy is assum
to remain essentially unchanged during recombinati
The same parameters as in the previous sectionnF
5531013 m23, B52 T, and a 3 eVantiproton kinetic en-
ergy! are used to calculateF rec and the results are shown i
Fig. 3. Each curve indicates the fraction of antiprotons t
recombine as a function of the positron temperature. An
tial positron temperature of 10 K is assumed, and th
curves are shown for three different ratios of the numbe
confined positrons to the initial number of confined antip
tons. For a ratio equal to 104, all of the antiprotons recom
bine with the positron temperature increasing by less tha

FIG. 3. Effect of antiproton heating of positrons on the fracti
F rec of antiprotons that recombine. The positron temperature
creases from 10 K toTt . Each curve is for a different ratio of th
number of confined positrons to the initial number of confined
tiprotons.
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K. Such a ratio appears possible. If 104 antiprotons are con-
fined, 108 positrons would be needed if a positron density
531013 m23 is employed. An accumulation of 33108 pos-
itrons with a density of 231013 m23 and a cylindrical ra-
dius of 3 mm has been reported@31#. For smaller values of
NF /N0, the fraction of recombined antiprotons tends to sa
rate by the time the positron temperature doubles. The s
ration is understandable in consideration of the strong te
perature dependence for three-body recombination.

It is possible to obtain an expression for the time dep
dence of the positron temperature by combining Eqs.~45!
and ~49!. The expression is

t5
3knF

2n0
E

T0

Tt dT

~12F rec!~dE/dt!
, ~50!

which must be numerically inverted to obtainTt as a func-
tion of time t. Alternatively, a value forTt can be chosen
such that a desired value forF rec is reached, and then th
time it takes forTt and the desired value ofF rec to be
reached can be obtained. For example, using the same
rameters as above (nF5531013 m23, B52 T, a 3 eV an-
tiproton kinetic energy, andT0510 K) and assuming an
initial antiproton density of 33109 m23, it is found to take
0.055 s forF rec50.5 to be reached withTt510.16 K and
NF /N05104. Note that the required time to reachF rec50.5
is about an order of magnitude smaller than the antipro
slowing time scale calculated in the preceding section. C
sequently, the assumption that the antiproton kinetic ene
remains essentially unchanged during recombination is va
For a second example,t50.88 s is obtained forn0
533109 m23, F rec50.5, Tt513 K, andNF /N05103. In
this case, the assumption that the antiproton kinetic ene
remains essentially unchanged during recombination is
valid, and the calculations are not consistent. It should a
be mentioned that in choosing an antiproton density, the
tiproton plasma length must be larger than the posit
plasma length so that the antiproton plasma completely o
laps the positron plasma~assuming the same plasma radi
for the two plasmas!. For example, a positron plasma co
sisting of 108 positrons with a density of 531013 m23 and a
cylindrical radius of 3 mm has a length of about 7 cm. A
antiproton plasma consisting of 104 antiprotons with a den-
sity of 33109 m23 and a cylindrical radius of 3 mm has
length of about 12 cm, which satisfies the requirement. A
final note, it should be emphasized that the results of
present section do not take into account the possible d
mental effect of the presence of an electric field on thr
body recombination.

IX. EFFECT OF ELECTRIC FIELD ON RECOMBINATION

A ‘‘threshold field’’ at which electric field ionization oc-
curs for hydrogen Rydberg atoms with principal quantu
numbers greater thannmax is given by@32#

Eth5
e

64pe0a0
2nmax

4
, ~51!

where a055.29310211 m is the Bohr radius. The radia
electric field produced by a uniform cylindrical positro

-

-
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plasma at locations far from the axial plasma edges is
proximately given by Gauss’ law as

Er~r !5
enFr

2e0
, ~52!

provided the plasma length is much larger than the plas
diameter. SettingEth equal toEr(r max) provides an expres
sion for the maximum principal quantum number out to
maximum radiusr max within the plasma. The expression is

nmax5S 1

32pa0
2nFr max

D 1/4

. ~53!

For example, for a 3 mm radius positron plasma having
531013 m23 density, principal quantum numbers up to 7
can be produced out to the plasma edge without being
ized by the plasma’s electric field. For the same posit
density, principal quantum numbers up to 100 can be p
duced out tor max50.7 mm.

The distribution of initial principal quantum numbers ari
ing in three-body recombination may be expected to be p
portional to the sixth power of the principal quantum numb
@20#. However, atoms that are initially recombined with to
large a value for the principal quantum number become i
ized~e.g., by the electric field in the plasma or by collision!.
It is useful to define three transition values for the princip
quantum number of an antihydrogen Rydberg atom. For
definitions, the atom is assumed to remain within a sta
positron plasma indefinitely, and the effect of the elect
field produced by the plasma is neglected. Also, only co
sional processes~e.g., collisional deexcitation, excitation
and ionization! are considered. First,n1 is defined as the
largest value for which a Rydberg atom has very close
100% chance of remaining in a bound state indefinitely.
the second definition,n2 is defined as the principal quantu
number for which a Rydberg atom has about 50% chanc
remaining in a bound state indefinitely. Third,n3 is defined
as the principal quantum number for which a Rydberg at
has very close to 100% chance of eventually being ioniz
In Ref. @29#, values for Rydberg energies associated withn1 ,
n2, and n3 are reported, which indicaten15126/AT, n2

5180/AT, and n35397/AT. The value ofnmax relative to
n1 , n2, andn3 gives an indication of the importance of ele
tric field ionization of Rydberg atoms within the plasma.
nmax is larger thann3 then the electric field may be consid
ered unimportant since Rydberg atoms with principal qu
tum numbers larger thann3 would be ionized even if the
electric field were not present. For a 10 K positron plasm
p-
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n1540, n2557, andn35126. These results indicate that th
radial electric field produced by the plasma may be detrim
tal, and a more detailed assessment of the effect of an ele
field on antihydrogen recombination is warranted.

X. CONCLUSION

A method for evaluating lower order Fokker-Planck coe
ficients has been developed. By using recent results f
Ref. @11#, the coefficients were reduced to exact onefold
tegrals. To avoid divergence of the integrals, a cutoff in
lower limit had to be introduced. The lower limit, which i
proportional to the minimum change in test particle mome
tum during binary Coulomb collisions, was written in term
of the Coulomb logarithm. When combined with higher o
der Fokker-Planck coefficients, given by Eq.~15! @3#, a com-
plete set is formed for calculations of binary Coulomb sc
tering with Maxwellian field particles. When a wea
coupling approximation was applied to the one-fold in
grals, standard analytical expressions were recovered. He
a new approach to arriving at standard friction and diffus
coefficients was also obtained.

The expressions for the lower order Fokker-Planck co
ficients are applicable for any value of the Coulomb log
rithm. Motivated by this, the range of validity for sever
analytical expressions for the Coulomb logarithm was de
mined by comparison to numerical values. As an applicat
of the theory, a time scale was predicted that describes
rate at which a reflecting antiproton beam slows down wit
a positron plasma with both species confined by a nes
Penning trap. The Coulomb logarithm used in the calculat
has a value ofl50.00788 and the time scale was found
be much larger than the time scale for recombination. C
sequently, recombination may be possible for the parame
considered. To assess the possibility of achieving antihyd
gen recombination in nested Penning traps in more detail,
effect of antiproton heating of the positrons was consider
It was found that a sizeable fraction of antiprotons wou
recombine provided the ratio of the number of confined p
itrons to the number of initially confined antiprotons w
large enough for a given density of positrons. However
was also found that the radial electric field produced by
plasma may limit the production of antihydrogen atoms
within a small region near the axis of symmetry of th
plasma.
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